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Bridge mediated two-electron transfer (TET) in a donor-acceptor (D-A) complex is studied theoretically.
A type of bridge is considered where the intersite coupling in the bridge becomes so large that the TET
proceeds along delocalized bridge states but against the background of fast vibrational transitions within and
between these states. The assumption of fast vibrational relaxations allows us to follow our earlier approach
(Petrov; et al.J. Phys. Chem. B2002, 106, 3092) and to derive kinetic equations governing the populations
of the states involved in the TET reaction. The conditions are explained in detail at which a reduction to
distant D-A TET can be carried out. Moreover, an analytic expression for the overall D-A TET rate is
given for the case of a regular bridge as well as for a bridge perturbed by an intersite energetic bias. The
stepwise and the concerted route of the D-A TET is analyzed in dependence on the bridge length. It is
shown that the stepwise route follows from a thermal activation of a specific intermediate state. Its contribution
to the overall transfer rate is determined by two single-electron transfer steps each of them related to two
single-electron pathways through the bridge. The first pathway requires a population of the extended bridge
state by thermal activation and thus can be termed the thermally activated pathway. The second pathway
utilizes the bridging states as virtual intermediate states and thus is termed the single-electron superexchange
pathway. The concerted D-A TET mechanism uses the extended bridge states as well as the mentioned
intermediate state as virtual states. Therefore, it can be understood as a two-electron unistep superexchange
transition between the D and the A. This transition can take place even at zero temperature. The perturbation
of a regular arrangement of bridge levels by an energetic bias favors the stepwise route because it includes
thermal activation of the intermediate state. This fact also explains that the efficiency of the concerted two-
electron superexchange route is larger than that of the thermally activated stepwise route if low temperatures
and short bridges (one or two units) are considered.

I. Introduction

It is of huge importance for chemistry, biochemistry, bio-
physics, and even molecular medicine to obtain a comprehensive
understanding of the way structural and energetic factors
determine the rate and efficiency of charge-transfer reactions.
Besides standard single electron transfer (SET) those reactions
involving the participation of two electrons found increasing
interest. Current theoretical studies on two-electron transfer
(TET) are based on different semiphenomenological extensions
of the SET Marcus theory.1-6 For the case of a TET reaction
in a polar liquid such an approach allowed us to formulate the
conditions necessary to let the TET take place between a donor
(D) and an acceptor (A) redox center. It has been found that
the TET occurs via intermediate electronic state D(e)A(e) (e
denotes the presence of a single excess electron at a given
center). This corresponds to the formation of a stepwise route
via single-electron transitions D(ee)Aa D(e)A(e) a DA(ee).
The so-called concerted route of TET is determined by the
orchestrated two-electron transitions D(ee)Aa DA(ee). Here,
the state D(e)A(e) only participates as an intermediate virtual
electronic state.7

There are numerous cases where more than a single inter-
mediate state mediates the TET. As an example, we mention

here the homogeneous and electrochemical TET within the Tl-
(aq)3+/Tl(aq)+ complex.8 The presence of several intermediate
states is also typical for TET reactions in biosystems. Quantum-
chemical calculations have already specified these intermediate
states with dependency on the spatial position of the two
electrons within the considered macromolecular structure.9-15

The presence of several intermediate states may result in
multiexponential TET kinetics. However, it is a common
observation that TET reactions displays two-exponential or
single-exponential kinetics. Therefore, it is a basic theoretical
challenge to find out the conditions at which the multiexpo-
nential kinetics is reduced to kinetics characterized by two
overall transfer rates or even by a single rate. Usually, single-
exponential kinetics is termed the D-A regime of electron-
transfer reactions.

During recent years such a D-A regime related to a SET
reaction has been the subject of intensive theoretical and
experimental work (cf., e.g., refs 5, 6, and 16-21). In particular,
the condition could be clarified at which SET kinetics can be
described by a single overall transfer rateKET, even though the
SET is mediated by a number of bridging states. This condition
consists of the only requirement that the population of the
bridging states remains small (less than 10-2) during the
complete course of the SET.22-24 It could be shown that for
such a case the rateKET is determined by the sequential and
the superexchange mechanisms of distant D-A SET.5,24-26
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As demonstrated by us in refs 27-29, it is also possible to
analyze D-A TET reactions in this way. The reactions can be
described by a single overall transfer rateKTET between the
donor state|D〉 ≡ |D(ee)B1B2...BNA〉 and the acceptor state|A〉
≡ |DB1B2...BNA(ee)〉 provided that the population of the two
types of bridging states,|Bm〉 ≡ |D(e)B1B2...Bm(e)...BNA〉 and
|B̃n〉 ≡ |DB1B2...Bn(e)...BNA(e)〉 as well as the population of
the intermediate state|I〉 ≡ |D(e)B1B2...BNA(e)〉 remain small
during the whole reaction. The rate expressionKTET contains
contributions from two different TET mechanisms, the stepwise
and the concerted mechanism. The first one includes two SET
processes,|D〉 a |B1〉 a |B2〉 a ... a BN a |I〉 and|I〉 a |B̃1〉
a |B̃2〉 a ... a B̃N〉 a |A〉. Each process comprises a multistep
single-electron sequential pathway and a unistep single-electron
superexchange pathway. In contrast, the concerted TET results
from a unistep two-electron superexchange pathway|D〉 a |A〉,
where the states|B1〉, |B2〉, ..., |BN〉, |B̃1〉, |B̃2〉, ..., |B̃N〉, and|I〉
act as virtual intermediate states. All these results are valid for
small intersite electronic couplings, so that the TET occurs
against the background of fast intrasite vibrational relaxation.

In the present study we will concentrate on a type of bridge-
mediated TET where the electronic coupling between neighbor-
ing bridge sites becomes so large that the whole bridge has to
be described by extended electronic states. However, the
coupling of the D and the A to the extended bridge levels should
remain small enough to let the D-B and A-B transitions of
the nonadiabatic type. For such a situation the TET reaction
occurs against the background of fast relaxation processes within
the D and A centers. At the same time, relaxation processes
within the set of extended bridge states may be either faster or
slower than the TET reaction itself. Recent results on distant
SET23 demonstrated that the sequential D-A SET is replaced
by a thermally activated mechanism if the D as well as the A
center couple weakly to the respective terminal bridge units.
The thermally activated mechanism results in a completely
different bridge-length dependence of the overall transfer rate
as would be the case for a bridge with weak intersite coupling.
Turning to the case of D-A TET it has to be clarified which
process replaces the stepwise mechanism if the bridge-internal
intersite couplings become large. And, it is also necessary to
understand the mechanism forming the concerted unistep two-
electron transition mediated by the bridge.

The paper is organized as follows. In the next section the
model is introduced for the description of bridge-mediated TET,
and the basic kinetic equations together with all rate constants
are derived. Section III includes the reduction of multiexpo-
nential TET kinetics to single-exponential D-A TET kinetics
as well as the derivation of an overall transfer rateKTET. The
main results related to the formation of stepwise and concerted
routes of TET in a DBA system are presented in section IV.
The paper ends with some concluding remarks in section V.

II. Model and Theory

A. Hamiltonian of the DBA System.Let us consider a DBA
system with a linear bridge of N units. The bridge couples to
the D via terminal sitem ) 1 and to the A via terminal sitem
) N. Those electronic states necessary for a complete description
of the TET have already been fixed in the introductory part
and are denoted as|M〉 ) |D〉, |Bm〉, |B̃n〉, |I〉, and|A〉 (see also
refs 27 and 29). Accordingly, the electronic Hamiltonian of the
whole TET system takes the following form

where

is the Hamiltonian of the Mth localized DBA state with energy
EM. Furthermore,

and

are the Hamiltonians that characterize the DBA bridging states
(Em andẼn are the energies of the localized bridging states|Bm〉
and |B̃n〉, respectively). Finally, the Hamiltonian

describes the interaction of the localized DBA states|D〉, |I〉,
and|A〉 with the corresponding localized DBA bridging states.
The matrix elementsMMM ′ ) 〈M|V̂tr|M′〉 responsible for the
transitions between the localized DBA electronic states|M′〉
and |M〉 are defined by the transfer operatorV̂tr. In this paper
we employ a tight binding model whereV̂tr describes single-
electron transitions between the molecular orbitals of neighbor-
ing DBA sites (D and B1, Bm and Bm(1, and BN and A). One
obtainsMDB1 ) VD1, MBNI ) VNA, MIB̃1 ) V′D1, MB̃NA ) V′NA,
MBmBm′ ) δm′m(1Vmm(1, andMB̃nB̃n′ ) δn′n(1V′nn(1. All single-
electron couplings,Vab and V′ab, are shown in Figure 1a
together with the DBA energies of the localized states. Note
that in the general case the couplingsV′D1 and V′AN do not
coincide with the respective couplingsVD1 and VAN. This
difference results from the fact that any charge distribution in
the D and A centers strongly depends on the actual electronic
states|D〉, |I〉, and|A〉 of the whole DBA system. In contrast,
the bridge-internal couplingsVmm(1 and V′nn(1 characterizing
the single-electron transitions within the bridge do not differ
so much atn ) m. [For the small couplingsVD1, V′D1, VNA, and
V′NA under consideration the D and A centers are not es-
sentially effected by the overlap of bridge unit molecular
orbitals.] In the case of a regular bridge we set for all sites in
the bridgeVmm(1 ) V′nn(1 ≡ VB.

If all the single-electron couplings including theVmm(1 and
V′nn(1 are small the TET process reduces to a distant nonadia-
batic transfer of two electrons through the localized bridging
states|Bm〉 and |B̃n〉 as well as through the intermediate state
|I〉.27,29 Such a TET occurs against the background of fast
intrasite vibrational relaxation. The goal of the present studies
is to consider TET reactions for the case of strong single-electron
couplings between neighboring bridge units (here, strong means
strong compared with the electron-vibrational interaction). In
contrast to the mentioned nonadiabatic TET, here, the transfer
process proceeds with the participation of the localized electronic
states|M〉 ) |D〉, |I〉, |A〉 as well as the extended bridging

HM
(el) ) EM|M〉〈M| (M ) D, I, A) (2)

HB
(el) ) ∑

m)1

N

Em|Bm〉〈Bm| +

∑
m,m′)1

N-1

(1 - δmm′)[MBmBm′
|Bm〉〈Bm′| + hc] (3)

H̃B
(el) ) ∑

n)1

N

Ẽn|B̃n〉〈B̃n| + ∑
n,n′)1

N-1

(1 - δnn′)[MB̃nB̃n′|B̃n〉〈B̃n′| +

hc] (4)

Hloc-b
(el) ) MDB1

|D〉〈B1| + MIBN
|I〉〈BN| + MIB̃1

|I〉〈B̃1| +

MAB̃N
|A〉〈B̃N| + hc (5)

HDBA
(el) ) ∑

M

HM
(el) + HB

(el) + H̃B
(el) + Hloc-b

(el) (1)
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electronic states|âµ〉 and |ẫµ〉. The latter are obtained after
diagonalizing the Hamiltonian, eqs 3 and 4

The transformations relating localized and delocalized bridge
states one to another read

Obviously, the coefficientsuµ(m) and ũµ(n) as well as the
energiesεµ and ε̃µ of the extended DBA electronic states|âµ〉
and|ẫµ〉 depend on theEm andẼn (characterizing the energetic
position of the localized levels of the DBA system) as well as
on the intersite couplingsVmm(1 and V′nn(1. In the case of
regular bridge withE1 ) E2 ) ... ) EN ≡ EB and Ẽ1 ) Ẽ2 )
... ) ẼN ≡ ẼB the tight binding model results in the following
well-known formulas

Using the delocalized bridge state the coupling Hamiltonian eq

5 can be written as

where the quantities

are responsible for the single-electron coupling of the localized
states|D〉, |I〉, |A〉 to the extended bridge states|âµ〉, |ẫµ〉 (cf.
also Figure 1b).

The Hamiltonian eq 1, which covers the contributions, eqs
2, 6, and 9, only accounts for the electronic part of the DBA
system. Apparently, to describe the TET kinetics, we have to
include the coupling to the vibrational degrees of freedom. The
related vibrational HamiltonianHvib is taken as that for a set of
harmonic oscillators with frequenciesωj and normal-mode
coordinateQj. Let Qj

(M) be the replacement of the vibrational
mode in the Mth electronic state (in our case,|M〉 ) |D〉, |I〉,
|A〉, |âµ〉, |ẫµ〉). The expansion of the electronic energies with
respect to the deviationsQj - Qj

(M) results in diagonal and off-
diagonal interaction terms of the electronic DBA states with
the vibrational reservoir (see also refs 23 and 30). The diagonal
part of the coupling to the reservoir (R) of vibrations reads

Figure 1. Position of the localized bridging DBA levels with energiesEm and Ẽn relative to the position of the donor, the intermediate, and the
acceptor electronic levels with energiesED, EI, andEA, respectively (EB gives the position of the local DBA levels in a regular chain) (part a). When
the localized bridge states|Bm〉 and|B̃n〉 are transformed to extended bridge states|âµ〉 and|ẫµ〉, respectively, the energiesEm andẼn change toεµ,
and ε̃µ, respectively. At the same time the transformation takes place of the local couplingsVD1 (V′D1) andVNA (V′NA) into VDµ (V′Dµ) andVµA (V′µA),
respectively. Besides, the bridge states mediate the formation of single-electron superexchange couplingsTDI andTIA as well as of the two-electron
superexchange couplingTDA (part b, wavy lines indicate the relaxation between the extended DBA levels).

HB
(el) ) ∑

µ)1

N

εµ|âµ〉〈âµ| H̃B
(el) ) ∑

µ)1

N

ε̃µ|ẫµ〉〈ẫµ| (6)

|âµ〉 ) ∑
m)1

N

uµ(m)|Bm〉 |ẫµ〉 ) ∑
n)1

N

ũµ(n)|B̃n〉 (7)

εµ
(reg) ≡ εµ ) EB - 2VB cos[ πµ

N + 1]
ε̃µ

(reg) ≡ ε̃µ(N) ) ẼB - 2VB cos[ πµ
N + 1]

uµ(m) ) ũµ(m) ) x 2
N + 1

sin[ πmµ
N + 1]. (8)

Hloc-b
(el) ) ∑

µ)1

N

[VDµ|D〉〈âµ| + VAµ|I〉〈âµ| + V′Dµ|I〉〈ẫµ| +

V′Aµ|A〉〈ẫµ| + hc] (9)

VDµ ) VD1uµ(1) VµA ) VNAuµ(N)

V′Dµ ) V′D1ũµ(1) V′µA ) V′NAũµ(N) (10)
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The first contribution is defined by

which specifies the coupling of the localized DBA state|M〉 to
the vibrational reservoir (note thatQj andQj

(M) are dimension-
less quantities). The second contribution includes the operators
HB-R and H̃B-R. The first,

couples the bridging DBA states|âµ〉 to the vibrations with the
coupling matrix

[Analogous form has an operatorH̃B-R.] The off-diagonal
interaction between the extended bridge states and the vibrational
reservoir,

is responsible for transitions between the extended bridg-
ing DBA states. The first coupling readsgj(µ,µ′) ) -1/2∑m)1

N -
uµ
/(m)uµ′(m)Qj

(m) whereas the form of the second one,g̃j(µ,µ),
follows from gj(µ,µ′) if one substitutes theuµ(m) for the ũµ(m).

B. Kinetic Equations for Description of the TET Reaction.
According to the discussion of the preceding section we denote
the total Hamiltonian of the DBA system interacting with a res-
ervoir of intramolecular as well as intermolecular vibrations as

On the basis of this Hamiltonian one may derive kinetic
equations that describe the TET process mediated by the
extended bridge states. But, before doing this, we note that the
introduction of extended bridge states instead of the localized
ones becomes only possible if the following supposition is
fulfilled. The broadening of the energiesεµ and ε̃µ, which is
caused by the interactionH′B-R with the reservoir has to be
small compared to the differences|εµ - εµ′| and|ε̃µ - ε̃µ′|. Just
in this case, the TET proceeds through the adiabatic (extended)
bridging DBA states|âµ〉 and|ẫµ〉. This is in contrast to complete
nonadiabatic TET where the localized bridging DBA states|Bm〉
and |B̃n〉 mediate the charge motion.27,29 The condition to be
fulfilled when extended bridge states are used can be formulated
for a regular bridge (and for a bridge with a small energetic
irregularity) by the demand that the matrix elementsVmm(1 and
V′nn(1 (that couple the localized molecular orbitals of a given
bridge unit to those of the neighboring units) strongly exceed
the coupling energy of the localized orbitals to the nuclear
vibrations. [It is supposed that the localized molecular orbitals
belonging to each of the bridge units are well separated so that
the energiesεµ andε̃µ correspond to the extended bridge LUMO-
levels.] For the present studies we assume that the aforemen-

tioned conditions are fulfilled and, thus, the Hamiltonians
HDBA

(el) , HDBA-R, andH′B-R are taken according to the eqs 1, 2,
6, and 11-13.

A comprehensive description of the TET can be achieved by
using the generalized master equation (GME) (cf., e.g., refs 18,
31, and 32), which governs the density operatorF(t) of the DBA
system (coupled to a vibrational reservoir). How to proceed in
the case of nonadiabatic TET has been explained in detail in
our foregoing papers.27,29There, we demonstrated the derivation
of kinetic equations for the total populationsPM(t) ) 〈M|trvibF-
(t)|M〉 of each electronic state|M〉 participating in the TET. In
particular, it has been shown that for cases where the charac-
teristic timeτrel

(m) of the vibrational relaxation within the sitem
(of electron localization) is small compared to the transfer time,
a simplified coarse-grained description of the TET process
becomes possible. Then, the populationsPM(t) fulfill a set of
coupled balance-like equations. A similar situation occurs if the
bridge is defined via extended states. Now, the characteristic
times τrel

(µ) and τrel
(M) of the vibrational relaxation within the

extended electronic stateµ and the localized states M) D, I,
A, respectively, are supposed to be much smaller than the overall
transfer timeτTET ) KTET

-1 . Noting the inequality

we may state that the kinetics of the D-A ET proceeds against
the background of fast vibrational relaxations and thus can be
described in the framework of the mentioned coarse-grained
approach. A similar situation valid for SET reactions has been
already discussed in ref 23. The basic difference from the TET
kinetics studied here is only related to the presence of two types
of extended states,|âµ〉 and |ẫµ〉, as well as the intermediate
state |I〉. Fortunately, according to inequality, eq 17 the
procedure of deriving kinetic equations and corresponding rate
constants remains identical with that explained in refs 23 and
29. Therefore, we skip any detail of the derivation and only
present the resulting kinetic equations for the populations of
interest. Those coverPD(t), PI(t), andPA(t) of the localized DBA
states|D〉, |I〉, and|A〉, respectively, as well as the populations
Pµ(t) andP̃µ(t) of the respective extended bridging DBA states
|âµ〉 and |ẫµ〉. Accordingly, the set of equations reads

HDBA-R ) ∑
M)D,I,A

HM-R + HB-R + H̃B-R (11)

HM-R ) -
1

2
∑

j

pωjQj
(M)Qj|M〉〈M| (12)

HB-R ) ∑
µ)1

N

∑
j

pωjgj(µ,µ)Qj|âµ〉〈âµ| (13)

gj(µ,µ) ) -
1

2
∑
m)1

N

|uµ(m)|2Qj
(m) (14)

H′B-R ) ∑
µ,µ′)1

N

(1 - δµµ′)∑
j

pωj[gj(µ,µ′)Qj|âµ〉〈âµ′| +

g̃j(µ,µ′)Qj|ẫµ〉〈ẫµ′|] (15)

H ) HDBA
(el) + HDBA-R + H′B-R + Hvib (16)

τTET . τrel
(M), τrel

(µ) (17)

ṖD(t) ) -(kDI + kDA + ∑
µ

kDµ)PD(t) + kIDPI(t) +

kADPA(t) + ∑
µ

kµDPµ(t)

Ṗµ(t) ) -(kµD + kµI + ∑
µ′*µ

kµµ′)Pµ(t) + kDµPD(t) +

kIµPI(t) + ∑
µ′*µ

kµ′µPµ′(t) (µ ) 1, 2, ...,N)

ṖI(t) ) -(kID + kIA + ∑
µ

(kIµ + r Iµ))PI(t) + kDIPD(t) +

kAIPI(t) + ∑
µ

kµIPµ(t) + ∑
µ

rµIP̃µ(t)

Ṗ̃µ(t) ) -(rµI + rµA + ∑
µ′*µ

rµµ′)P̃µ(t) + r IµPI(t) + rAµPA(t) +

∑
µ′*µ

rµ′µP̃µ′(t) (µ ) 1, 2, ...,N)

ṖA(t) ) -(rAI + kAD + ∑
µ

rAµ)PA(t) + r IAPI(t) +

kDAPD(t) + ∑
µ

rµAP̃µ(t) (18)
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The rate constantskDµ(kµD) and kIµ(kµI) characterize single-
electron hopping between the localized DBA states|D〉 and|I〉
and the extended bridging DBA states of the first type,|âµ〉.
Analogously, the rate constantsrIµ(rµI) and rAµ(rµA) describe
single-electron hopping transitions between the localized DBA
states|I〉 or |A〉 and the extended bridging DBA states of the
second type,|ẫµ〉. The transitions among different extended
states|âµ〉 and |ẫµ〉 are described by the rateskµµ′ and rµµ′,
respectively. Scheme a of Figure 2 displays those transitions
leading to the TET process in the DBA system. It follows from
this scheme as well as from the set of kinetic equations, eqs
18, that along with the above-mentioned single-electron hopping
transitions between the localized states and the extended states
the TET process also covers distant single-electron transitions
(with rateskDI(kID) andrAI(rIA)) as well as distant unistep two-
electron transitions (with rateskDA andkAD).

All ET rate constants valid for the transitions between
localized states and extended bridge states take the form
(concerningκµµ′ see the discussion in ref 23)

and

Here, (FC)µM and (F C̃)µM denote respective Franck-Condon
factors. The couplings derived in the tight binding model are
given byTDµ ) VDµ, TIµ ) VAµ, andT̃Iµ ) V′Dµ, T̃Aµ ) V′Aµ. The
backward rates follow from the above given one as (kB andT
denote the Boltzmann constant and the absolute temperature,
respectively)

and

The rate constants defining the unistep single-electron and two-
electron hopping transitions are given by (M* N)

with TMN being the superexchange coupling between the
localized states (cf. scheme b in Figure 1).

The derivation leading to the kinetic eqs 18 also results in
the following expression for the squares of the single-electron
superexchange couplings,

and

The square of two-electron superexchange couplings read (note
∆EID ) EI - ED, ∆EIA ) EI - EA),

In eqs 24, 25, and 26,G1N(E) andG̃N1(E) are the bridge Green’s
functions (cf. also refs 33 and 34). In the case of small energetic
irregularity they can be represented in form (cf. Appendix A)

with the Green’s function of regular bridge

Note the introduction of a superexchange decay parameter34-36

To derive theG̃N1(E), one has only to changeΛ(E) by Λ̃(E).
The latter quantity is given by the same expression as in eq 29
but with EB replaced byẼB. Moreover, the correction factors
S(E) and S̃(E) are defined by eqs A11 and A12.

The rate constants, eqs 19-23, contain the Franck-Condon
factors

Figure 2. Kinetic scheme of the TET process with the participation
of the extended bridge states|âµ〉 and |ẫµ〉 (part a). For a small
population of the bridge states the kinetics reduces to the transitions
between the three localized DBA states:|D〉, |I〉, and|A〉 (part b). If
the population of the intermediate DBA state|I〉 becomes also small,
the two-exponential kinetics is reduces to a single-exponential D-A
TET kinetics between two localized DBA states|D〉 and|A〉, only (part c).

kµM ) 2π
p

|TMµ|2(FC)µM (M ) D, I) (19)

rµM ) 2π
p

|T̃Mµ|2(F C̃)µM (M ) I, A) (20)

kMµ ) exp[-(εµ - EM)/kBT]kµM (21)

rMµ ) exp[-(ε̃µ - EM)/kBT]rµM (22)

κMN ) 2π
p

|TMN|2(FC)MN (M, N ) D, I, A) (23)

|TDI|2 ) |VD1VAN|2Re{G1N(ED)GN1(EI)} (24)

|TIA|2 ) |V′D1V′AN|2Re{G̃1N(EI)G̃N1(EA)} (25)

|TDA|2 )

|VD1VANV′D1V′AN|2
∆EID∆EIA

Re{G1N(ED)GN1(EA)G̃1N(ED)G̃N1(EA)}

(26)

G1N(E) ) G1N
(reg)(E)e-S(E)

G̃1N(E) ) G̃1N
(reg)(E)e-S̃(E) (27)

G1N
(reg)(E) ) 1

|VB|
sinhΛ(E)

sinh[(N + 1)Λ(E)]
(28)

Λ(E) ) ln[(EB - E)/2|VB| + x((EB - E)/2|VB|)2 - 1] (29)

(FC)MN ) 1
2πp

∫dτ e-i∆EMNτ/pe-QMN(τ) (30)
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Each depends on the concrete form of the vibrational spectral
densityJMN(ω) via18,37,38

C. Overall TET Rate. The various rate constants, eqs 19-
23, all contribute to the overall transfer rateKTET of bridge-
mediated TET. To derive a respective expression, we follow
the coarse-graining approach which has been used earlier for
the description of nonadiabatic TET in refs 27 and 29. There,
it has been shown that single-exponential TET kinetics are
related to a D-A regime of this reaction where the population
of the bridging DBA states as well as the population of the
intermediate state remains small in the course of the ET reaction.
In the present case, a small bridge population appears if the
rate constants responsible for an escape of an electron from the
extended bridging state|µ〉 to the localized state|M〉, (M ) D,
I, A) strongly exceed the backward rate, i.e., if the following
inequality is valid

A relation that guarantees a small population of the intermediate
state|I〉 will be given below. If the condition eq 32 is fulfilled,
it becomes possible to derive a solution of eqs 18 by employing
the steady state approximation for the populationsPµ(t) andP̃µ-
(t). The definite form of the solution also depends on the relation
between the rate constantskµM (rµM) and the intrabridge rate
constantskµµ′ (rµµ′). The latter are responsible for transitions
between different electronic bridging states|µ〉 and |µ′〉. Note
that the characteristic timeτB of these (electronic) transitions
is basically different from the above introduced characteristic
timesτrel

(M) andτrel
(µ) (related to the vibrational relaxation within

electronic terms). Because the timesτrel
(M) andτrel

(µ) are assumed
to be the fastest times of the DBA system, along with inequality
(17) the relationτB . τrel

(M), τrel
(µ) also becomes valid. Therefore,

the transitions between the extended states|µ〉 and |µ′〉 can be
described by the rate constantskµµ′ andrµµ′ and, thus, a coarse-
graining procedure becomes valid for an arbitrary relation
between the characteristic timesτB andτTET. Provided that the
rate constantskµµ′ and rµµ′ do not result in an overall D-A
transition but only redistribute the electron population between
the extended bridging states, these rate constants determine
intrabridge relaxation processes.

To derive analytic results, we will consider the solution of
eqs 18 for the case where the timeτB of the intrabridge
relaxation transitions is small compared to the timeτTET as well
as for the case whereτB is large.

1. Fast Intrabridge Relaxation:τB , τTET. In this case quasi-
equilibrium distributionsPµ(t) (P̃µ(t)) across the bridge states
are present on the time-scale of the TET reaction:

These relations, eq 33, allow us to express the populations of
the bridging states by the integral populationsPB(t) ) ∑µPµ(t)
andP̃B(t) ) ∑µP̃µ(t). Introducing the statistical weights of the
extended bridging states,

and

one derives

These expressions demonstrate that the populationsPµ(t) and
P̃µ(t) only change in time via the integral populationsPB(t) and
P̃B(t). Now, by introducing thePµ(t) and P̃µ(t) into eqs 18 it
remains a set of kinetic equations for the populationsPD(t), PB-
(t), PI(t), P̃B(t), andPA(t). The following approximation is based
on the small population of the bridging states and thus on the
utilization of a steady state approximation. The latter reads as
ṖB(t) ) 0 andṖ̃B(t) ) 0 and allows us to derive the following
set of coupled kinetic equations

These equations describe the TET kinetics between the localized
DBA states (cf. scheme b of Figure 2). The respective (effective)
transfer rates read

The rateskID(DI) andkIA(AI) define single-electron superexchange
transitions |D〉 a |I〉 and |I〉 a |A〉, respectively, through
extended bridge states whereas the rates

are responsible for transitions comprising hopping transitions
into the bridge states as well as out of the bridge states.

The rate expressions appearing in eqs 39 read in more detail

The solution of eqs 37 take the following form:PM(t) ) PM-
(∞) + AM

(1)e-K1t + AM
(2)e-K2t (M ) D, I, A). Concrete expres-

sions for the steady state populationsPM(∞) as well as for the
overall transfer ratesK1 andK2 can be found, for instance, in
ref 27. The solution describes two-exponential TET kinetics
which, however, reduces to single-exponential kinetics in the
time regiont . K1

-1 only if K1 . K2. A detailed inspection of
the related expressions shows that condition theK1 . K2 is

QMN(τ) ) 2∫dω (JMN(ω)/ω2)[coth (pω/kBT)(1 -

cosωτ) - i sin ωτ]. (31)

kD(I),µ/kµ,D(I) ) exp[-(εµ - ED(I))/kBT] , 1

r I(A),µ/rµ,I(A) ) exp[-(ε̃µ - EI(A))/kBT] , 1 (32)

Pµ(t)

Pµ′(t)
) e-(εµ-εµ′)/kBT

P̃µ(t)

P̃µ′(t)
) e-(ε̃µ-ε̃µ′)/kBT (33)

WB(εµ) ) ZB
-1e-εµ/kBT (ZB ) ∑

µ)1

N

e-εµ/kBT) (34)

WB(ε̃µ) ) Z̃B-1e
-ε̃µ/kBT (Z̃B ) ∑

µ)1

N

e-ε̃µ/kBT) (35)

Pµ(t) ) WB(εµ)PB(t) P̃µ(t) ) WB(ε̃µ)P̃B(t) (36)

ṖD(t) ) -(KDI + kDA)PD(t) + KIDPI(t) + kADPA(t)

ṖI(t) ) -(KID + KIA)PI(t) + KDIPD(t) + KAIPI(t)

ṖA(t) ) -(KAI + kAD)PA(t) + KIAPI(t) + kDAPD(t) (37)

KDI(ID) ) kDI(ID) + kDI(ID)
(act)

KIA(AI) ) kIA(AI) + kIA(AI)
(act) . (38)

kDI(ID)
(act) )

KD(I),BKB,I(D)

KBD + KBI

kIA(AI)
(act) )

K̃I(A),BK̃B,A(I)

K̃BA + K̃BI
(39)

KD(I),B ) ∑
µ)1

N

kD(I),µ, KB,D(I) ) ∑
µ)1

N

WB(εµ)kµ,D(I)

K̃I(A),B ) ∑
µ)1

N

r I(A),µ, K̃B,I(A) ) ∑
µ)1

N

WB(ε̃µ)rµ,I(A) (40)
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fulfilled when

Moreover, the validity of inequality eq 41 guarantees a small
population of the intermediate state|I〉, and thus it becomes
possible to use the stationary condition,ṖI(t) ) 0. With this
condition, the solution of the eqs 37 reads

Indeed, this solution describes single-exponential TET kinetics,
which is characterized by the overall transfer rate

only between the states|D〉 and|A〉 and, thus, directly between
the D and the A centers. It is important to note thatKTET agrees
with K2 derived from the exact solution only ifK1 . K2. This
means that the inequality (41) represents a necessary and
sufficient condition for formation of D-A TET kinetics. [Note
that in the case of bridge-mediated TET under consideration
the additional conditions, eq 32, also have to be fulfilled.] The
overall rateKTET is defined by its forward (kf) and backward
(kb) components, each determined through stepwise and con-
certed contributions so that

where

2. Slow Intrabridge Relaxation:τB . τTET. This case appears
for small transfer rateskµµ′ andrµµ′. Therefore, the TET process
has been finalized before any noticeable redistribution of
population within the bridging states|µ〉 took place. As a result,
we may ignore intrabridge relaxational transitions on the time
scale of the TET process and, consequently, omit the rateskµµ′
andrµµ′ in eqs 18. Bearing in mind the small population of the
bridging states, we again arrive at eqs 37 where, however, the
thermally activated components of effective transfer rates, eq
38, take the form

and

Just these expressions specify the stepwise route of the D-A
TET kinetics. They have to be distinguished frome those of the
eqs 39 and 40. Because a small population of the intermediate

states|I〉 has been assumed, we finally get the same expressions
for the overall transfer rate as given in eqs 43-45.

III. Discussion of the Results

The derivation and the solution of the 2N + 3 coupled kinetic
equations, eqs 18, describing the bridge-mediated TET in a DBA
system, and the construction of an analytic expression for the
overall D-A TET rateKTET, eqs 43-45, 38-40, and 46, have
to be considered as the main result of the present paper. It could
be demonstrated that for fast as well as slow relaxation among
the extended DBA levels the rateKTET contains two contribu-
tions related to the stepwise and the concerted TET routes. To
clearly demonstrate the importance of these two different
mechanisms for the overall D-A TET process, we considered
the TET through a regular bridge with a weak energetic
irregularities. The main attention has been put on the bridge-
length dependence of the overall transfer rate.

We first emphasis that in line with eqs 80 and 82 the driving
force of the D-A TET reaction,

increases with the increase of the energetic bias∆ (∆E ) ED
(0)

- EA
(0) g 0 denotes the driving force in the absence of an

energetic bias). Therefore, and following fromkb ) exp(-∆EDA/
kBT)kf, the backward ET processes becomes less important when
the number of bridge unitsN increases.

Using the relation between the rateskb andkf, we rewrite eq
43 as

and conclude that an analysis of the forward componentkf

suffices.
Let us first consider the stepwise contribution. Because in

the case of a D-A TET regime the, energyEI exceedsED, the
driving force

of the SET process|D〉 f |I〉 remains negative at any finite
number of bridging units (note∆EID

(0) ≡ EI
(0) - ED

(0) > 0).
Therefore, by denoting the stepwise contribution, eq 45, in the
form

one realizes that the stepwise route of TET can be understood
as a thermally activated transfer process through the intermediate
state|I〉.

Next, we note that each effective transfer rate,KID andKIA,
contains contributions related to the superexchange and ther-
mally activated transfer with the superexchange contribution
to KID given by the ratekID. On the basis of eqs 23, 24, and
A19 it becomes obvious that at the conditions of deep tunneling
the noted rate reads

The dependence of this rate on the number of bridge units is
mainly given by the exponent including the decay parameter

KDI/KID ) exp[-(ED - EI)/kBT] , 1

KAI/KIA ) exp[-(EA - EI)/kBT] , 1 (41)

PD(t) = kb/KTET + (kf/KTET)e
-KTETt

PA(t) = (kf/KTET)(1 - e-KTETt)

PI(t) = 0 (42)

KTET ) kf + kb (43)

kf(b) ) kf(b)
(step)+ kf(b)

(conc) (44)

kf
(step))

KDIKIA

KID + KIA
kf

(conc)) kDA

kb
(step))

KAIKID

KID + KIA
kb

(conc)) kAD (45)

kID(DI)
(act) ) ∑

µ)1

N kI(D),µkµ,D(I)

kµD + kµI

kIA(AI)
(act) ) ∑

µ)1

N r I(A),µrµ,A(I)

rµA + rµI

(46)

∆EDA ≡ ED - EA ) ∆E + (N - 1)∆ (47)

KTET ) kf{1 + exp[-(∆E + (N - 1)∆)/kBT]} (48)

∆EDI ) ED - EI ) -∆EID
(0) + (N - 1)∆ (49)

kf
(step)) e-∆EID

(0)-(N-1)∆/kBT
KIDKIA

KID + KIA
(50)

kID ) kID
(0)e-R1(N-1)eú1N(N-1) (51)

R1 ) Λ(ED) + Λ(EI) (52)
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This parameter characterizes the superexchange transition taking
place in a regular bridge. The second exponential function in
eq 51 corresponds to the perturbation caused by an energetic
bias∆ and contains the parameter (note∆EM ≡ EB - EM

(0))

Finally, the rate expressions of eq 51

coincides with that for a bridge with a “single” unit. Note that
for ∆ * 0 the ratekID

(0) contains a weakN dependence via the
driving force ∆EDI of the Franck-Condon factor. Moreover,
in analogy to eq 51 we obtain

with

(note∆ẼM ≡ ẼB - EM
(0)), and

TheN dependence of the thermally activated component of the
rateKID is defined by the shifts∆εµ of the energiesεµ. According
to the eqs A6, A18, and 39, we may derive

This expression is valid for slow relaxation processes between
the extended bridge states. In the contrary case of fast relaxation,
eqs A6, A18, and 46 result in

[Because the shifts∆εµ are independent ofµ (cf. eq A18), we
may setWB(εµ) ) WB(εµ).] The transfer ratekIA

(act) is obtained
from eqs 59 and 60 by replacing the rateskµD andkµI by rµA

andrµI, respectively. Besides, one has to replace the factor exp[-
3(N - 1)∆/2kBT] by the factor exp[-(N - 1)∆/2kBT] and the
energyεµ by the energyε̃µ.

The N dependence of the stepwise transfer rate, eq 50, is
completely defined by eqs 51, 55, and 59 (or eq 60). To find
the N dependence of the concerted transfer ratekf

(conc), eq 45,
we use eqs 23, 26, and A19. It follows

where the decay parameter

characterizes the two-electron superexchange transition between
the D and the A mediated by a regular bridge whereas the
change of the rate caused by an energetic bias∆ is characterized
by the parameter

The rate expression of eq 61

represents the two-electron superexchange rate for a bridge with
a “single” unit. For∆ * 0 it shows a weak dependence on the
bridge length via the dependence of the Franck-Condon factor
on the driving force∆EDA, eq 47.

The analytic results presented so far enable us to analyze
different regimes of the D-A TET process. To do this, we
utilize the simplest version of the Song-Marcus model39,40 for
the Franck-Condon factors. Such an approach is based on the
coupling of the electronic states to a single active vibrational
coordinate with frequencyω0. It results the well-known Jortner
expression17,41 for the Franck-Condon factor:

Here, we introducedνMN ≡ ∆EMN/pω0 (note the correspondence
∆EMN ) EM - EN for M, N ) D, I, A as well as∆EµD(I) ) εµ
- ED(I) and∆EµA ) ε̃µ - EA). Moreover, we setSMN ≡ λMN/
pω0 (λMN denotes the reorganization energy for the Mf N
ET). Finally, n(ω0) ) [exp(pω0/kBT) - 1]-1 is the Bose
distribution, andIν(z) stands for the modified Bessel function.

The actual value of the overall D-A TET rate is determined
by all those parameters entering the elementary rate constants.
In present paper we focus on the bridge-length dependence of
the stepwise and concerted contributions to theKTET. Therefore,
all parameters are chosen in such way that allows us not only
to numerically analyze the difference between the mentioned
transfer rates, eq 59 and eq 60, describing the thermally activated
stepwise route but also to derive a rather simple analytic form
for two types of rate. In particular, we are able to show that
even at room temperature both types of rates reduce to a single
analytic form (cf. below, eqs 66 and 67) provided that the
intrabridge transfer coupling|VB| becomes sufficiently large.

To underline that the stepwise D-A TET route follows an
activation law, let us take a look at Figure 3. It can be directly
seen that at the given set of parameters a decrease of temperature
leads to a remarkable decrease of the stepwise contributionK(step)

) [1 + exp(-∆EDA/kBT)]kf
(step)to the overall transfer rateKTET

) K(step)+ K(conc). In contrast, the concerted contributionK(conc)

) [1 + exp(-∆EDA/kBT)]kf
(conc)stays practically constant. This

fact is completely explained by the two-electron superexchange
nature of the ratekf

(conc) ) kDA. Thus, the concerted route of
TET can even exist at zero temperature. Analyzing the stepwise
contributionK(step)and remembering the peculiarities related to
kf

(conc), eq 50, we have to note thatK(step)contains a mixture of
contributions related to the thermally activated and the super-
exchange single-electron pathways that cannot be separated in
the general case.

However, we may compare the efficiency of the described
pathways by introducing a thermal activated componentk(act)

ú ) (∆/∆ED + ∆/∆EA)/2 + 3(∆/∆ẼA + ∆/∆ẼA)/2 (63)

kDA
(0) ) 2π

p

|VD1VANV′D1V′AN|2
∆ED∆EA∆ẼD∆ẼA∆EID∆EIA

(FC)DA (64)

(FC)MN ) 1
pω0

exp(-SMN cothpω0/2kBT)

(1 + n(ω0)

n(ω0) )νMN/2

I|νMN|(2SMNxn(ω0)(1 + n(ω0))) (65)

ú1 ) (∆/∆ED + ∆/∆EI)/2. (53)

kID
(0) ) 2π

p

|VD1VAN|2
∆EI∆ED

(FC)ID (54)

kIA ) kIA
(0)e-R2(N-1)eú2N(N-1) (55)

R2 ) Λ̃(EA) + Λ̃(EI) (56)

ú2 ) (∆/∆ẼA + ∆/∆ẼI)/2 (57)

kIA
(0) ) 2π

p

|V′D1V′AN|2
∆ẼI∆ẼA

(FC)IA (58)

kID
(act) ) e-(N-1)∆/2kBT ∑

µ)1

N

e-εµ-EI
(0)/kBT

kµIkµD

kµI + kµD

(59)

kID
(act) ) e-(N-1)∆/2kBT ∑

µ)1

N

e-εµ-EI
(0)/kBTkµI

∑
µ)1

N

WB(εµ)kµD

∑
µ)1

N

WB(εµ)(kµI + kµD)

(60)

kf
(conc)) kDA

(0) e-R(N-1)eúN(N-1) (61)

R ) Λ(ED) + Λ(EA) + Λ̃(ED) + Λ̃(EA) (62)
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as well as a superexchange component,k(sup). Concrete expres-
sions for both follow from eq 50 if one maintains in eqs 38
either the rateskMN

(act) or the rateskMN. The single-electron
superexchange componentk(sup) is clearly represented in the
stepwise contribution if one compares Figure 3a with Figure
3b. At room temperature it exceeds the activated contribution
up to a numberN ) 3 of bridge units whereas atT ) 150 K
this is the case up toN ) 8. An interesting peculiarity of the
activated component represents the fact that the ratek(act)

increases with increasing bridge length but stays nearly constant
at N ≈ 7 (if T ) 298 K, Figure 3a) or atN ≈ 12 (if T ) 150
K, Figure 3b). Such a behavior can be explained in the following
way. If the energy bias∆ is zero (case of a regular bridge), the
N dependence of the activated componentk(act) is only originated
by the gapεµ - EI

(0)(ε̃µ - EI
(0)) as well as by the rateskµM

(rµM), and here via the energiesεµ (ε̃µ) and the transfer couplings
TMµ (T̃Mµ). Let the intrasite bridge couplingVB (which leads to
the extended levels) to be of such a magnitude that the relation
exp[-(ε2 - ε1)/kBT] , 1 (exp[-(ε̃2 - ε̃1)/kBT] , 1) is fulfilled.
Then, the main contribution to the thermally activated process

under consideration is given by levelµ ) 1. In this case both
expressions, eqs 59 eq 60, reduce to the common expression

and

In the present case,|VB| ) 0.20 eV and thus eqs 66 and 67 are
satisfied for smallN. Therefore, in line with eq 50 one derives
k(act)∼ exp[2|VB| cosπ/(N + 1)/kBT]. Just such anN dependence
can be seen in Figure 3a,b. It is necessary to note here that a
similar behavior of the transfer rate characterizing the thermally
activated ET through extended bridge states (in particular, the
flat length dependence of the rate for long bridges) has been
earlier found for the case of SET reactions.42 (A more detailed
discussion on this problem can be found in refs 23, 43, and
44.) We would only like to mention here that the difference to
the TET consists of the fact that TET reactions cover two
separate steps of a single electron thermally activated pathway,
namely|D〉 a |I〉 and I〉 a |A〉.

Next let us pay attention to the fact that the single-electron
superexchange decay parameters, eqs 53 and 57 are smaller than
the two-electron superexchange parameter, eq 63. Therefore,
at low temperatures one may observe a more pronounced
decrease of the concerted contribution with increasing bridge
length as compared with the stepwise contribution (cf. Figure
3b). Nevertheless, due to the activated character of the stepwise
D-A TET a decreasing temperature may result in a situation
where the concerted contribution toKTET exceeds the stepwise
one. Figure 4 displays this behavior forT ) 100 K. One can
see that the stepwise contribution toKTET dominates forN > 2
whereas the D-A TET through a bridge with a single unit is
determined by the concerted mechanism. AtN ) 2 the stepwise
and the concerted mechanism show the same efficiency.

Figure 3. Bridge-length dependence of the overall D-A TET rate
KTET ) K(step) + K(conc) as well as its stepwise,K(step), and concerted,
K(conc), contributions at two different temperatures. TheN dependence
of the transfer rate exclusively accounting for the activated stepwise
process,k(act), and for superexchange stepwise process,k(sup), is also
shown (dashed lines). The curves are obtained in using the param-
eters: ∆ED ) 0.75 eV,∆EI ) 0.65 eV,∆ẼI ) 0.75 eV,∆E ) 0, λD1

) λNI ) λ1I ) λNA ) 0.6 eV,λDI ) λIA ) 0.7 eV,λDA ) 0.4 eV,ω0

) 600 cm-1, ∆ ) 0, VD1 ) VNA ) V′D1 ) V′NA ) 0.04 eV,VB ) 0.20
eV.

Figure 4. Bridge-length dependence of the overall D-A TET rate
KTET at T ) 100 K. The part stemming from the concerted mechanism
dominates atN ) 1, it is comparable with the stepwise contribution at
N ) 2 and becomes less important forN > 2. The use parameters are
those of Figure 3.

kID
(act) ) e-[∆EI-2|VB|cos(π/N+1)]/kBT

k1Ik1D

k1I + k1D

(∆EI ≡ EB - EI
(0)) (66)

kIA
(act) ) e-[∆ẼI-2|VB|cos(π/N+1)]/kBT

r1Ir1A

r1I + r1A

(∆ẼI ≡ ẼB - EI
(0)) (67)
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The efficiency of the thermally activated stepwise route|D〉
a |I〉 a |A〉 is very sensitive to a change of the energy gap
∆EID. Figure 5 shows this effect for the case where the
degeneracy of the local bridge levels is disturbed by the
energetic bias∆. Now, the mentioned gap shows a linear
dependence on the number of bridge units, cf. eq 49. Note that
the concerted contribution which atN ) 2 exceeds the stepwise
one (compare with Figure 4), stays practically constant at a given
value of∆.

IV. Conclusion

In the present paper we considered bridge-mediated two-
electron transfer (TET) for the case where the electronic
couplings between neighboring bridge units strongly exceed their
coupling to vibrational coordinates (of the DBA system as well
as the surrounding medium). Furthermore, it has been assumed
that the relaxation processes that lead to an equilibrium
distribution within the vibrational states are much faster than
the overall TET process (cf. inequality, eq 17). Because the
characteristic timeτrel for vibrational relaxation in molecular
systems is 0.1-10 ps,45,46 the results presented here are valid
for TET reactions taking place in a 100 ps up to 1 ns time region.
The fact that the TET takes place against the background of
fast vibrational relaxation processes allowed us to utilize a
coarse-grained description and to derive a set of coupled
balance-like eqs 18. At the same time respective rate constants
have been derived, characterizing the hopping transitions
between the localized DBA states (|D〉, |I〉, and |A〉) and the
extended DBA states (|âµ〉 and |ẫµ〉) as well as the distant
superexchange single-electron and two-electron unistep transi-
tions between the D and the A centers (cf. scheme a in Figure
2).

The main focus has been put on the reduction of multiex-
ponential TET kinetics to single-exponential kinetics between
the donor state|D〉 ≡ |D(ee)B1B2...BNA〉 and the acceptor state
|A〉 ≡ |DB1B2...BNA(ee)〉, only. Such a description has been
taken because the possible characterization by a single rateKTET

is a common observation for numerous ET processes covering
biological systems, too (cf., e.g., refs 2-4, 6, 8, 9, and 16-
20). In particular, it could be shown by us that such a D-A
regime of the TET becomes possible if a specific relation exists
between the elementary rate constants, eq 32, as well as between
the effective transfer rates, eq 41. The validity of inequality 32

results in a small population of the extended bridge states, eqs
7, whereas eqs 41 guarantee a small population of the
intermediate state|I〉 ≡ |D(e)B1B2...BNA(e)〉. Our estimations
indicate that the limit of a direct D-A TET process is achieved
if the population of the mentioned states does not exceed 10-2.
Then, the overall D-A TET transfer rateKTET only contains a
contribution related to the stepwise and to the concerted
mechanism. The stepwise contributionK(step) is originated by
two single-electron rates and the participation of a weakly
populated intermediate state|I〉. The effective transfer ratesKDI

andKID (KIA andKAI) characterize the first (second) step; cf.
scheme b of Figure 2. In line with eq 38 each effective transfer
rate has a single-electron superexchange component as well as
a component related to the thermal activated process.

Note that the superexchange contribution exists even at zero
temperature. But due to the activation character of the stepwise
route (cf. eq 50) the common contribution to the TET process
drops with decreasing temperature. For a short bridge, it can
become even less effective than the concerted contribution that
results from a direct two-electron superexchange process (cf.
Figure 4). According to the single-electron superexchange
component, however, one observes a certain increase of the
stepwise contribution with increasing bridge length. For instance,
in Figure 3a this increase may be seen aroundN ) 4. The
presence of such a region has to be considered as the important
criterion for the participation of extended bridge states in the
D-A TET process. Note that such a behavior of the rate is
impossible when nonadiabatic D-A TET is considered, where
the thermally activated component of the stepwise route
originates from the single-electron site to site hopping across
the bridge.29

Our considerations concentrated on a particular part of the
TET through extended DBA bridge states, the bridge-length
dependence of the reaction for a regular bridge as well as for
the case of rather simple energetic irregularities. It has been
shown that an intersite energetic bias within the bridge may
facilitate the D-A TET (cf. Figure 5). The perturbation caused
by the bias mainly results in corrections of the superexchange
couplings as well as in an alteration of the gaps between the
specific intermediate state|I〉 and the donor (acceptor) state|D〉
(|A〉). The change of the driving force of the corresponding
reaction was of less importance.

Further work to be done in the investigation of bridge-
mediated TET reactions should be related to the consideration
of more complex perturbations, in particular, to the consideration
of the Coulomb interaction connected with a localization of the
transferred electrons within the DBA system. In the present
description, we did not include this interaction but supposed
that the D and the A centers are well screened by polar groups
while the bridge is surrounded by a nonpolar medium (for a
more detailed discussion cf. ref 29). However, this interaction
may influence the transfer processes in a considerable manner.
[As an example, we mention here ref 53 where the influence of
the Coulomb interaction on the rate of a single-electron bridge-
mediated oxidation-reduction reaction has been analyzed.]

Of course, the presented computations on TET processes have
to be applied on concrete molecular systems. Two-electron
reactions, for example, have been observed in a number of
substrate-enzyme complexes such as xanthine oxidase47 my-
cothione reductase,48 monoohygenase,10 cytochrome oxidase,11

nickel-iron hydrogenase,12 trimethylamine dehydrogenase,49

hemocyanin,50 human cytochrome P450 reductase,51 micothione
reductase52 and others. When considering such reactions, the
main challenge is to uncover the mechanisms that orchestrate

Figure 5. Enhancement of the D-A TET efficiency caused by an
energetic bias within the bridge. A comparison with Figure 4 shows
that the bias mainly influences the thermal activated stepwise contribu-
tion of theKTET. The use parameters are those of Figure 3.
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the multielectron release along the ironsulfur-, molibdenium-,
vanadium-, manganese-, or copper-containing protein domains.
Moreover, it is less understood in which way a stabilization of
reactive intermediates takes place and what is the underlying
mechanism for the cleavage and formation of chemical bonds.
So far, the main interest has been related to the questions
whether the electron transfer and the structural changes are
separated or concerted and, if the dominant structural change
is coupled to the first or to the second step of the transfer. The
progress in understanding the mechanisms of these complex
reactions could be probably achieved by not only analyzing the
bridge-length dependence of the transfer rates but by the study
of the dependence of the overall transfer rate on structural and
external factors (including the temperature and the media
acidity), too. Recently,27 we used the theory of nonadiabatic
bridge-mediated D-A TET to explain the dependence of the
overall transfer rate on the pH value of the solvent in which
two-electron reduction of micothione reductase by NADPH
takes place.

Appendix A: Bridge Green’s Function for the Case of
Energetic Irregularities

The Green’s function characterizing the ET through the DBA
bridge states is defined as (cf. refs 33 and 34)

where|B1〉 and|BN〉 are the localized DBA states which indicate
that one of the transferred electrons is located at the D center
whereas the second electron is located at the first or at theNth
bridge unit. The same expression is valid for Green’s function
G̃1N(E), which followsG1N(E) whenHB

(el) is substituted byH̃B
(el)

as well as the states|B1〉 and|BN〉 by |B̃1〉 and|B̃N〉, respectively
(these states indicate that one of the transferred electrons is
located at the A center whereas the second transferred electron
is located at the first or theNth bridge unit). In the tight binding
approximation under considerationG1N(E) takes the following
form

For a linear bridge this expression can be also rewritten as54

which is more suitable when approximations are carried out. If
a regular bridge is considered (V12 ) V23 ) ...VN1N ≡ VB) G1N-
(E) changes to the form given in eq 28.

Below we derive an analytical expression for Green’s function
of a bridge including a small energetic perturbation. We assume
for the energies of the bridge units that appear in the Hamil-
tonian, eq 3

The deviations∆Em from the mean valueEB are assumed to be
small compared with the transfer couplingsVmm(1 ) VB.
Therefore, in the zero-order approximation (i.e., atEm ≈ EB),

the energiesεµ of the extended bridge states|âµ〉 and the
transformation coefficientsuµ(m) are given by eq 8. Lettµµ′ )
∑muµ(m)uµ′(m)∆Em be the off-diagonal contribution caused by
an energetic irregularity. If the inequality

is fulfilled for eachµ′ * µ, then in the first-order approximation
with respect to the energetic perturbations one derives the
following form for the energies of bridge states (note that in eq
8 and thus in the following relation theuµ(m) are real)

Using the identity

where

we arrive at eq 27, where

With cosh Λ(E) ≡ (EB - E)/2|VB|) this expression can be
reduced to the expression given in eq 28.54

If the levels of the bridge states are energetically positioned
far away the energy levelsE ) ED, EI, EA (cf. Figure 1) so that
the inequality

is valid for all bridge states, then the correcting factor is reduced
to the more simple form

Analogously, one derives

Expressions A11 and A12 are suitable for an evaluation of the
corrections to superexchange couplings. Let, for instance, an
energetic irregularity be defined by the intrabridge bias so that

|tµµ′| , |εµ - εµ′| (A5)

εµ ≈ εµ + ∆εµ (∆εµ ) ∑
m

uµ
2(m)∆Em) (A6)

∏
µ)1

N

(εµ - E) ) ∏
µ)1

N

(εµ - E)eS(E) (A7)

S(E) ) ∑
µ)1

N

ln[1 + ∆εµ/(εµ - E)] (A8)

G1N
(reg)(E) )

(-1)N+1VB
N-1

∏
µ)1

N

(εµ - E)

(A9)

∆εµ , (εµ - E) (A10)

S(E) ) ∑
µ)1

N

[∆εµ/(εµ - E)] (A11)

S̃(E) ) ∑
µ)1

N

[∆ε̃µ/(ε̃µ - E)] (A12)

G1N(E) ) 〈B1|[E - HB
(el)]-1|BN〉 (A1)

G1N(E) ) ∑
µ

uµ
/(1)uµ(N)

E - εµ

. (A2)

G1N(E) )

(-1)N+1∏
m)1

N-1

Vmm+1

∏
µ)1

N

(εµ - E)

(A3)

Em ) EB + ∆Em (A4)
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Em - Em+1 ) Ẽm - Ẽm+1 ) ∆. In this case, the energies of the
localized DBA states depend on the energy bias∆ as

whereED
(0), EI

(0), EA
(0), EB ≡ Em

(0), and ẼB ≡ Ẽn
(0) are the DBA

energies in absence of the bias. On the basis of eqs A6, A16,
A17, and 8 one derives

These quantities are independent of the extended state|µ〉.
Therefore, to evaluate the correction factors, one has to estimate
the quantity∑µ[εµ - E]-1. As an example, we consider the case
of deep tunneling whereEB - E . 2|VB| and thus∑µ[εµ -
E]-1 ≈ N/(EB - E). Introducing the correction factor into eq
27, we get

To derive these expressions, we have also used the fact that
owing to the inequality expΛ(E) . exp (-Λ(E)) which is valid
for deep tunneling, the Green’s function, eq 28, of a regular
bridge reduces to the form
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ED ) ED
(0) (A13)

EI ) EI
(0) - (N - 1)∆ (A14)

EA ) EA
(0) - 2(N - 1)∆ (A15)

Em ) EB - (m - 1)∆ (m ) 1, 2, ...,N) (A16)

Ẽn ) ẼB - (N - 1)∆ - (n - 1)∆ (n ) 1, 2, ...,N)
(A17)

∆εµ ) -(N - 1)∆/2 ∆ε̃µ ) -3(N - 1)∆/2 (A18)

G1N(E) ≈ 1
EB - E

e-Λ(E)(N-1)eN(N-1)]∆/[2(EB-E)]

G̃1N(E) ≈ 1
ẼB - E

e-Λ̃(E)(N-1)e3N(N-1)∆]/[2(ẼB-E)] (A19)

G1N
(reg)(E) =

exp[-Λ(E)(N - 1)]
EB - E

(A20)
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