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Interplay of non-Markovian relaxation and ultrafast optical state preparation
in molecular systems: The Laguerre polynomial method

T. Mančal and V. May
Institut für Physik der Humboldt-Universita¨t zu Berlin, Hausvogteiplatz 5-7, D-10117 Berlin, Germany

~Received 5 June 2000; accepted 31 October 2000!

The interplay of femtosecond optical excitation and retarded vibrational relaxation in a molecular
system is studied using the non-Markovian version of the Quantum Master Equation. To solve
non-Markovian equations with an arbitrary memory kernel an expansion with respect to Laguerre
polynomials is introduced and the applicability of the method is tested. The non-Markovian effects
are identified and parameter regimes are indicated where these effects become predominant. For an
early time region just after the optical excited state preparation it is demonstrated that the
convolutionless quantum master equation with a time-dependent Redfield-tensor may give a
reasonable approximation of the correct non-Markovian dynamics. ©2001 American Institute of
Physics. @DOI: 10.1063/1.1334619#
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I. INTRODUCTION

Dissipative quantum dynamics, the reduced density
erator, the Quantum Master Equation~QME!, etc. are con-
cepts well-known since the fifties and early sixties and do
mented in a number of excellent textbooks.1–4 In particular,
these ideas have been used to describe relaxational phe
ena in molecular systems and to achieve a quantum mech
cal foundation of chemical reaction dynamics. Focusing
optical experiments, electronic transitions, and vibratio
motion, the research work done up to the late eighties ca
characterized by the following peculiarity. The time scale
preparing an excited molecular state~typically in the nano-
second and picosecond region! appeared to be much longe
than the characteristic time nuclear degrees of freed
~DOF! needed to reach equilibrium~subpicosecond region!.
In the course of numerical simulations this particular asp
allowed for certain time coarse-graining removing unimp
tant ultrafast fluctuations from the description or, in oth
words, it was not necessary to account for non-Markovi
i.e., retardation effects in the intramolecular relaxation p
cesses.~In this respect, the simulation of electronic and nu
lear spin dynamics has to be considered as a field of its ow!

Meanwhile, optical pulses with a duration of less than
fs are available and one can detect coherent nuclear dyn
ics ~dynamics unaffected by environmental fluctuations!.5–7

This experimental achievement initiated a renaissance of
sipative quantum dynamics, putting emphasis on the desc
tion of ultrafast nuclear dynamics in polyatomic systems a
systems in the condensed phase.5,6,8,9

If methods of dissipative quantum dynamics should
applied, it is necessary that one can separate the whole s
nuclear DOF into a small subset of active DOF and a rem
ing large set of passive DOF~forming a thermal environ-
ment!. In the next step one introduces the reduced statist
operator~reduced density operator, RDO!

r̂~ t !5trR$Ŵ~ t !%, ~1!

which comprises a description of all active DOF by reduc
the whole statistical operatorŴ(t) to the state-space of th
1510021-9606/2001/114(4)/1510/14/$18.00
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active DOF. This reduction procedure is the source of re
dation effects in the coupling between the active and
passive system.

Propagating the RDO on a time scale of some tens
femtoseconds, any time coarse-graining is forbidden and
sipative quantum dynamics asks for proper incorporation
retardation effects between the active system and the e
ronment~reservoir!. The need for such a more sophisticat
description becomes obvious if one imagines an experim
where:~i! the nuclear oscillation period of the molecules li
in the range of 50 fs up to 100 fs;~ii ! the molecule is dis-
solved in a solvent with a correlation time again of about 1
fs; and ~iii ! the molecule is excited by a laser pulse wi
duration of some 10 fs~similar to experiments done, fo
example, at iodine in a solvent10 or in rare gas clusters11!.
Trying to simulate such an experiment, one must account
the interference of all three mentioned characteristic ti
scales. It is the main aim of the present paper to study s
an interference of~a! vibrational dynamics,~b! retarded cou-
pling to the environment, and~c! ultrafast laser-pulse excita
tion. Emphasis will be put on non-Markovian effects.

Different ways have been suggested to determine
RDO of an open molecular system. The equation-of-mot
approach via the so-called QME is the most common w
used in the past~see, e.g., Refs. 1–4!. The path-integral rep-
resentation of the density matrix has been studied in the
decade~for a review see, e.g., Ref. 12! and recently the ap-
plication of the TDSCF ~time-dependent self-consisten
field! method could be worked out.13 Comparing all of these
methods, application of the equation-of-motion approach
the great advantage that one computes, in a direct way, t
mal averaged quantities and, in contrast to the path-inte
approach, one can describe systems with some hundred
energy levels.

Concentrating on the treatment based on an equation
motion for the RDO, different attempts already exist to d
scribe non-Markovian dynamics. To account for the tim
nonlocallity in a few simple level systems, the density mat
0 © 2001 American Institute of Physics
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1511J. Chem. Phys., Vol. 114, No. 4, 22 January 2001 Non-Markovian relaxation
theory can be combined with the Laplace transformat
method.14–16 Additionally, this approach allows us to rela
the effect of dissipation described in the time domain to
frequency domain. For example, non-Markovian dynam
can be related to the frequency dependence of the absor
line broadening~see also Refs. 17, 18!. To treat non-
Markovian dynamics in larger systems, one makes the
sumption that the spectral density of the environmen
modes can be well represented a~at least arbitrary large!
number of Lorentzian-type functions. The resulting expon
tial form of the memory kernel offers the possibility to tran
fer the non-Markovian equation to a new set of Markovi
equations defined for the density matrix, as well as some
auxiliary functions.19,20 Replacement of the time nonlocalit
by adding some fictitious modes to an existing system w
suggested in Ref. 21. The additional modes can be tre
within a Markov approximation and must be chosen in su
a manner that they reproduce the spectral density of the
vironment. Clearly, if one needs too many fictitious modes
approximate the spectral density, the approach become
efficient.

In the present work we present a method of treating n
Markovian equations-of-motion by introducing an expans
with respect to special polynomials.22,23 Such an expansion
will enable us to convert the respective integro-differen
equations-of-motion into algebraic ones. From ear
work24,25 it follows that the most suitable set of special fun
tions is given by the orthonormal set of Laguerre polynom
als defined as

Ln~x!5
1

n!
exS d

dxD
n

~xne2x!. ~2!

Besides the other different properties explained below,
guerre polynomials obey the following important equation

E
0

x

dx̄Ln~x2 x̄!Lm~ x̄!5Ln1m~x!2Ln1m11~x!. ~3!

This represents the key relation to handle any type of t
nonlocality. If all ingredients of the non-Markovian densi
matrix equation are expanded with respect to the Lagu
polynomials, the difficulty to treat the retardation effects h
been overcome.

Before discussing the Laguerre polynomial expans
method in detail in Sec. IV and using it to study the interpl
of optical excitation and vibrational relaxation in Sec. V, w
comment on some general aspects of the QME. In Sec. II
basic RDO equations-of-motion at the presence of an ex
nal field pulse are given. The model is specified in Sec. III
Some detailed derivations are placed in the Appendix.

II. EQUATION-OF-MOTION FOR THE REDUCED
DENSITY OPERATOR

Before concentrating the discussion to the molecu
system of interest we recall the general equation which g
erns the dynamics of an open molecular system. This eq
tion is the well-known Nakajima–Zwanzig equation or
approximate variant of it26,27 ~see also Refs. 2–4, 9!. Our
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discussion will be based on the following separation of
complete Hamiltonian, which is standard in dissipative qu
tum dynamics

H5HS~ t !1HS2R1HR . ~4!

The first part describes the molecular system of interest~ac-
tive system with HamiltonianHmol) together with its cou-
pling to an external radiation field@with Hamiltonian
Hfield(t)#

HS~ t !5Hmol1Hfield~ t !. ~5!

The molecular contributions will be specified later. For t
coupling to the radiation field we have in mind a descripti
within the electric dipole approximation

Hfield~ t !52E~ t !m̂. ~6!

HereE(t) is the electric field strength of a laser pulse~or a
sequence of pulses! and m̂ denotes the molecular dipole op
erator. The coupling of the active system to the reservoi
given byHS2R , whereas the reservoir is described byHR .

A. Reduced equation-of-motion

The dynamics of the active system is described by R
r̂ @cf. Eq. ~1!#. The resulting exact equation-of-motion
known as the Nakajima–Zwanzig identity~if convolutionless
versions of RDO equations are considered alternative ty
of exact equations are also known28!

]

]t
r̂~ t !5 Î ~ t;Ŵ~ t0!!2 iLS~ t !r̂~ t !2D̂~ t,t0 ; r̂ !. ~7!

Concrete expressions of all parts can be found in Appen
A. We only mention here that the first term on the right-ha
side of Eq.~7! is responsible for the decay of correlation
between the active system and the reservoir presented a
initial time t0 . The Liouvillian formed byHS is denoted by
LS(t)@[Lmol1Lfield(t)#, and dissipation is described by th
term 2D̂. If necessary, one has to extendLS(t) by the
mean-field term of the system-reservoir coupling~see Ap-
pendix A!. For the following, however, it is important that a
terms on the right-hand side of Eq.~7! depend on the exter
nal field.

The dissipative partD̂(t,t0 ; r̂) incorporates the convolu
tion of the density operatorr̂(t) and a memory kerne
~memory superoperator!

D̂~ t,t0 ; r̂ !5E
0

t2t0
dtM~ t,t2t;E!r̂~ t2t!. ~8!

Since the external field enters the memory kernel, the tim
dependence ofM is twofold. But in the case where th
external field is absent, we can write

lim
E→0

M~ t,t2t;E!5M0~t!. ~9!

This memory kernel is supposed to die out with the char
teristic timetmem.
 AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.
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B. Initial conditions and laser-pulse excitation

As already pointed out above, Eq.~7! includes a term
which describes the decay of correlations present betw
the active system and the reservoir at the initial timet0 .
After starting the evolution these initial correlations tend

zero on a time scale comparable totmem, and Î should be
negligible for t.t01tmem. Since the exact form of the den
sity operator equation includes a retarded coupling to
reservoir, the occurrence of such initial correlations is u
avoidable. They compensate the incomplete retarded sys
reservoir coupling for initial timest,t01tmem. In a descrip-
tion of dissipative quantum dynamics, where a time coar
graining has been introduced which neglects a tim
resolution comparable totmem, one can neglect initia
correlations and can change to a Markov approximation a
Eq. ~8!.

Obviously, in the contrary case of a time resoluti
much belowtmem, initial correlations, together with retarda
tion effects of the system-reservoir coupling~non-Markovian
effects!, must be accounted for. If retardation is conside
but initial correlations are neglected, the time-dependenc
the density operator~its matrix elements! displays artificial
oscillations for an initial time interval extending fromt0 to
t01tmem ~or somewhat larger times!. This has recently been
demonstrated for the dissipative dynamics of a single m
lecular DOF moving in a double-well potential.20

The situation changes if one considers~as will be the
case here! the action of field pulses driving the system out
equilibrium. Now it is not necessary to deal with initial co
relations. According to their decay with the characteris
time tmem, one can arrange the presence of the field-pu
for times where the influence of initial correlations alrea
vanished. For numerical simulations this means that
should allow evolution of the system freely without the a
tion of the external field for a larger time interval when com
pared totmem. Therefore, if the field-pulse acts, a corre
description of non-Markovian molecular dynamics has
ready been achieved.

The field influence on the system dynamics can be c
sidered to establish new initial conditions forr̂ ~this is best
seen for a pulse short compared totmem, as well as any othe
characteristic time of the active system!. But this takes place
without contributions in the density matrix equations bei

similar to the initial correlation termsÎ @ t;Ŵ(t0)#. Therefore,
one can expect that the interplay of non-Markovian dyna
ics and short pulse excitations are similar to the time evo
tion of r̂ observed for times just after starting the evoluti
with retardation accounted for but without the considerat
of initial correlations. The following considerations are d
voted to clarifying this statement.

We suppose that the external field begins to deviate fr
zero ~arrival time of the pulse in the probe! at time tfield ,
wheretfield@t0 . Thus for anyt0!t,tfield , the field-free ver-
sion of Eq.~7! would be valid, and should describe the eq
librium situation between the active system and the reserv
We will denote the respective equilibrium version of the
duced density operator byr̂eq. If the exact expression for th

memory kernel is taken we expectr̂eq5trR$Ŵeq%, whereŴeq
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is the canonical equilibrium statistical operator of the act
system plus reservoir, proportional to exp2(Hmol1HS2R

1HR)/kBT. If the field-free memory kernelM0 is used in
the second Born approximation we get~see, e.g., Ref. 9!

r̂eq5exp~2Hmol /kBT!/trS$exp~2Hmol /kBT!%, ~10!

i.e., the canonical statistical operator of the active syst
Although the concrete computations presented in the follo
ing sections have been done in the framework of the sec
Born approximation, it is not necessary for the reason
below to use this approximation.

Since equilibrium should be established fort0!t,tfield

we get from Eq.~7! ~note the replacement oft2t0 , which is
much larger than zero, bỳ!

052 iLmolr̂eq2E
0

`

dtM0~t!r̂eq. ~11!

For t.tfield , thus for times when the field already acts, t
whole Eq. ~7! @with Î (t;Ŵ(t0))50# applies. To solve this
equation for timest.tfield we introduce a formal decompo
sition of the RDO according to

r̂~ t !5Dr̂~ t !1 r̂eq, ~12!

whereDr̂(t) vanishes for times less thantfield . Inserting Eq.
~12! into Eq. ~7! we obtain fort.tfield

]

]t
Dr̂~ t !52 iLS~ t !Dr̂~ t !

2E
0

t2tfield
dtM~ t,t2t;E!Dr̂~ t2t!

2 iLfield~ t !r̂eq2 iLmolr̂eq

2E
0

t2t0
dtM~ t,t2t;E!r̂eq. ~13!

Here, the parts depending onr̂eq ~the three last terms on th
right-hand side! act as inhomogeneities. Indeed, one can
terpret these inhomogeneities as terms replacingÎ in Eq. ~7!.

If one neglects the less important effect of the field
fluence on the memory kernel~and notest2t0@0), the last
term in Eq.~13! is compensated by the foregoing one@com-
pare to Eq.~11!# and iLfield(t) r̂eq remains as the inhomoge
neity. But, in difference toÎ , this inhomogeneity substan
tially deviates from zero for the whole time the external fie
is present.

C. Markov approximation

To have the QME in the Markov approximation as
reference case at hand we shortly remind to its derivation
one wants to apply this approximation it is necessary that
the time scale the memory kernel does not decay with
substantial change of the RDO appears. This is best pro
in the interaction representation@compare Eq.~A1!# where
the reversible part of the dynamics has been removed f
r̂(t). If the Markov approximation is justified one introduce

r̂~ t2t!'US
1~ t,t2t!r̂~ t !, ~14!
 AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.
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1513J. Chem. Phys., Vol. 114, No. 4, 22 January 2001 Non-Markovian relaxation
where the time-evolution superoperator has been define
Eq. ~A2!. Inserting this approximation into Eq.~8! we can
write

D̂~ t,t0 ; r̂ !'R~ t,t0 ;E!r̂~ t !

[E
0

t2t0
dtM~ t,t2t;E!US

1~ t,t2t!r̂~ t !. ~15!

The definition of the dissipative superoperatorR is obvious.
It realizes time local, and also the time-dependent dissipa
which, additionally, is influenced by the presence of t
external-field pulse. In the case wheret2t0@tmem we can
replace the upper limit of thet-integral by`. If the external
field dependence is neglected, the dissipative superope
R0 ~its matrix elements! becomes identical with the so-calle
Redfield tensor entering thestandard Markovian QME

]

]t
r̂~ t !52 iLS~ t !r̂~ t !2R0r̂~ t !. ~16!

Next we combine the separation, Eq.~12!, with the Markov
approximation, Eq.~15!, and obtain

]

]t
Dr̂~ t !

52 iLS~ t !Dr̂~ t !2 iLE~ t !r̂eq1R~ t,tfield ;E50!Dr̂~ t !.

~17!

Since the limit E→0 has been taken with respect to t
dissipative part, all terms proportional tor̂eq disappear, ex-
cept2 iLE(t) r̂eq. Furthermore, we note that the dissipati
superoperatorR remains time-dependent. It will be demo
strated below that the use ofR(t,tfield ;E50) for times
t2tfield in the range oftmem will give a proper reproduction
of the correct solution of the non-Markovian Eq.~13!.

To distinguish the standard Markovian QME from E
~17!, the latter will be named the Markovian QME withtime-
dependent Redfield-tensor. A detailed comparison is given
below for all three versions of the QME, i.e., of the standa
Markovian QME, the non-Markovian QME, and of the Ma
kovian QME with time-dependent Redfield-tensor.

III. THE MOLECULAR MODEL AND RELATED
DENSITY MATRIX EQUATIONS

A. The model

To test the conclusions obtained in the previous sec
and to illustrate the polynomial method of solving the no
Markovian QME, we chose a sufficiently simple model of
molecular system. Following previous work,29,30 it seems ap-
propriate to take the minimal model applicable for the d
scription of ultrafast optical data obtained for a dissolved d
molecule. This minimal model will serve as a references s
tem and will be used to study the interplay of the extern
field excitation of the molecule and the non-Markovian
laxation of the vibrational DOF in the populated excit
electronic state.

Therefore, the respective quantum mechanical mo
should consist of at least two electronic levels modulated
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a single effective vibrational coordinateQ. Accordingly, the
complete molecular HamiltonianHmol follows as ~compare
to Fig. 1!:

Hmol5 (
a5e,g

Ha~Q!uwa&^wau. ~18!

Ha(Q) are the vibrational Hamiltonian corresponding to t
ground (a5g) and excited electronic state (a5e) with har-
monic oscillator potential energy surfaces~PES!

Ua~Q!5Ua
~0!1

\vvib

4
~Q2Qa!2. ~19!

According to Ref. 29 we take\vvib5190 meV. The differ-
enceUe

(0)2Ug
(0) is set equal to 2 eV and for the dimensio

less displacement between the ground- and excited-state
we useQe2Qg5A10. Such a value corresponds to a Fran
Condon transition to the second excited vibrational level
the excited electronic state.

The coupling to the radiation field has been already
troduced in Eq.~6!. It is characterized by off-diagonal dipol
operator matrix elements

^weum̂uwg&5deg . ~20!

The electric field is used in the form

E~ t !5nE~ t !eiVt1c.c. ~21!

with E(t) andV denoting the pulse envelope and frequen
respectively, andn defines the field polarization. The puls
amplitude, as well as the transition dipole moment, will
specified later.

The system-bath interaction is considered in a form
agonal with respect to the electronic quantum numbers

HS2R5(
a

K̂aFa~Z!. ~22!

The operatorK̂a5Ka(Q)uwa&^wau acts in the active system
state-space withKa(Q) exclusively defined in the vibrationa
state-space. The quantityF(Z) operates in the space of re

FIG. 1. Scheme of the minimal molecular system used for the numer
calculations.
 AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.
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1514 J. Chem. Phys., Vol. 114, No. 4, 22 January 2001 T. Mančal and V. May
ervoir states.Z denotes the set of reservoir coordinates
scribed by the reservoir harmonic oscillator Hamiltoni
HR . Its detailed properties will be specified by introducin
the related spectral density.

B. Density operator equation

For the following we will deal with the case of a suffi
cient weak field intensity. It should be of such a low val
that the following two approximations are allowed. First, w
provide that it is sufficient to consider the excited-state po
lation linear with respect to the intensity. This will enable
to reduce the description of the complete excited-state
namics to the computation of the electronic diagonal ma
element of the reduced density operator. Some details on
respective derivation can be found in Appendix B. Using
separation, Eq.~12!, we have exclusively determinedDr̂ee.
Which field-intensity region can be used has already b
discussed in Ref. 29.

As a second consequence of the considered weak-
case we neglect the field-dependence of the memory ke
~cf. the discussion in Ref. 30!. It results in the following
density operator equation

]

]t
ŝ~ t !5

i

\
@He,ŝ~ t !#

2D̂ee~ t2tfield ;ŝ !1F̂ee~ t,tfield ;E!. ~23!

This equation directly follows from Eq.~B15!. Note the
identification

ŝ5Dr̂ee. ~24!

The dissipative part,D̂ee, is obtained from Eq.~B5!, and the
external-field-dependent source termF̂ee is given in Eq.
~B16!. In our calculation we use the following form of th
quantityJ(v):

Jee~v!5Q~v!J0 j ~v!, ~25!

where j (v) has been normalized to 1 in the frequency int
val between 0 and̀ and Q(v) denotes the unit-step func
tion. Further we use the followingansatz30,31

j ~v!5
v

vc
2 e2v/vc. ~26!

Here we introduced a cutoff frequencyvc , which corre-
sponds to the characteristic memory timetmem on which the
correlations of the reservoir DOF decay. The inverse ofvc

will be denoted astc and called the correlation time.

C. Energy representation

For the numerical determination of the density matrix
must change from the operator expressionŝ to a concrete
representation. In the present case it is most appropriat
take the harmonic oscillator, such as eigenstates of the vi
tional HamiltonianHa , which will be denoted byuxaM&.
Then, the density matrix, which will be calculated in th
following, reads

sMN~ t !5^xeMuŝ~ t !uxeN&. ~27!
Downloaded 01 Feb 2001  to 141.20.49.160.  Redistribution subject to
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From Eq.~23! we directly obtain the following density ma
trix equation:

]

]t
sMN~ t !52 ivMNsMN~ t !

2(
K,L

E
0

t

dtMMN,KL~t!sKL~ t2t!1FMN~ t !.

~28!

Note the special choicetfield50, and the abbreviationvMN

5(EeM2EeN)/\, where theEeM are theeigenvaluesof He .
The tetradic matrixMMN,KL(t) following from the memory
kernel superoperator reads in detail

MMN,KL~t!5dM ,K(
A

MLA,AN~2t!eivAMt

1dN,L(
A

M MA,AK~t!eivNAt

2MLN,MK~2t!eivNKt

2MLN,MK~t!eivLMt, ~29!

with

M MN,KL~t!5Cee~t!^xeMuKeuxeN&^xeKuKeuxeK&. ~30!

The energy representation of the inhomogeneity is obtai
as

FMN5
udegu2

\2 (
L

^xeMuxgL&^xgLuxeN& f ~EgL!

3E~ t !E
0

t

d t̄E~ t̄ !e2 i ~vML2Dv!~ t2 t̄ !1h.c. ~31!

Here, f (EgL) denotes the thermal distribution versus t
electronic ground-state vibrational levels. The field-pulse
velopeE was introduced in Eq.~21!. For the concrete com
putations we take the following form

E~ t !5
A

tp
A2

p
e22~ t2t f !

2/tp
2
. ~32!

The timet f where the pulse reaches its maximum must
chosen large compared totp to get E(t50)'0. We sett f

550 fs. The field amplitudeA @cf. Eq.~32!# together with the
transition dipole moment is not explicitly specified. Inste
we chooseA3ndeg in such a manner to achieve an excite
state population sufficiently smaller than 1. For our comp
tation this choice guaranteessNN(t→`)&1023. Besides the
envelope we introduced in Eq.~31!, the quantityDv gives
the detuning between the energetic distance of both PES
the photon energy, i.e.,

Dv5V2~Ue
~0!2Ug

~0!!/\. ~33!

If we take the standard Markovian QME, Eq.~17!, the dis-
sipative part of Eq.~28!, readsSKLRMN,KLsKL , where the
complex Redfield-tensor reads
 AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.
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RMN,KL5dM ,K(
A

M̂NA,AL* ~2vAL!

1dN,L(
A

M̂ MA,AK~vKA!

2M̂KM ,NL* ~2vNL!2M̂LN,MK~vKM !. ~34!

Here, M̂ MN,KL(v) denotes the half-sided Fourier transfor
of the function introduced in Eq.~30! @note M̂ MN,KL(v)
5M̂KL,NM* (2v)#. The usual Redfield-tensor is obtained
the real part of the above given expression.1,9 Finally, the
time-dependent Redfield-tensorRMN,KL(t,tfield ;E50) intro-
duced in Eq. ~17! follows from Eq. ~34! in replacing
M̂ MN,KL(v) by

M̄KM ,NL~v,t !5E
0

t2tfield
dteivtMKM ,NL~t!. ~35!

The last two versions of the QME are local in time, so t
solution can be found by a standard Runge–Kutta-t
method.32

IV. LAGUERRE POLYNOMIAL EXPANSION

A. Conversion of the density matrix equation
to the algebraic form

To obtain the solution of the non-Markovian density m
trix equation~28!, we expand all parts with respect to th
Laguerre polynomials, Eq.~2!. Therefore, we note their or
thogonality with respect to the scalar product

~ f ,g!5E
0

`

dxe2xf ~x!g~x!. ~36!

In carrying out the expansion, time argumentt has to be
replaced by the dimensionless variablex

x5t/tchar, ~37!

where the time constanttchar roughly fixes the characteristi
time interval in which the function to be expanded by L
guerre polynomials can be properly described. Since we
consider the correlation functions decaying on a time scal
some 10 fs we settchar510 fs. @Indeed, such a value is larg
enough to avoid any suppression ofCee(t) by an exponential
prefactor.#

Carrying out the expansions for the density matrix
get

sMN~ tcharx!5 (
n50

`

sMN
~n! Ln~x!. ~38!

If we sett50 this expansion reduces to@noteLn(x50)51#

sMN~ t50!5 (
n50

`

sMN
~n! . ~39!

Using the scalar product Eq.~36! the expansion coefficient
of the density matrix introduced in Eq.~38! are obtained as
Downloaded 01 Feb 2001  to 141.20.49.160.  Redistribution subject to
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sMN
~n! 5E

0

`

dxe2xLn~x!sMN~ tcharx!. ~40!

The algebraic equations determining the expansion co
cients are obtained from the expansion of the origi
equation-of-motion~28!. To do this we use relation~3!
and25,33

]

]x
Ln~x!52 (

m50

n21

Lm~x!. ~41!

It results in the recurrence relation for the density mat
expansion coefficientssMN

(n) :

(
KL

~~ i t charvMN11!dMKdNL1tchar
2 MMN,KL

~0! !sKL
~n!

5sMN~ t50!2 (
m50

~n21! S sMN
~m!1tchar

2 (
KL

{ MMN,KL
~n2m!

2MMN,KL
~n2m21!%sKL

~m!D 1tcharFMN
~n! . ~42!

If the coefficientsMMN,KL
(n) , as well asFMN

(n) , are known, the
density matrix may be deduced.

B. Determination of memory kernel expansion
coefficients

Computing the memory kernel expansion coefficie
MMN,KL

(n) in similarity to Eq. ~40!, a detailed inspection o
relation~29! demonstrates that we must handle contributio
of the type

C̃~n!5E
0

`

dx Ln~x!eiDṽxe2xCee~6tcharx!. ~43!

Here, Dṽ5tcharDv, whereDv denotes one of the variou
transition frequencies.

To calculate the above given type of integrals we p
ceed as follows. First we note thatCee(t) follows from an
inverse Fourier transformation according to Eq.~B11!. In the
general case this Fourier transformation must be carried
numerically, and, consequently, the values of the funct
Cee(t) are given for a set of pointst0 ,t1 ,...,tN on the time
axes ~corresponding tox0 ,x1 ,...,xN). Such a set may be
interpolated by so-called cubic splines,32 which result in a
function, analytical by parts, and continuous up to the sec
derivative. Then, between any two pointsxj , xj 11 of the set,
the functionCee(xtchar) is represented by a cubic polyno
mial, and the integral Eq.~43! turns to a sum of the integral

C̃spl
~n, j !5E

xj

xj 11
dx Ln~x!eiDṽxe2xCspl

~ j !~6xtchar!, ~44!

with Cspl
( j )(t) being a spline interpolation ofCee(6t) in the

interval @ t j ,t j 11#. For all of these integrals special recu
rence formulas may be derived. Accordingly, the compl
expansion coefficient, Eq.~43!, may be computed in any
 AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.
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degree of accuracy, for any order of the polynomial exp
sion, and any value ofDv. Details on the derivation of the
recursion formulas are given in Appendix C.

In the same manner we can calculate the expansion
efficients FMN

(n) of the field term in Eq.~28!. Therefore,
FMN(tcharx) is determined for the discrete set of time arg
mentst0 ,t1 ,...,tN , and the respective spline approximatio
is used to calculateFMN

( j ) (tcharx) according to Eq.~44!.

C. Applicability and accuracy of the polynomial
method

It has been already highlighted in Ref. 25 and can
made obvious by an inspection of Eq.~42!, i.e., that the
accuracy of the memory kernel expansion determines the
curacy with which we can compute the density matrix e
ments. Having at hand a sufficiently good approximation
the memory kernel for the time interval@ t1 ,t2#, one may
expect that the density matrix expansion results in the s
accuracy.

A convenient way to proof the convergence of the e
pansion is to compute the contribution given by the last f
terms in the expansion while enlarging the number of exp
sion coefficients. However, in a case where functionf (t), to
be expanded, is known, we can easily check the accurac
the actual expansion f exp(t;N)5fexp(tcharx;N)
5(n50

N f (n)Ln(x) of orderN by introducing

e~ t1 ,t2 ;N!5
1

t22t1
E

t1

t2
dtu f ~ t !2 f exp~ t;N!u. ~45!

The expression gives the absolute value of the differe
between the original function and itsNth order expansion
averaged with respect to the time interval@ t1 ,t2#. Since we
are mainly interested in noting how the Laguerre polynom
expansion may be improved by enlarging the expansion
der, we will use the quantitye(t1 ,t2 ;N) instead of an ex-
pression defining a relative deviation.

If function f (t) is not known, one must compare diffe
ent ordersN of the expansion, sayN and N1DN (DN
.0). For this reason one may introduce as a measur
accuracy

De~ t1 ,t2 ;N1DN,N!5
tchar

t22t1
E

t1 /tchar

t2 /tchar
dxU (

n5N11

N1DN

f ~n!Ln~x!U.
~46!

In Fig. 2 we demonstrate the accuracy of the polynom
expansions of the correlation function, the density ma
elements, and the field term.

The quantitiese(0,300 fs;N) ande(0,300 fs;N1100,N)
@Eqs.~45! and~46!, respectively# are presented in part~a! of
Fig. 2 as a function ofN for the correlation functionCee(t),
Eq. ~B11! (1/vc5tc510 fs and 100 fs!. Both measures show
a strong decay forN less than 103. Afterward a saturation
appears ifN is further increased. This behavior points out t
fact that the accuracy of the expansion reaches its limit
coincides with the accuracy of the spline approximation.
course, this can be improved by shortening the step lengt
the spline approximation. Thanks to the smoother beha
of the Cee(t) with tc5100 fs, as compared withtc510 fs,
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the corresponding spline approximation with the same s
length is more accurate. This also leads to higher accurac
the polynomial expansion.

According to Eq.~29!, which determines the memor
function,M(t) terms of the typeCee(t)exp(invvibt) have to
be studied. In part~b! of Fig. 2 we again presente andDe but
defined for those expressions incorporating oscillating c
tributions and forn54,8 andtc510 fs. Now we are expand
ing highly oscillating functions what leads to the slower i
crease of the accuracy. However, in the case ofn54, for
example, we reach saturation at the same accuracy as in
case ofn50 with some 4000 coefficients. As has to be e
pected, the accuracy of the term withn58 is lower. In the
case of such a highly oscillating term, we can, howev
expect that their contribution is small and a less accur
expansion seems to be sufficient.

Next, in part~c! of Fig. 2 we show a similar picture fo
the expansion of the laser pulse. The field term does
show any dramatic oscillations and the functions die out v
fast far from the center of the pulse, so that the meth
explained in Sec. IV B and Appendix C enables us to eva
ate actual infinite integrals determining the expansion co
ficients of the laser pulse with a high accuracy using a sm
finite interval. Interestingly, in parts~a!, ~b!, and ~c!, we
could observe that both quantitiese and De are approxi-
mately of the same order. This indicates that they can
used alternatively.

Finally, the accuracy of the density matrix expansion
estimated where the only measure to be used is given byDe,
Eq. ~46!. The accuracy of this expansion is determined
the respective accuracy of the expansions of the mem

FIG. 2. Accuracy of the Laguerre polynomial expansions. The meas
e~ta50, tb5300 fs;N!, Eq. ~45! andDe (ta50, tb5300 fs;N1100,N), Eq.
~46! are drawn versus the expansion orderN. ~a! e ~solid line! and De
~dashed line! determined for the correlation functionCee(t) with different
tc . ~b! The same as in~a! but for the functionCee(t)e

invvibt, the single value
tc510 fs, and differentn. ~c! The same as in~a! but for the time-dependen

part E(t)*0
t d t̄E( t̄ )exp2i(nv2Dv)(t2 t̄) of the field term, Eq.~31!. Curve

pair 1: n50; curve pair 2:n58. ~d! De (ta50, tb5300 fs; N1100,N)
versusN for the diagonal elements of the harmonic oscillator density mat
Solid line: r00 , dashed line:r44 , dashed-dotted line:r88 ~for all other pa-
rameters see Sec. III A!.
 AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.
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kernel, the field term, and the expansion of the free dynam
of the system. Different contributions may be expanded w
different accuracies. For the highly oscillating terms of t
memory kernel, which do not substantially contribute to t
dynamics, low accuracy seems to be sufficient. The exp
sion of the free dynamics part is naturally involved in t
algebraic equation~42!. Thus in part~d! of Fig. 2 we display
De(0,300 fs;N1DN,N) as a function ofN for DN5100 and
for the expansion of different matrix elements.

V. NUMERICAL RESULTS FOR THE MODEL SYSTEM

Of basic interest for the following would be the study
the ultrafast laser-pulse action and its interplay with the n
Markovian dynamics of the vibrational DOF, as well as t
comparison of the non-Markovian dynamics with the d
namic behavior present in the limit of the Markov appro
mation. This latter comparison can be carried out in differ
ways.34 Here, we will compare those types of no
Markovian dynamics which obey the same Markov limit a
common feature. Inspecting Eqs.~29! and ~34! it becomes
obvious that the requirement for the same Markov appro
mation is equivalent with the demand for the same Redfie
tensor. This can be translated to the requirement that
different types of correlation functionCee(t) used in the
comparison should have the same valuesCee(v) at certain
frequencies. In the present case of a harmonic oscillator t
remains only the single valueCee(vvib) of Cee(v) at which
all correlation functions should coincide.

It is well-accepted fact that the positivity of the dens
matrix can be violated if the coupling strength to the res

FIG. 3. Population of the second exited vibrational level in dependenc
the pulse-lengthtp based on the solution of the non-Markovian~full line!
and Markovian~dashed line! QME. tc530 fs, J(vvib)51.931024/fs.
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voir @J0 in our case, see Eq.~25!# is enlarged beyond a criti
cal value@see, e.g., Ref. 35#. This drawback has to be ex
pected for the non-Markovian QME, too. But decreasing
decay time ofCee(t) one may reach the limitCee(t);d(t)
resulting in the Lindblad form of dissipation.9 Therefore, we
have to expect that our simulations may show violation
the positivity of the density matrix but not if we shorte
further and further the decay time ofCee(t).

Since in all cases we studied the duration of the la
pulse, which has been chosen to be considerably shorter
the typical decay time of the population of the vibration
levels, we neglect the dephasing contribution in the fi
source term@see Eqs.~B16! and ~B17!#.

We start the presentation of numerical calculations
displaying the populations22(t)5P2(t) of the second ex-
cited vibrational level~which is the level positioned in reso
nance to the applied light field!. Figure 3 shows the time
development ofP2(t) in its dependence on the length of th
laser pulse. In part~a! we can identify three kinds of the
non-Markovian effects. First, one can immediately not
that P2 reaches somewhat lower values in the no
Markovian case. This behavior reflects the fact that the
namics is determined by the preceding states of the sys
Further, we can observe that the fast oscillations ofP2

present in the Markov case become approximately twice
slow in the non-Markovian case. After a certain time interv
this smaller oscillation frequency changes back to that of
Markov case, but with a smaller amplitude. Finally, an alt
nation of the decay rate ofP2 appears if one changes to th
case of non-Markovian dynamics.~This latter effect can be

nFIG. 4. Population of the second exited vibrational level in dependence
the pulse-lengthtp based on the solution of the non-Markovian~full line!
and Markovian~dashed line! QME. tc520 fs, J(vvib)51.931024/fs ~upper
curves in graphs! andJ(vvib)53.531024/fs.
 AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.
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seen more clearly in some other curves, presented bel!
Comparing the results of Fig. 3 valid for different puls
lengths, one notices that the oscillating structures supe
posed toP2 disappear with pulses comparable or longer
the vibrational period 2p/vvib .

A similar behavior as in Fig. 3 is shown in Fig. 4, b
now with a correlation time shorter than the vibrational p
riod 2p/vvib . Using the same coupling strength as in Fig
~upper curves!, the situation changes considerably since
observe only a very small deviation between the case of n
Markovian and Markovian dynamics. On the other ha
while increasing the coupling strengthJ0 we can again re-
store the situation from Fig. 3.

To further indicate the influence of the memory kern
decay time, e.g., the correlation timetc on the dynamics, we
display in Fig. 5 the population of the first four vibration
levels for the two different correlation times of 20 fs and
fs. Using the coupling strength of Fig. 3 we found in the ca
of tc510 fs complete agreement between the Markovian
non-Markovian dynamics~not shown!. This coincidence is
somewhat weakened fortc520 fs @Fig. 5~a!#. But for tc

530 fs the characteristics of the non-Markovian effects
described above arise~part b!.

A situation where the correlation timetc is shorter than
the vibrational period 2p/vvib is considered in Fig. 6. Using
the coupling strengths,J0 , already applied in Figs. 3 and 5
we again find complete agreement between the Markov
and non-Markovian type of dynamics. A small deviation b
tween both cases can be observed in part~b! of Fig. 6. This
part also shows that a further increase ofJ0 may cause some
small deviations between the Markov and non-Markov ca

FIG. 5. Influence of the correlation timetc on the dynamics of the occupa
tion probabilities of the first four vibrational levels. Parameters:J(vvib)
51.931024, tp55 fs, tc520 fs andtc530 fs in ~a! and ~b!, respectively.
Downloaded 01 Feb 2001  to 141.20.49.160.  Redistribution subject to
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In particular, in the case of non-Markovian relaxation, t
equilibrium value is reached slightly faster.

Let us summarize the phenomena which indicate a
viation of the non-Markovian type of relaxation from th
Markov case. First, we observed a decrease of the lig
pulse-induced vibrational levels population if no
Markovian relaxation is accounted for, and, second, the
tardation effect somewhat slows down the relaxatio
Finally, as a third hint on non-Markovian effects, we me
tion a reduction of the fast oscillations superimposed to
vibrational level populations. While the first two effects we
found to be relatively unaffected by the pulse length, t
oscillations are only present for pulse lengths sufficien
shorter than the oscillation period of the vibrational coor
nate. Therefore, only the observation of these fast osc
tions just after the pulse action can be considered a s
ciently clear hint on non-Markovian effects in the molecu
dynamics.

At the end of this section we will compare the give
correct description of non-Markovian dynamics with the a
proximate one introduced in Sec. II C via establishing t
QME Eq. ~17! with a time-dependent Redfield-tensor. Sin
the nonequilibrium partDr̂ of the complete RDO obeys
QME starting at timetfield and having the same inhomogen
ity whether non-Markovian dynamics or Markovian dynam
ics ~including a time-dependent Redfield-tensor! are consid-
ered, we expect that both approaches should give sim
results. But a problematic issue of this comparison would
the choice of the timetfield . In Fig. 7 we present respectiv
results for the case of an impulsive excitation~infinitely short
laser pulse!. In such a casetfield can be identified with the
center of the pulse, and the agreement between both type

FIG. 6. Influence of the system bath coupling on the population dynamic
the first four vibrational levels (tp55 fs, tc510 fs). ~a! J(vvib)53.5
31024/fs. ~b! J(vvib)52.331023/fs.
 AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.
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dynamics is very good. Since the pulse is infinitely short
final population of the levels after the action of the pulse
the same for both, the Markovian as well as the no
Markovian case. However, details of the dynamics imme
ately after the pulse action differ in both cases.

For a situation with laser pulses of finite duration o
may expect a similar result, as in the case of the impuls
excitation as long as the pulse length is shorter than the
cillation period of the vibrational coordinate. Indeed, choo
ing an optimal timetfield one is able to reproduce the resu
of the non-Markovian case quite well@see Fig. 8, curve~b!#.
However, the agreement appears to be very sensitive to

FIG. 7. Population dynamics of some selected vibrational levels after
pulsive excitation@J(vvib)53.531024/fs, tc520 fs#. Full line: solution of
the non-Markovian QME; dashed line: solution of the non-Markovian QM
dashed-dotted line; solution of Markovian QME with time-depend
Redfield-tensor.

FIG. 8. Population dynamics of the second excited vibrational le
@J(vvib)51.931024/fs, tc530 fs, tp55 fs, t f550 fs#. Thick full line: so-
lution of the non-Markovian QME; dashed line: solution of the Markovi
QME; thin full lines; solution of Markovian QME with time-dependen
Redfield-tensor. The initial timet0 for the propagation with the time-
dependent Redfield-tensor has been chosen in different ways.~a! t05t f

25 fs; ~b! t05t f23.5 fs; ~c! t05t f22.5 fs.
Downloaded 01 Feb 2001  to 141.20.49.160.  Redistribution subject to
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choice oftfield . In particular, choosingtfield too close to the
center of the pulse leads to an underestimation of the le
populations created by the pulse@curve ~a! in Fig. 8#. The
opposite choice leads to a fast convergence to the co
sponding standard Markov results as demonstrated by c
~c! of Fig. 8.

To conclude, we note that in the case of an instantane
excitation, the approach using a time-dependent Redfi
tensor reproduces some of the non-Markovian effects q
well. In particular, one is able, within this approximation,
account for the initial dynamics leading to the difference
the occupation probability after the action of the pulse a
also partly for the initial change of the fast oscillations s
perimposed to the populations. Finally, we underline that
given evaluation of the approach based on the tim
dependent Redfield-tensor justifies earlier studies on
field-pulse alternation of dissipation.30

VI. CONCLUSIONS

To account for retarded~non-Markovian! couplings in
the equation-of-motion which governs the time evolution
a reduced statistical operator, the Laguerre polynom
method has been introduced. This numerically exact
proach offers the possibility to study the interplay of ultrafa
laser-pulse state preparation and non-Markovian relaxat
Furthermore, non-Markovian relaxation may be compa
with Markovian relaxation, which has been done for a bro
set of different coupling strengths, pulse durations, and
ervoir correlation times. Three different indications on no
Markovian relaxation could be identified, namely;~i! the dif-
ference in the vibrational level population after the pu
action; ~ii ! the change of the decay rate in the case of n
Markovian dynamics; and~iii ! the decrease of the frequenc
which determines oscillations of the vibrational level pop
lations.

The main advantage of the given approach is its flexib
ity with respect to the use of different types of reserv
correlation functions as well as spectral densities. There is
need to concentrate on a particular type of spectral den
as is necessary in the method used in Ref. 20. Furtherm
more distinct deviations of non-Markovian dynamics fro
the Markov case must be expected if the active system s
trum is not as regular as in the case of an harmonic oscill
and if more involved system-reservoir coupling functions a
used. Respective studies are under work.
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APPENDIX A: NAKAJIMA–ZWANZIG EQUATION
WITH EXTERNAL FIELDS

According to the standard projection operator techniq
one gets the reduced statistical operatorr̂(t) from the com-
plete time-dependent statistical operatorŴ(t) by applying
the projector ~projection superoperator! P5R̂eqtrR$...%.
Here, R̂eq denotes the canonical statistical operator of
reservoir and the trace exclusively concerns the state-s
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of reservoir states. IfP and the orthogonal complemen
Q512P are applied to the Liouville–von Neumann equ
tion valid for Ŵ(t), one ends up with a strict equation fo
r̂(t) ~see, for example, Ref. 9!. This equation is known as
the Nakajima–Zwanzig equation and has already b
quoted in Eq.~7!. In the following we list the concrete ex
pressions for the initial correlation termÎ and the memory
kernel M. These expression somewhat deviate from
standard since the external field has been incorporated
the zero-order part, i.e., inLS .

Usually one derives the Nakajima–Zwanzig equation
the interaction representation for which the reduced den
operator is given as

r̂ ~ I !~ t !5US
1~ t,t0!r̂~ t !. ~A1!

Since an external field has been incorporated the active
tem time-evolution superoperatorUS depends independentl
on t and t0 and follows as a time-ordered exponential

US~ t,t0!5T expS 2
i

\ E
t0

t

d t̄LS~ t̄ ! D . ~A2!

Changing back to the Schro¨dinger representation, th
Nakajima–Zwanzig equation follows. We introduce the a
breviation

^...&R5trR$...R̂eq%, ~A3!

and obtain

]

]t
r̂~ t !5trR$LS2RUS1R~ t,t0!S~ t,t0!QŴ~ t0!%

2 i ~LS~ t !1^LS2R&R!r̂~ t !

2E
t0

t

d t̄^LS2R
~R! ~ t !US~ t,t0!S~ t, t̄ !QUS~ t̄ ,t0!

3LS2R
~R! ~ t̄ !&R3 r̂~ t̄ !. ~A4!

The first term on the right-hand side describes the influe
of initial correlations, whereas the last term corresponds
the dissipative partD̂ of the density operator equation. Th
time-evolution superoperatorUS1R is obtained fromUS , Eq.
~A2!, if LS is replaced byLS1LR , whereLR denotes the
Liouvillian generated by the reservoir HamiltonianHR . The
quantity S can be obtained fromUS by replacingLS by
QUS( t̄ ,t0)LS2R

(R) . In this mannerS incorporates the complet
perturbation expansion with respect to the system-reser
interaction.

As it can be seen from the second term on the right-h
side of Eq.~A4!, the reversible part of the density operat
equation has been extended by a mean-field-type term o
system-reservoir interaction. Finally the quantityLS2R

(R) (t) in-
troduced in the dissipative part of Eq.~A4! has to be under-
stood asLS2R translated into an interaction representati
defined byLR alone.

The second Born approximation of the memory ker
follows if one neglects, in the last term on the right-hand s
of Eq. ~A4!, the superoperatorS, leading to

M~ t, t̄ !5^LS2R
~R! ~ t !QLS2R

~R! ~ t̄ !%&RUS~ t, t̄ !. ~A5!
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Using Eq.~22! the expression changes to~note the replace-
ment of t2 t̄ by t!

E
0

t2t0
dtM~ t,t2t!r̂~ t2t!

5(
a,b

E
0

t2t0
dt~Cab~t!@K̂a ,US~ t,t2t!

3K̂br̂~ t2t!US
†~ t,t2t!#2Cba~2t!

3@K̂a ,US~ t,t2t!r̂~ t2t!K̂bUS
†~ t,t2t!#!. ~A6!

APPENDIX B: THE DISSIPATIVE PART OF THE QME
AND THE REDUCTION TO THE EXCITED-
STATE PES

According to the presence of two different electron
levels,r̂(t) has to be expanded with respect to the electro
states yieldingr̂ab(t) which is just an operator in the vibra
tional state-space. For the separation of the density oper
into an equilibrium part and a nonequilibrium deviation
introduced in Eq.~12! we get

r̂ab~ t !5da,bda,gr̂ eq
~g!1Dr̂ab~ t !, ~B1!

with

r̂ eq
~g!5

e2Hg /kBT

trvib$e
2Hg /kBT%

. ~B2!

The density operatorDr̂ab(t) obeys the following equation
@cf. Eq. ~13! and note the neglect of the field-dependence
M#

]

]t
Dr̂ab~ t !5 Î ab~ t !2

i

\
~HaDr̂ab~ t !2Dr̂ab~ t !Hb!

2D̂ab~ t2tfield ;Dr̂!

1
i

\
E~ t !(

c
~dacDr̂cb~ t !2dcbDr̂ac~ t !!.

~B3!

Here, the inhomogeneity is given as

Î ab~ t !5
i

\
E~ t !~daedg,bdeg2da,gde,bdge!R̂eq. ~B4!

The dissipative part reads

D̂ab~ t2tfield ;Dr̂!

5E
0

t2tfield
dt~Caa~t!KaKa~2t!ŝab~ t2t,t!

1Cbb~2t!ŝab~ t2t,t!Kb~2t!Kb2Cba~t!

3Ka~2t!ŝab~ t2t,t!Kb2Cba~2t!

3Kaŝab~ t2t,t!Kb~2t!!. ~B5!

To have a sufficient compact expression we introduced
 AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.
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Ka~2t!5Ua~t!KaUa
1~t! ~B6!

and

ŝab~ t2t,t!5Ua~t!Dr̂ab~ t2t!Ub
t ~t!, ~B7!

with the time-evolution operators denoted as

Ua~ t !5e2 iH at/\. ~B8!

The reservoir correlation functions read@cf. Eq. ~A3!#

Cab~ t !5
1

\2 ^UR
1FaURFb&R . ~B9!

To simulate the reservoir we provide that a normal mo
analysis has been carried out. It results in an ensembl
independent harmonic oscillators which will be coupled l
early to the system DOF. Thus we suppose

Fa~Z!5\(
j

kj~a!Zj , ~B10!

with kj being a coupling constant of a corresponding h
monic oscillator with system DOF. For such a reservoir
correlation function takes the form~see, e.g., Ref. 9!

Cab~ t !5E
2`

1`

dve2 ivt~11n~v!!~Jab~v!2Jab~2v!!,

~B11!

with n(v)51/(exp(\v/kBT)21) being the Bose–Einstei
distribution and the quantities

Jab~v!5(
j

kj~a!kj~b!d~v2vj! ~B12!

representing the spectral densities of normal modes.
In the case of an arbitrary strength of the applied fie

all elements ofDr̂ab(t) have to be considered. Here, we w
concentrate on the case of weaker field strength realiz
only marginal population transfer to the excited electro
levels. Then, one can reduce the whole description to the
of the quantityDr̂ee(t) describing vibrational dynamics o
the excited-state PES initiated by the external-field pulse
will enter the respective equation of motion in the seco
order corresponding to a linearization in the field intensit

As it is well-known such a result is obtained if one d
terminesDr̂eg linearly with respect toE and inserts the ex
pression into the equation of motion forDr̂ee. According to
Eq. ~B3! one obtains for the electronic off-diagonal dens
operator

]

]t
Dr̂eg~ t !52

i

\
~HeDr̂eg~ t !2Dr̂eg~ t !Hg!

2D̂eg~ t2tfield;Dr̂eg!1
i

\
E~ t !degr̂ eq

~g! .

~B13!

Solving this equation and inserting the result into t
equation-of-motion forDr̂ee gives the desired closed de
scription of the vibrational dynamics in the excited electro
state. To have an analytical expression we replaceD̂eg by a
time-local expressionĜeDr̂eg1Dr̂egĜg and the respective
Downloaded 01 Feb 2001  to 141.20.49.160.  Redistribution subject to
e
of
-

-
e

,

g
c
se

It
d

deviationDD̂eg from this expression. On the one hand, th
procedure enables us to derive an analytical formula for
field-dependent source term in the equation-of-motion
Dr̂eg . And, on the other hand, we can improve the res
step-by-step. The operatorsĜa realize dephasing and ar
given as

Ĝa5E
0

`

dtCaa~t!KaKa~2t!. ~B14!

Instead of a contribution proportional toDr̂eg , now the
equation-of-motion forDr̂ee contains a source term an
reads

]

]t
Dr̂ee~ t !5

i

\
@He ,Dr̂ee~ t !#22D̂ee~ t2tfield ;Dr̂ee!

1F̂ee~ t,tfield ;E!. ~B15!

For the source term one gets

F̂ee~ t,tfield ;E!5
1

\2 E
tfield

t

d t̄~degE~ t !!~dgeE~ t̄ !!

3Ũe~ t2 t̄ !r̃eq
~g!Ũg

1~ t2 t̄ !1h.c. ~B16!

The evolution operatorsŨe(t) andŨg(t) are defined accord
ing to

Ũa~ t !5exp2
i

\
~Ha2 i\Ĝa!, ~B17!

i.e., they are formed by a non-hermitian Hamiltonian inclu

ing dephasing operatorsĜa .

APPENDIX C: EVALUATION OF THE MEMORY
EXPANSION COEFFICIENTS

In Sec. IV we claimed that, based on the spline appro
mation of the correlation function, the integrals Eq.~44! can
be evaluated analytically. Here we give some details of t
procedure. The functionCspl

( j )(t) introduced in Eq.~44! is an
interpolation of the correlation function by cubic splines, i.

Cspl
~ j !~xtchar!5a~x!Cee~xj tchar!1b~x!Cee~xj 11tchar!

1g~x!C9~xj tchar!1d~x!C9~xj 11tchar!.

~C1!

The four different expansion coefficients can all be expres
by the first one, which reads

a~x!5
xj 112x

Dx
[

1

Dx
~L1~x!2L1~xj 11!!. ~C2!

Here, we introducedDx5xj 112xj . The remaining three co
efficients are

b~x!512a~x!, ~C3!

g~x!5
~Dx!2

6
~a3~x!2a~x!!, ~C4!

and
 AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.
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d~x!52
~Dx!2

6
~a3~x!23a2~x!12a~x!!. ~C5!

The second derivativeC9 of Cee(xtchar) at x5xj ,xj 11 are
computed using a standard interpolating algorithm.34 The
above given relations indicate that it is necessary to comp
integrals of type Eq.~44! but with Cspl

( j )(xtchar) replaced by
a(x) up to its third power. In carrying out these integratio
it is useful to generate recurrence formulas. Therefore
define

an
~m!5E

xj

xj 11
dx~L1~x!!mLn~x!eiDṽxe2x. ~C6!

In particular we havea0
(1)5a1

(0) , and

a0
~0!52

1

12 iDṽ
@e2~12 iDṽ!x#xj

xj 11, ~C7!

where the abbreviation@g(x)#0
a5g(a)2g(b) has been intro-

duced. These expression enables us to express the req
integrals as

E
xj

xj 11
dxa~x!Ln~x!eiDṽxe2x5

1

Dx
~an

~1!2an
~0!!, ~C8!

E
xj

xj 11
dxa2~x!Ln~x!eiDṽxe2x

5
1

Dx2 ~an
~2!22L1~xj 11!an

~1!1~L1~xj 11!!2an
~0!!, ~C9!

and

E
xj

xj 11
dxa3~x!Ln~x!eiDṽxe2x

5
1

Dx3 ~an
~3!23L1~xj 11!an

~2!13~L1~xj 11!!2an
~1!

2~L1~xj 11!!3an
~0!!. ~C10!

Accordingly, the announced recursion formulas, which
essential for an efficient computation ofan

m , read

an
~0!5

1

12 iDṽ
$@eiDṽxe2x~Ln21~x!2Ln~x!!#xj

xj 11

2 iDṽan21
~0! %, ~C11!

and similarly for the other integrals

an
~1!5

1

12 iDṽ
$@L1~x!eiDṽxe2x~Ln21~x!

2Ln~x!!#xj

xj 111an21
~0! 2an

~0!2 iDṽan21
~1! %, ~C12!

a0
~2!52

1

12 iDṽ
$@~L1~x!!2eiDṽxe2x#xj

xj 1112a1
~0!%,

~C13!
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an
~2!5

1

12 iDṽ
$@~L1~x!!2eiDṽxe2x~Ln21~x!

2Ln~x!!#xj

xj 1112an21
~1! 22an

~1!2 iDṽan21
~2! %,

~C14!

a0
~3!52

1

12 iDṽ
$@~L1~x!!3eiDṽxe2x#xj

xj 1113a0
~2!%,

~C15!

and

an
~3!5

1

12 iDṽ
$@~L1~x!!3e2 iDṽxe2x~Ln21~x!

2Ln~x!!#xj

xj 1113an21
~2! 23an

~2!2 iDṽan21
~3! %.

~C16!

At first glance the given formulas look too complex to b
useful for integrating a function of a single variable. Bu
according to our efforts to reach a sufficient precision, th
seem to provide the only way to get precise results even
Laguerre polynomials of the order 105 or higher. Moreover,
these formulas, if accompanied by a routine to comp
Laguerre polynomials via standard recurrence formula34

can be put in a very compact computer code. Finally we n
that the given spline interpolation scheme to integrate
product of a smooth and a highly oscillating function, su
as polynomials of a high order and/or expiṽx, may be used
in many other cases.
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