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Optimal control theory~OCT! is formulated for the case of a two-color pump-probe experiment. The
approach allows to calculate the pump-pulse shape in such a way that the probe-pulse absorption
signal is maximized. Since the latter quantity is given by the time-averaged expectation value of a
time dependent operator~the probe-pulse field-strength times the dipole operator! a version of OCT
has to be used where the target state is distributed in time. The method is applied to a molecular
three-level system with the pump-pulse driving the transition from the electronic ground state into
the first-excited electronic state and the probe-pulse connecting the first-excited state with a higher
lying electronic state. Depending on the probe-pulse duration, the vibrational wave packet becomes
localized or at least highly concentrated in the Franck-Condon window for the transition into the
higher-excited state. The dependence on the probe-pulse duration and on the delay time between the
optimized pump-pulse and the probe-pulse is discussed in detail. The whole study demonstrates the
feasibility of laser pulse induced temporal wave packet localization and the use of spectroscopic
quantities as target states in experiments on femtosecond laser pulse control.
© 2004 American Institute of Physics.@DOI: 10.1063/1.1769370#

I. INTRODUCTION

Among the various attempts undertaken to achieve fem-
tosecond laser pulse control of molecular dynamics those
experiments are of particular interest which also take an op-
tical signal as the observable to be maximized in a feedback-
controlled self-learning loop.1–3 As in other cases these
learning loops follow the general suggestion of Ref. 4 and
consist of a pulse shaper, a device to measure the signal to be
optimized, and an evolutionary algorithm. The latter notices
the measured signal and realizes a feedback by iteratively
optimizing the exciting laser pulse.

A transient absorption signal from theS1 level into a
higher-excited singlet level of a carotenoid has been used in
Ref. 1 to control energy flow pathways in the light-
harvesting antenna complex LH2. Selected vibrational mode
excitation of crystalline polydiacetylene was demonstrated in
Ref. 2 with the feedback signal derived from that of a coher-
ent anti-Stokes Raman scattering setup. Luminescence radia-
tion has been taken in Ref. 3 to maximize the population of
a long-lived charge-transfer state in a charge-transfer coordi-
nation complex. All these approaches demonstrated the fea-
sibility of optical detection within optical control and repre-
sent an alternative to the maximization of, for example, an
observable derived from mass spectroscopy~cf., e.g., Ref. 5!.

It is the aim of this paper to demonstrate that spectro-
scopic signals can also be incorporated into the theoretical
tool used to study femtosecond laser pulse experiments, i.e.,
into the optimal control theory~OCT!.6–9 To begin with we
will concentrate on a sufficient simple reference example and
study a pump-probe scheme in a molecular system with the
pump beam driving population into the first-excited state and

the probe beam testing the resulting vibrational wave packet
motion in this first-excited state via a transition into a higher-
excited state~cf. Fig. 1!. The control task to be addressed
will be the search for the optimal pump-pulse which maxi-
mizes the probe-pulse signal.10 In particular it will be of
interest in which manner the probe-pulse duration influences
the wave packet formation by the pump pulse. As it is al-
ready obvious at this point such a control task has to be
based on OCT for the case of a target state distributed in time
~see Refs. 11–17 and Appendix A, by the way, this is just
the point which essentially improves the investigations of
Ref. 10!.

In order to determine the probe-pulse signal in a pump-
probe scheme one usually calculates18

Spr52E dt
]Epr~t!

]t
Ppr~t!, ~1!

with Epr andPpr denoting the field strength of the probe pulse
and the probe-pulse induced polarization, respectively. The
latter quantity has to be properly deduced from the expecta-
tion value of the dipole operatorm̂ given at the absence of
dissipation and for zero temperature as^C(t)um̂uC(t)&
where the state vectoruC~t!& follows from the solution of the
time-depending Schro¨dinger equation including the applied
fields ~we will comment on this in more detail below!.

If one takesSpr as the quantity to be maximized in a
control scheme it becomes immediately obvious that the first
part of the standard control functional has to be generalized
to

J0~E!5E dt^C~t;E!u f ~t!ÔuC~t;E!&. ~2!a!Electronic mail: andreas.kaiser@physik.hu-berlin.de
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The quantityÔ is known as the target operator.6–9 Its time
distribution is described by the ordinary time-dependent
function f (t). Moreover, the dependence on the control field
E is explicitly indicated. Of course, the constraint which
guarantees a finite field strength ofE has to be added. The
concrete relation betweenJ0 as well asf (t)Ô and the probe-
pulse signalSpr , Eq. ~1!, will be given below.

Once we setf (t)5d(t2t f) the standard form ofJ0(E)
is recovered which tries to let become the expectation value
of Ô at time t f as large as possible. In this case the control
field which solves the respective control task~the optimal
pulse! has to be determined from

E~ t !52
2

\l
Im^Q~ t;E!um̂uC~ t;E!&. ~3!

The penalty factorl follows from the constraint of finite
field strength and the quantity

uQ~ t;E!&5U~ t,t f ;E!ÔuC~ t f ;E!& ~4!

can be understood as the state vector which has to be propa-
gated backwards in time. This backward propagation~from
t f to the earlier timet) is carried out by the time-evolution
operator U(t,t f ;E) including the control field. Since the
backward propagation ofuQ(t;E)& is connected with the for-
ward propagation ofuC(t;E)& by the field strength as given
in Eq. ~3!, an iteration scheme for the optimal pulse can be
established.19,20

ConsideringJ0 according to Eq.~2!, one can presume
that the generalization ofuQ(t)&, which is propagated back-
wards when the extremum of the time-nonlocal control func-
tional has to be determined, follows from a time integration
with respect tot f weighted byf (t f). Therefore, we set (t f

→t)

uQ̃~ t;E!&5E dtu~t2t !U~ t,t;E! f ~t!ÔuC~t;E!&, ~5!

where u(t2t) denotes the unit-step function. And indeed,
the control problem with the control functionalJ0 according
to Eq. ~2! results in a generalization of Eq.~3! determining
the optimal pulse withuQ̃(t)& replacing uQ(t)&. This is
shortly demonstrated in Appendix A but can also be found in
Refs. 11–17. For a pump-probe experiment, this concept will
be utilized in the following to optimize the pump pulse such
that the probe-pulse signalSpr is maximized.

II. THE MODEL AND SOME
COMPUTATIONAL DETAILS

As already indicated we will deal with a molecular sys-
tem characterized by three electronic stateswa with a5g for
the ground state,a5e for the first excited state, anda5 f for
a higher-excited state. The probe pulse drives a transition
into the latter state fromwe whereas the pump pulse to be
optimized populateswe via a transition fromwg . Such a
choice is justified if we assume that the energy difference
betweenw f and we is very different from that betweenwe

andwg . The respective Hamiltonian reads

H~ t;E!5(
a

Ha~Q!uwa&^wau2E~ t !•m̂, ~6!

where the total electric field strengthE(t)5Econ(t)1Epr(t)
consists of the pump~control! and the probe field strength
Econ and Epr , respectively. The vibrational Hamiltonian are
given byHa(Q) and we denote the related vibrational eigen-
functions byxaM ~with vibrational quantum numberM ). For
the numerical computationsHa(Q) are specified by choosing
harmonic potential energy surfaces~PES! defined versus a
single vibrational coordinate: Ua(Q)5Ua

(0)1\vvib(Q
2Q(a))2/2. Ua

(0) andQ(a) define the bottom of the PES and
the ‘‘horizontal’’ position, respectively, andvvib denotes the
vibrational frequency equal for all electronic states.

This represents a rather simple model, however, it is
valid for a number of two-atomic molecules or cluster, in
particular, if the harmonic approximation here used is
softened. Since this paper places emphasis on the general
aspects of a control task maximizing the transient absorption
signal, the use of such a model is well justified. In particular
one can carry out a simple eigenstate expansion to determine
the time dependence of the laser-pulse driven total wave
function. Then, the expansion coefficientsCaM(t) can be
taken to compute the electronic level populationsPa(t) ac-
cording to (MuCaMu2, or get the probability distribution
Pa(Q,t) of the vibrational coordinate. This quantity is ob-
tained fromu(MCaM(t)xaM(Q)u2, and refers to a particular
electronic state, thus visualizing respective wave packet mo-
tion.

Next we shortly comment on the determination of the
probe-pulse signal, Eq.~1!, at the presence of the intensive
pump~control! field. We have in mind a probe pulse of type

Epr~ t !5eprEpr~ t !e2 ivprt1c.c., ~7!

oscillating with frequencyvpr and having a polarization unit
vectorepr . A cosine-square function is taken as the envelope
of the probe pulse with durationtpr and centered attpr ,

Epr~ t !5 1
2 Epr

(0) cos2~p@ t2tpr#/tpr!. ~8!

FIG. 1. PES referring to the discussed three-level model.
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It is nonzero for2tpr/2<t2tpr<tpr/2 and vanishes other-
wise.

There are different ways to determine that partPpr of the
total polarizationP oscillating with the probe-pulse fre-
quencyvpr . One may, first, expandP with respect toEpr

and, afterwards, deducePpr .
18 Alternatively,Ppr may be de-

rived from Schro¨dinger equations propagated with different
phase factors at the molecule-field coupling.21 A similar ap-
proach based on a systematic expansion ofPpr with respect
to the carrier waves might be also possible.22,23 Here, we
follow the last mentioned techniques which have the big ad-
vantage to allow a propagation of the time-dependent Schro¨-
dinger equation with the full field. In this way the need to
compute three-time correlation functions depending on three
different time arguments is circumvented. Since the control
pulse and the probe pulse are spectrally well separated we set
here

Ppr~t!5nmol@^C~t;Econ1Epr!um̂uC~t;Econ1Epr!&

2^C~t;Econ!um̂uC~t;Econ!&#. ~9!

This formula gives the probe-pulse polarization via the total
polarization in the presence of the control and the probe field
is diminished by the polarization induced by the control field
alone~second term!. Inhomogeneous broadening and random
spatial orientation have been neglected. This results in a mul-
tiplication of the dipole-operator expectation values with the
volume densitynmol of the considered molecules.

To define the control functionalJ0 , Eq. ~2!, via the
probe-pulse absorption, Eq.~1!, the function f (t) and the
operatorÔ are directly derived from Eq.~9!. We obtain

f ~t!522nmol

]

]t
Re@Epr~t!e2 ivprt#, ~10!

and

Ô5epr•m̂. ~11!

SincePpr , Eq. ~9!, is defined via a difference including
wave functions which are propagated with and without the
probe field the optimal pump field is determined by

Econ~ t !52
2

\l
Im@^Q̃~ t;Econ1Epr!um̂uC~ t;Econ1Epr!&

2^Q̃~ t;Econ!um̂uC~ t;Econ!&#. ~12!

This equation somewhat generalizes Eq.~3! @or Eq. ~A4!#.
The state vectoruQ̃& has to be propagated backwards in time
according to the effective and inhomogeneous Schro¨dinger
equation~A5!. The time evolution starts att` ~a time much
larger than the final time of the probe-pulse action! and with
the ‘‘initial’’ value uQ̃(t`)&50. Since the inhomogeneity
f (t)ÔuC(t)& is present~with the concrete form forf (t) and
Ô as given above! uQ̃& gets finite values if the time interval
is reached where the probe pulse acts. The forward propaga-
tion of uC(t)& is determined by the ordinary time-dependent
Schrödinger equation with the initial valueuC(t0)&
5uxg0&uwg&. According to the considered zero-temperature

case the system is in the vibrational ground statexg0 of the
electronic ground state initially~at a timet0 before the pump
as well as the probe field start to act!.

III. NUMERICAL RESULTS

Before presenting details of our numerical calculations,
we further specify the considered model by fixing some pa-
rameters~see Table I!. They have been taken to comply with
a two-color pump-probe experiment, i.e., the energetic dis-
tance of the first-excited electronic state to the ground state is
different from the distance between the first- and the higher-
excited state. Moreover, the equilibrium positions of the re-
spective PESs have been arranged as shown in Fig. 1. In
order to probe the system via the transitions fromwe to w f ,
we take a probe pulse with carrier frequency\vpr51 eV and
field amplitudeEpr

(0)553104 V/cm. The latter value ensures
that probe pulse perturbes the system only weakly.

The duration of the optimal pulse will be restricted to the
time interval betweent050 and the final timet f5300 fs. A
smooth switch-on and switch-off of the optimal pulse can be
achieved by extending the penalty factorl @cf. Eq. ~12!# by
a sine-square functions(t)5sin2(pt/@tf2t0#), l→l/s(t).
Moreover, we setl equal to 531026 nm/eV.

First we will consider the case where the duration of the
optimal pulse extends up tot f5300 fs and the probe pulse
~with a duration oftpr520 fs) is centered attpr5225 fs.
Since the vibrational oscillation periodTvib52p/vvib

amounts 41 fs~cf. Table I! such a pump-probe configuration
allows the molecule to perform several oscillations before
the probe pulse acts.

For the described situation Fig. 2 shows the optimal
pump pulse and the probe pulse together with the popula-
tions of the electronic ground state and of the first-excited
state~note that the probe pulse does not induce any notice-
able changes ofPe , moreover,Pf'0, which is not plotted!.
The optimal pump pulse consists of several subpulses, whose
durations reflect the internal vibrational dynamics, and
within the first 160 fs it induces a nearly complete population
inversion. Correspondingly, the temporal evolution of the
population are superposed by oscillations. About 40 fs and
20 fs before the probe pulse starts to act the pump pulse
shows two major subpulses, the first strongly depopulates the
excited state while the second repopulates it completely. This
behavior indicates strong wave function interference induced
to maximize the probe-pulse signal. If the probe pulse is over
the OCT scheme leads to a switch-off of the pump pulse
although it may extend up tot f5300 fs.

Before considering the case of a shorter delay time be-
tween probe-pulse action and pump-pulse turn-on we will
take a closer look at the wave packet dynamics by analyzing
the temporal behavior ofPe(Q,t). This is shown in Fig. 3

TABLE I. Model parameters referring to the pump-probe scheme of Fig. 1.

a Ua
(0) ~eV! Q(a) \vvib ~eV! dab

g 0 0 0.1 -
e 2 2 0.1 deg52.4 D
f 3 6 0.1 df e51.6 D
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according to the situation already discussed in Fig. 2. Up to
the probe-pulse action around 225 fs one notices certain in-
terference patterns. If the probe pulse maximum is reached
Pe(Q,t) becomes almost localized at aboutQ54 for
'10 fs. This localization guarantees a maximal probe-pulse
signal. Afterwards the vibrational wave packet delocalizes.
Within the free motion of the system, when the pump and
probe-pulse actions are over, the wave packet, interestingly,
reassembles its prior prepared localized shape after half the
vibrational oscillation period,Tvib/2 but now mirror inverted
at the left border of the PES (Q'0). This oscillatory motion
with alternating localizations and delocalizations continues
with frequencyvvib , indicating that it is originated by the
harmonic shape of the PES. This type of~nondriven! propa-
gation differs strongly from that following an impulsive ex-

citation, where the vibrational ground-state wave function
xg0(Q) is instantaneously positioned at the excited-state PES
~cf. Fig. 4!. Instead of strong probability concentration
aroundQ50 and 4 as given in Fig. 3 we notice the well-
known harmonic wave packet motion with probability con-
centrated at the center of the wave packet.

When varying the probe-pulse durationtpr , the optimal
pump pulse and the electronic-state populations show the
same features as described above, however, the localization
of the vibrational wave packet is strongly influenced. For a
short probe pulse oftpr510 fs the wave packet remains con-
centrated atQ54 during the whole probe-pulse action. This
is illustrated in the upper panel of Fig. 5. When increasing
tpr , this localization survives up to 30 fs.

Relating the structure of the optimal pulse and the tem-
poral behavior of the electronic state populations as shown in
Fig. 2 to the characteristic time of molecular dynamics, i.e.,
to Tvib , it should be possible to solve the control task also for
a shorter delay~between pump-pulse turn-on and probe-
pulse action!. The behavior of the system for a smaller time
delay with tpr575 is shown in Figs. 6 and 7. Now, the ma-
jority of population is transfered to the first-excited state by
one large subpulse beginning att'40 fs. This leads to an
occupation probability of the statefe of about 74% which is
definitively less than in the case oftpr5225 fs. The subpulse
also takes care of the localization of the vibrational wave
packet atQ'4 aroundt'tpr . However, a detailed compari-
son with Fig. 5, middle panel shows that the wave packet
concentration remains less sharp whentpr is decreased from
225 fs to 75 fs. This is in general by observed when using
OCT theory~cf., e.g., Ref. 24!. As long as there is no de-
structive influence of dissipation the wave packet interfer-
ence necessary to solve the control task becomes more effi-
cient if the conceded time interval becomes larger.

The mentioned behavior is also found when studying the
probe-pulse absorption signalSpr , Eq. ~1!, in dependence on
the time delay between pump-pulse switch-on and the probe-

FIG. 2. Field strength of the optimal pump pulse~upper panel! which maxi-
mizes the absorption signal of a probe pulse centered attpr5225 fs and with
durationtpr520 fs ~middle panel!. The respective ground-state population
Pg(t) and the population of the first-excited statePe(t) are shown, too
~lower panel!.

FIG. 3. Probability densityPe(Q,t) of the vibrational wave packet in the
first-excited state vs time~in femtoseconds! corresponding to the solution of
the control task as given in Fig. 2~the values ofPe are nonlinearly gray
scaled, white for zero and black for one!.

FIG. 4. Probability densityPe(Q,t) of the vibrational wave packet in the
first-excited state vs time~in femtoseconds! after impulsive excitation~at t
50 and with the wave packet positioned atQ50, the values ofPe are
nonlinearly gray scaled, white for zero and black for one!.

2531J. Chem. Phys., Vol. 121, No. 6, 8 August 2004 Optimal control theory

Downloaded 10 Mar 2005 to 141.20.41.167. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



pulse action given bytpr as well as in dependence on the
probe-pulse widthtpr . For comparisonSpr needs to be nor-
malized. With respect to standard OCT a normalization to
* u f (t)udt is appropriate. On the other hand, normalizing to
the probe-pulse energy flux gives the efficiency of the opti-
mization task, namely, the ratio of the absorped and incom-
ming probe-pulse energy. The latter method will be applied
here. For convenience, we approximate the probe-pulse en-
ergy flux by }*Epr

2 (t)dt. The results are shown in Fig. 8.
For a fixed delay time~determined bytpr) Spr increases with
the probe-pulse widthtpr and reaches a maximum at about
20 fs. For larger durations the absorption signal decreases. In
this regime, the internal molecular dynamics works counter-
active by preventing the localization of the vibrational wave

FIG. 5. Probability densityPe(Q,t) of the vibrational wave packet in the
first-excited state vs time~in femtoseconds! corresponding to the solution of
the control task as given in Fig. 2 but with different values for the probe-
pulse durations. Upper paneltpr510 fs, middle paneltpr520 fs, and lower
paneltpr540 fs~the values ofPe are nonlinearly gray scaled, white for zero
and black for one!.

FIG. 6. Field strength of the optimal pump pulse~upper panel! which maxi-
mizes the absorption signal of a probe pulse centered attpr575 fs and with
durationtpr520 fs ~middle panel!. The respective ground-state population
Pg(t) and the population of the first-excited statePe(t) are shown, too
~lower panel!.

FIG. 7. Probability densityPe(Q,t) of the vibrational wave packet in the
first-excited state vs time~in femtoseconds! corresponding to the solution of
the control task as given in Fig. 6~the values ofPe are nonlinearly gray
scaled, white for zero and black for one!.
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packet in the Franck-Condon window during probe pulse
which becomes more pronounced with largertpr . Further-
more, for probe-pulse length larger than 10 fs. Figure 8 in-
dicates an increase ofSpr with the delay time (tpr) which
finally saturates iftpr exeeds 200 fs.

Within the parameter regime considered above, the
probe pulse only connects the stateswe and w f while the
pump pulse drives transitions betweenwg to we . This has
been checked by calculations where the probe and the pump
pulse couple only to the corresponding transition dipole ele-
mentsde f anddge , respectively.

When the probe-pulse duration becomes 10 fs or less,
one enters a regime where the frequency broadening is large
enough to also allow for transitions betweenwg andwe . In
Fig. 9 the optimal pump pulse and the populations of the
electronic states are shown for the same parameters as in Fig.
2 but with a probe-pulse duration oftpr55 fs. Interestingly,
the optimal pump pulse also slightly populates the higher-
excited statew f ~note the increased carrier frequency around
200 fs!. In contrast to the case oftpr520 fs the ground state
is first depopulated and then repopulated when the probe
pulse acts. This behavior is typical when the target state is
positioned in the ground state. Surprisingly, a localization of

the vibrational wave packet in the first-excited state, contrib-
uting additionally to the absorption signal, does not take
place~See Fig. 10!. Considering nonoverlapping pulses, such
a behavior has also been observed whenU f

(0) is shifted to 3.5
eV and an appropriate carrier frequence for the probe pulse is
chosen. Only iftpr becomes larger, the wave packet of state
e begins to concentrate in the Franck-Condon window as
well. However, the population of the first-excited state is still
neglectible compared with the ground-state population.

Finally, a modified system defined by the parameters
given in Table I but with the second-excited PES horizontally
shifted between the ground-state PES and the first-excited
state PES (Q( f )51) is investigated. Similar as above, the
optimal pump pulse creates a localized wave packet in the
first-excited state within the Franck-Condon window of the
probe pulse, which lies at about the center of the PES of the
first-excited state, illustrated in Fig. 11. Here, the excited
wave packet is stonger localized by the optimal pulse than in

FIG. 8. Probe-pulse absorption signalSpr , Eq. ~1! ~normalized as explained
in the text! as a function of the probe-pulse durationtpr and for different
delay times~see text!. Squares:tpr575 fs, triangles:tpr5150 fs, diamonds:
tpr5225 fs, and stars:tpr5275 fs.

FIG. 9. Field-strength of the optimal pump-pulse~upper panel! which maxi-
mizes the absorption signal of a probe pulse centered attpr5225 fs and with
duration tpr55 fs ~middle panel!. The respective ground-state population
Pg(t), the population of the first-excited statePe(t) and second-excited
statePf(t) are shown, too~lower panel!.

FIG. 10. Probability densityPg(Q,t) of the vibrational wave packet in the
ground state~upper panel! andPe(Q,t) of the vibrational wave packet in the
first-excited state~lower panel! vs time ~in femtoseconds! corresponding to
the solution of the control task as given in Fig. 9.~The values ofPe are
nonlinearly gray scaled, white for zero and black for one.!
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the above discussed case. When increasing the probe-pulse
duration, the shape of the wave packet broadens, however,
the side oscillations in the wave functions are mostly sup-
pressed. This leads to larger absorption signals than for the
prior considered system. Furthermore, for this modified
model system the probe-pulse absorption signal increases
with the probe-pulse length, shown in Fig. 12. This indicates
that the counteracting impact of the molecular dynamics on
the localization of a wave packet at the center of the PES is
significantly smaller than at the boundries.

IV. CONCLUSIONS

Considering a standard pump-probe experiment we have
presented a formulation of OCT which enables the calcula-
tion of anoptimal pump pulse which prepares the molecular
system such that the probe-pulse absorption signal is maxi-
mized. This spectroscopic signal is given by the time-
integrated expectation value of a time-dependent operator
proportional to the~time derivative of the! probe field-
strength time of the dipole operator. Accordingly the optimal
pump pulse~control pulse! has to move the system into a

certain state not only at a specific time but within a certain
time interval. Such a target state distributed in time can be
accounted for by a particular inhomogeneity in the effective
Schrödinger equation which executes the OCT propagation
backward in time.

The resulting effect is remarkable and has been demon-
strated for a molecular system with three electronic states
defined versus a single vibrational coordinate. For probe
pulses shorter than the oscillation period of the vibrational
coordinate, the optimal pump pulse induces spatial and tem-
poral wave packet localization in the excited electronic state
just to have it in the Franck-Condon window for probe-pulse
absorption at the presence of this pulse. When the probe-
pulse duration becomes comparable or larger than the oscil-
lation period of the vibrational coordinate, the intramolecular
dynamics hampers the further localization of the wave
packet. Correspondingly the probe-pulse absorption signal
first increases with the probe-pulse duration and at a certain
pulse duration, which in our model lies around the half of the
vibrational oscillation period, decreases again. Furthermore,
the shaping of the wave packet for optimal absorption re-
quires a certain amount of time. Thus, the probe-pulse ab-
sorption signal increases with an increase of the time delay
between the pump-pulse switch on and the probe pulse but
finally it saturates.

The presented results here give a first impression of the
processes taking place when laser pulse control is performed
with respect to spectroscopic signals. In this connection a
molecular system might be set into a specific target state with
an almost localized wave packet positioned. However, for
comparison with experiments a more realistic model has to
be considered, in particular, anharmonic PESs have to be
used which, e.g., will alter the propagation of the vibrational
wave packet in the excited PES. Furthermore, the optimiza-
tion of a probe signal in a selected frequency interval using
broadband transient absorption signals~see Appendix! is of
high interest as well. Both questions are objects of currently
on-going work.
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APPENDIX A: OPTIMAL CONTROL THEORY
FOR A TARGET STATE DISTRIBUTED IN TIME

In the following we demonstrate that indeed the back-
ward propagation ofuQ̃&, Eq. ~5!, solves the control problem
which has been set up by the control functionalJ0 , Eq. ~2!.
Similar control functionals~including a time integral with
respect to the systems wave function! can also be found in
Refs. 11–17 with the aim of suppressing an ‘‘undesirable’’
operatorÔ11,12or to constrain the time evolution of interme-
diate states.13 However, only the simplified versions of Refs.
15–17 entered explicit numerical calculations.

Since our total control functional

FIG. 11. Probability densityPe(Q,t) of the vibrational wave packet in the
first-excited state vs time~in femtoseconds! corresponding to the solution of
the control task fortpr5225 fs andtpr520 fs using the system parameters
given in Table I but withQ( f )51. ~The values ofPe are nonlinearly gray
scaled, white for zero and black for one.!

FIG. 12. Probe-pulse absorption signalSpr , Eq. ~1! ~normalized as ex-
plained in the text! as a function of the probe-pulse durationtpr correspond-
ing to the solution of the control task fortpr5225 fs using the system pa-
rameters given in Table I but withQ( f )51.
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J~E!5J0~E!2
l

2 E dtE2~t! ~A1!

differs somewhat from those used in Refs. 11–17~the time-
dependent Schro¨dinger equation does not appear explicity as
a constraint, for example! we briefly repeat the determination
of the optimal pulse. The search for the extremum ofJ gives
an equation for the optimal field determined viadJ/dE(t)
50. To compute the functional derivative~or Fréchet deriva-
tive! we note

d

dE~ t !
U~t,t0 ;E!5

i

\
u~t2t !U~t,t;E!m̂U~ t,t0 ;E!,

~A2!

where U(t,t0 ;E) is the total time-evolution operator. The
~functional! equation for the optimal pulse takes the form

E~ t !52
2

\l
Im E dtu~t2t !

3^C~t;E!u f ~t!ÔU~t,t;E!m̂uC~ t;E!&, ~A3!

which is identical with

E~ t !52
2

\l
Im^Q̃~ t;E!um̂uC~ t;E!&, ~A4!

if uQ̃(t;E)& has been defined according to Eq.~5!. This im-
mediately gives the following equation:

]

]t
uQ̃~ t !&52

i

\
H~ t !uQ̃~ t !&2 f ~ t !ÔuC~ t !&. ~A5!

In contrast to Eq.~4! for uQ(t;E)&, it is an inhomogeneous
time-dependent Schro¨dinger equation with an inhomogeneity
which represents the target operator distributed in time.

APPENDIX B: OPTIMIZING PROBE-PULSE
ABSORPTION IN THE FREQUENCY DOMAIN

Instead of using Eq.~1! where the probe-pulse signalSpr

is represented by a time integral with respect toSpr(t)
52Ppr]Epr /]t one can also change to the frequency do-
main. Now we write

Spr5E dvSpr~v! ~B1!

with Spr(v)5 iPpr(2v)vEpr(v)/2p defined by the Fourier-
transformed fields. In this case one may ask if it would be
possible to maximizeSpr(v) not along the whole frequency
axis but within a certain frequency intervalDv aroundv0 .
One immediately notices that in such a case one has to re-
place the functionf (t) given in Eq.~10! by

f ~t!52nmolE
v02Dv/2

v01Dv/2 dv

2p i
e2 ivteprEpr~v!. ~B2!

The probe field is represented by itsincompleteinverse Fou-
rier transform, obtained from an integration with respect to
the frequency interval in whichSpr(v) should become maxi-
mal.
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and L. Wöste, Science299, 536 ~2003!.

6A. P. Pierce, M. A. Dahleh, and H. Rabitz, Phys. Rev. A37, 4950~1988!.
7S. A. Rice and M. Zhao,Optical Control of Molecular Dynamics~Wiley,
New York, 2000!.

8M. Shapiro and P. Brumer,Principles of the Quantum Control of Molecu-
lar Processes~Wiley, New Jersey, 2003!.
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