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Interplay of non-Markovian relaxation and ultrafast optical state preparation
in molecular systems: The Laguerre polynomial method
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The interplay of femtosecond optical excitation and retarded vibrational relaxation in a molecular
system is studied using the non-Markovian version of the Quantum Master Equation. To solve
non-Markovian equations with an arbitrary memory kernel an expansion with respect to Laguerre
polynomials is introduced and the applicability of the method is tested. The non-Markovian effects
are identified and parameter regimes are indicated where these effects become predominant. For an
early time region just after the optical excited state preparation it is demonstrated that the
convolutionless quantum master equation with a time-dependent Redfield-tensor may give a
reasonable approximation of the correct non-Markovian dynamics20@L American Institute of
Physics. [DOI: 10.1063/1.1334619

I. INTRODUCTION active DOF. This reduction procedure is the source of retar-
Dissipative quantum dynamics, the reduced density opgia’uon effects in the coupling between the active and the

erator, the Quantum Master Equati@ME), etc. are con- Passive system. _

cepts well-known since the fifties and early sixties and docu- ~ Propagating the RDO on a time scale of some tens of
mented in a number of excellent textbodké.In particular, femtoseconds, any time coarse-graining is forbidden and dis-
these ideas have been used to describe relaxational phenofiPative quantum dynamics asks for proper incorporation of
ena in molecular systems and to achieve a quantum mechargtardation effects between the active system and the envi-
cal foundation of chemical reaction dynamics. Focusing orfonment(reservoij. The need for such a more sophisticated
optical experiments, electronic transitions, and vibrationadescription becomes obvious if one imagines an experiment
motion, the research work done up to the late eighties can bahere:(i) the nuclear oscillation period of the molecules lies
characterized by the following peculiarity. The time scale ofin the range of 50 fs up to 100 f¢ii) the molecule is dis-
preparing an excited molecular stdtgpically in the nano-  solved in a solvent with a correlation time again of about 100
second and picosecond regiaappeared to be much longer fs; and (iii) the molecule is excited by a laser pulse with
than the characteristic time nuclear degrees of freedorguration of some 10 fgsimilar to experiments done, for
(DOF) needed to reach equilibriuisubpicosecond region  example, at iodine in a solvéfitor in rare gas clustety.

In the course of numerical simulations this particular aspecirying to simulate such an experiment, one must account for
allowed for certain time coarse-graining removing unimpor-ye interference of all three mentioned characteristic time
tant ultrafast fluctuations from the description or, in Otherscales. It is the main aim of the present paper to study such

yvords, I was not necessary t_o account for non-Ma_rkowanan interference ofa) vibrational dynamics(b) retarded cou-
i.e., retardation effects in the intramolecular relaxation pro-

. ) . . ling to the environment, an@) ultrafast laser-pulse excita-
cesses(In this respect, the simulation of electronic and nuc—p 9 ne) P

. . ; . . tion. Emphasis will be put on non-Markovian effects.
lear spin dynamics has to be considered as a field of its)own. . .
Different ways have been suggested to determine the

Meanwhile, optical pulses with a duration of less than 10 DO of lecul ™ . ¢ .
fs are available and one can detect coherent nuclear dynarfr2© Of an open molecular system. The equation-of-motion

ics (dynamics unaffected by environmental fluctuatighd ~ @PProach via the so-called QME is the most common way
This experimental achievement initiated a renaissance of didised in the pasisee, e.g., Refs. 134The path-integral rep-
sipative quantum dynamics, putting emphasis on the descri‘gesentation of the density matrix has been studied in the last
tion of ultrafast nuclear dynamics in polyatomic systems andiecade(for a review see, e.g., Ref. 12nd recently the ap-
systems in the condensed phas$&:° plication of the TDSCF (time-dependent self-consistent

If methods of dissipative quantum dynamics should befield) method could be worked otit.Comparing all of these
applied, it is necessary that one can separate the whole setwiethods, application of the equation-of-motion approach has
nuclear DOF into a small subset of active DOF and a remainthe great advantage that one computes, in a direct way, ther-
ing large set of passive DOForming a thermal environ- mal averaged quantities and, in contrast to the path-integral
men). In the next step one introduces the reduced statisticapproach, one can describe systems with some hundreds of
operator(reduced density operator, RDO energy levels.

e A Concentrating on the treatment based on an equation-of-

PO =tr{W(D)}, @ motion for the RDO, different attempts already exist to de-
which comprises a description of all active DOF by reducingscribe non-Markovian dynamics. To account for the time
the whole statistical operatal/(t) to the state-space of the nonlocallity in a few simple level systems, the density matrix
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theory can be combined with the Laplace transformatiordiscussion will be based on the following separation of the
method!*~1® Additionally, this approach allows us to relate complete Hamiltonian, which is standard in dissipative quan-
the effect of dissipation described in the time domain to thedum dynamics

frequency domain. For example, non-Markovian dynamics

can be related to the frequency dependence of the absorption H=Hs(t)+Hs g+ Hg. (4)

line broadening(see also Refs. 17, 18To treat non- i i )
Markovian dynamics in larger systems, one makes the asihe first part describes the molecular system of intefast
sumption that the spectral density of the environmentaf'V® System with HamiltoniarH,,) together with its cou-
modes can be well represented@ least arbitrary large pling to an external radiation fieldwith Hamiltonian
number of Lorentzian-type functions. The resulting exponeanie'd(t)]

tial form of the memory kernel offers the possibility to trans- _

fer the non-Markovian equation to a new set of Markovian H (D) =Humor Hieia(1). ®

equations defined for the density matrix, as well as some NeWhe molecular contributions will be specified later. For the

auxiliary f“”"“"”# *““Replacement of the time nonlocality ¢oypling to the radiation field we have in mind a description

by adding some fictitious modes to an existing system wagithin the electric dipole approximation

suggested in Ref. 21. The additional modes can be treated

within a Markov approximation and must be chosen in such  Hg,(t)=—E(t) k. (6)

a manner that they reproduce the spectral density of the en-

vironment. Clearly, if one needs too many fictitious modes toHere E(t) is the electric field strength of a laser pulge a

approximate the spectral density, the approach becomes isequence of pulsgsnd v denotes the molecular dipole op-

efficient. erator. The coupling of the active system to the reservoir is
In the present work we present a method of treating nongiven byHs_r, whereas the reservoir is describedHby .

Markovian equations-of-motion by introducing an expansionA

with respect to special polynomizd$?® Such an expansion =

will enable us to convert the respective integro-differential ~ The dynamics of the active system is described by RDO

equations-of-motion into algebraic ones. From earlierp [cf. EqQ. (1)]. The resulting exact equation-of-motion is

work?*?5it follows that the most suitable set of special func- known as the Nakajima—Zwanzig identiy convolutionless

tions is given by the orthonormal set of Laguerre polynomi-versions of RDO equations are considered alternative types

Reduced equation-of-motion

als defined as of exact equations are also knottn
L _i X i " na—X 2 ad . ~oA . “ ~ “
n(X)= 7€ x| (X'e). 2 St PO =T(EW(to) =i Ls()p(1) = D(L,to; p). 7)

Besides the other different properties explained below, La_Concrete expressions of all parts can be found in Appendix
uerre polynomials obey the following important equation . ) .
g poly y g1mp g A. We only mention here that the first term on the right-hand

side of Eq.(7) is responsible for the decay of correlations
between the active system and the reservoir presented at the

initial time ty. The Liouvillian formed byHg is denoted by

This represents t_he key relation to handle any .type of t,imeﬁs(t)[zﬁmoﬁr Liag(t)], and dissipation is described by the
nonlocality. If all ingredients of the non-Markovian density A
term —D. If necessary, one has to exteut(t) by the

matrix equation are expanded with respect to the Laguerre , ; ’

) e . mean-field term of the system-reservoir couplifsge Ap-
polynomials, the difficulty to treat the retardation effects has . . .
been overcome pendix A). For the following, however, it is important that all

Before discussing the Laguerre polynomial expansior;[ermS on the right-hand side of E(f) depend on the exter-

method in detail in Sec. IV and using it to study the interplaynal field. o - .

of optical excitation and vibrational relaxation in Sec. V, we _1he dissipative pam(t,to; p) incorporates the convolu-
comment on some general aspects of the QME. In Sec. Il thion Of the density operatop(t) and a memory kernel
basic RDO equations-of-motion at the presence of an extefMeMory superoperator

nal field pulse are given. The model is specified in Sec. Il A.

fOXdYLn(X_ijm(yj:Ln+m(x)_|—n+m+l(x)- (3)

t—t
Some detailed derivations are placed in the Appendix. b(t,to;ﬁ)zf Odr/\/l(t,t— T E)p(t—1). (8)
0
Since the external field enters the memory kernel, the time-
Il. EQUATION-OF-MOTION FOR THE REDUCED dependence ofM is twofold. But in the case where the
DENSITY OPERATOR external field is absent, we can write
Before concentrating the discussion to the molecular ;- M(t,t—7E)= My(7). 9)

system of interest we recall the general equation which gov- ¢

erns the dynamics of an open molecular system. This equa-

tion is the well-known Nakajima—Zwanzig equation or an This memory kernel is supposed to die out with the charac-
approximate variant of 3?" (see also Refs. 2—4,90ur teristic timetem.
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B. Initial conditions and laser-pulse excitation is the canonical equilibrium statistical operator of the active
system plus reservoir, proportional to exfH,,+Hs r

As already pointed out above, E7) includes a term i i ;
which describes the decay of correlations present betweeﬁHR)/kBT' If the field-free memory kerneM is used in

the active system and the reservoir at the initial titge the second Born approximation we gsee, e.g., Ref.)9
After starting the evolution these initial correlations tend to  peq=eXp(—Hmoi/KgT)/trs{exp —Hma /g T)}, (10

zero on a time scale comparable i, andl should be e  the canonical statistical operator of the active system.
negligible fort>to+tmem. Since the exact form of the den- ajthough the concrete computations presented in the follow-
sity operator equation includes a retarded coupling to thehg sections have been done in the framework of the second
reservoir, the occurrence of such initial correlations is unggrn approximation, it is not necessary for the reasoning
avoidable. They compensate the incomplete retarded systemga|ow to use this approximation.

reservoir coupling for initial time$<to+ tyem. IN a descrip- Since equilibrium should be established fgret<tfeq

tion of dissipative quantum dynamics, where a time coarseye get from Eq(7) (note the replacement of-t,, which is
graining has been introduced which neglects a timemuych larger than zero, by)

resolution comparable td.., One can neglect initial
Ecc)lrrg?tions and can change to a Markov approximationasin  g— _ i LooPeq— J:dTMo(T)f)eq- (12)
Obviously, in the contrary case of a time resolution
much belowt,,em, initial correlations, together with retarda-
tion effects of the system-reservoir couplifipn-Markovian
effecty, must be accounted for. If retardation is considere
but initial correlations are neglected, the time-dependence
the_der_lsity operatgﬁ’i_t:_:, m_atrix_elementjsdisplz_:\ys artificial PO=AP(1)+ peg, (12)
oscillations for an initial time interval extending froty to _ ) _
to+ tmem (OF SOMewhat larger timgsThis has recently been WhereAp(t) vanishes for times less thag,q. Inserting Eq.
demonstrated for the dissipative dynamics of a single mot12) into Eq.(7) we obtain fort>tfeq
lecular DOF moving in a double-well potentfAl. 9
The situation changes if one considées will be the Eﬁﬁ(t)z —iLg(t)Ap(L)
case hergthe action of field pulses driving the system out of
equilibrium. Now it is not necessary to deal with initial cor-
relations. According to their decay with the characteristic
time t,em, ONEe can arrange the presence of the field-pulses

For t>tqq, thus for times when the field already acts, the
whole Eq.(7) [with T(t;W(t,))=0] applies. To solve this
Olequation for timeg >t g We introduce a formal decompo-
0§ition of the RDO according to

t—Tfield
—J drM(t,t—7mE)Ap(t—17)
0

for times where the influence of initial correlations already — i Lsield(t) Peg— 1 LmolPeq

vanished. For numerical simulations this means that one t—to

should allow evolution of the system freely without the ac- —f d7M(t,t—7,E) peg. (13
0

tion of the external field for a larger time interval when com-

pared totnem. Therefore, if the field-pulse acts, a correct Here, the parts depending @g, (the three last terms on the

description of non-Markovian molecular dynamics has al-right-hand sidgact as inhomogeneities. Indeed, one can in-

ready been achieved. _ terpret these inhomogeneities as terms replatiingEq. (7).
The field influence on the system dynamics can be con- i one neglects the less important effect of the field in-

sidered to establish new initial conditions fpr(this is best  fiyence on the memory kernénd notes —t,>0), the last

seen for a pulse short compared {Qq, as well as any other term in Eq.(13) is compensated by the foregoing divem-

characteristic time of the active systerBut this takes place pare to Eq(11)] andi Lyeia(t) peq remains as the inhomoge-

without contributions in the densit)A/ mzitrix equations beingneity_ But, in difference td, this inhomogeneity substan-

similar to the initial correlation termt t;W(to) ]. Therefore,  tjally deviates from zero for the whole time the external field

one can expect that the interplay of non-Markovian dynamis present.

ics and short pulse excitations are similar to the time evolu-

tion of p observed for times just after starting the evolution

with retardation accounted for but without the considerationC. Markov approximation

of initial correlations. The following considerations are de- To have the QME in the Markov approximation as a

voted to clarifying this statement. reference case at hand we shortly remind to its derivation. If
We suppose that the external field begins to deviate from y '

zero (arrival time of the pulse in the probat time toyg, one wants to apply this approximation it is necessary that on

wheretyyg>to. Thus for anyte<t<toq, the field-free ver- the t|me_scale the memory kernel does not.dgcay with any
. ; : . substantial change of the RDO appears. This is best proven
sion of Eq.(7) would be valid, and should describe the equi-. . . :
librium situation between the active system and the reservoirIn the interaction representatigoompare EG(A1)] where
: . > SYS . the reversible part of the dynamics has been removed from

We will denote the respective equilibrium version of the re-

duced density operator K. If the exact expression for the p(t). If the Markov approximation is justified one introduces
A~ ~ ~ -+ ~
memory kernel is taken we expeel;= trr{Weq, WhereW, p(t—7)~Us (t,t—7)p(1), (14
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where the time-evolution superoperator has been defined in
Eq. (A2). Inserting this approximation into E48) we can

write \ /

D(t,to;p)~R(t,to;E)p(1) \g/ uo

_ ftitodrj\/l(t,t—r; B (tt—np(h). (19
0 hQ

Energy

The definition of the dissipative superoperafoiis obvious. ~
It realizes time local, and also the time-dependent dissipation
which, additionally, is influenced by the presence of the \ /
external-field pulse. In the case whdre ty>t,., we can
replace the upper limit of the-integral by~. If the external

field dependence is neglected, the dissipative superoperator | N L_ -~ uo
Ro (its matrix elementsbecomes identical with the so-called : :

Redfield tensor entering tretandard Markovian QME qQ q Q

/

a . ) R R FIG. 1. Scheme of the minimal molecular system used for the numerical
Ep(t): —ILs(t)p(t) —Rop(t). (16) calculations.

Next we combine the separation, Ed2), with the Markov

approximation, Eq(15), and obtain . . o ) )
a single effective vibrational coordina@ Accordingly, the

iAA(t) complete molecular HamiltoniaH ., follows as(compare
at P to Fig. 1):
=—iLg()Ap(t) =i Le(t) pegt R(t,ticiq; E=0)Ap(L).

Since the limitE—0 has been taken with respect to the Ha(Q) are the vibrational Hamiltonian corresponding to the
dissipative part, all terms proportional fQ, disappear, ex- ground @=g) and excited electronic stata e) with har-
cept —i Le(t) peq. Furthermore, we note that the dissipative monic oscillator potential energy surfacd2eS
superoperatoR remains time-dependent. It will be demon-

hw,,
strated below that the use OR(t,tseq;E=0) for times U.(Q)=UL+ TV'b(Q—Qa)Z. (19
t—tseq iN the range oft e Will give a proper reproduction
of the correct solution of the non-Markovian Ed.3). According to Ref. 29 we také w,;,=190 meV. The differ-

To distinguish the standard Markovian QME from Eq. enceU’—U{? is set equal to 2 eV and for the dimension-
(17), the latter will be named the Markovian QME witime-  less displacement between the ground- and excited-state PES
dependent Redfield-tensok detailed comparison is given we useQ.—Qq= J10. Such a value corresponds to a Frank—
below for all three versions of the QME, i.e., of the standardCondon transition to the second excited vibrational level of
Markovian QME, the non-Markovian QME, and of the Mar- the excited electronic state.
kovian QME with time-dependent Redfield-tensor. The coupling to the radiation field has been already in-

troduced in Eq(6). It is characterized by off-diagonal dipole
operator matrix elements

Ill. THE MOLECULAR MODEL AND RELATED ((pe|/f4,|(pg>:deg_ (20
DENSITY MATRIX EQUATIONS

A. The model

The electric field is used in the form

E(t)=n&(t)e'*+c.c. (21
To test the conclusions obtained in the previous section | )
and to illustrate the polynomial method of solving the non-W'th g(t.) and(} denotl'ng the pu!se envelc.Jpe'and frequency,
Markovian QME, we chose a sufficiently simple model of arespe_ctlvely, anah defines the f|_e_ld po_lanzaﬂon. The p_ulse
molecular system. Following previous wai%°it seems ap- ampl_lt_ude, as well as the transition dipole moment, will be
propriate to take the minimal model applicable for the de-SPecified later. _ o _ _ _
scription of ultrafast optical data obtained for a dissolved dye ' "€ System-bath interaction is considered in a form di-
molecule. This minimal model will serve as a references sys290nal with respect to the electronic quantum numbers

tem and will be used to study the interplay of the external-

field excitation of the molecule and the non-Markovian re- Hsz=§ Ka®a(2). (22)
laxation of the vibrational DOF in the populated excited .
electronic state. The operatorC,=K,(Q)|¢a){ ¢4 acts in the active system

Therefore, the respective quantum mechanical modedtate-space witK,(Q) exclusively defined in the vibrational
should consist of at least two electronic levels modulated btate-space. The quantiy(Z) operates in the space of res-
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ervoir statesZ denotes the set of reservoir coordinates defrom Eq.(23) we directly obtain the following density ma-
scribed by the reservoir harmonic oscillator Hamiltoniantrix equation:

Hg. Its detailed properties will be specified by introducing
the related spectral density.

EUMN(U: —loynoun(t)

B. Density operator equation

t

For the following we will deal with the case of a suffi- KEL odﬁ\/l'\"N’KL(T)UKL(t 7 Funlt).
cient weak field intensity. It should be of such a low value 28)
that the following two approximations are allowed. First, we
provide that it is sufficient to consider the excited-state popuNote the special choict;.q=0, and the abbreviatiomw,,
lation linear with respect to the intensity. This will enable us =(E,,,— E.\)/%, where theE,,, are theeigenvaluesf H,.
to reduce the description of the complete excited-state dyThe tetradic matrixMyy L (7) following from the memory
namics to the computation of the electronic diagonal matrixkernel superoperator reads in detail
element of the reduced density operator. Some details on the
respective derivation can be found in Appendix B. Using the
separation, Eq(12), we have exclusively determinekip,..
Which field-intensity region can be used has already been
discussed in Ref. 29. ioNAT

As a second consequence of the considered weak-field " BN'LEA: Mua ax(m)ene
case we neglect the field-dependence of the memory kernel
(cf. the discussion in Ref. 30It results in the following

Mun k(1) = 5M,K2A Maan(— )l eamT

—M N mk(— 7)€l ONKT

density operator equation — My uk(7)e T, (29)

d i .

—5(t) = — 5 with

. R ~ My kL(7) = Ceel T)(XeM|Ke|XeN><XeK|Ke|XeK>- (30)
- Dee(t_tfield ; 0') + Fee(tatfield ; E)- (23) ) ) o )

This equation directly follows from Eq(B15). Note the T2e energy representation of the inhomogeneity is obtained
identification

~ ~ 2

0=Apge. (24 |degl

R FMNZW_E <XeM|XgL><XgL|XeN>f(EgL)
The dissipative parD.., is obtained from Eq(B5), and the
external-field-dependent source terl%rée is given in Eq.
(B16). In our calculation we use the following form of the

quantity J(w):
_ . Here, f(Eq ) denotes the thermal distribution versus the
Jed @) =0 (@) Joj (), (25 electronic ground-state vibrational levels. The field-pulse en-
wherej(w) has been normalized to 1 in the frequency inter-velope & was introduced in Eg(21). For the concrete com-
val between 0 and> and ® (w) denotes the unit-step func- putations we take the following form
tion. Further we use the followingnsatz°3*

N
— Z a—2t=m7p)cl7
()= 2 oot 6 f=—1/=e ;. (32)

p

t o . —
xg(t)f dt&(t)e em 20 (t= 4 K ¢, (31)
0

Cc
The time 7; where the pulse reaches its maximum must be
chosen large compared tg to get&(t=0)~0. We setr;
=50fs. The field amplitudd [cf. Eq.(32)] together with the
transition dipole moment is not explicitly specified. Instead
we chooseA X ndgq in such a manner to achieve an excited-
) state population sufficiently smaller than 1. For our compu-
C. Energy representation tation this choice guarantees,y(t—)=10"3. Besides the

For the numerical determination of the density matrix weenvelope we introduced in E¢31), the quantityAw gives
must change from the operator expressiorno a concrete the detuning between the energetic distance of both PES and
representation. In the present case it is most appropriate f#§€ photon energy, i.e.,
take the harmonic oscillator, such as eigenstates of the vibra-
tional HamiltonianH,, which will be denoted by xawm)-
Then, the density matrix, which will be calculated in the
following, reads

Here we introduced a cutoff frequenay., which corre-
sponds to the characteristic memory timg.,, on which the
correlations of the reservoir DOF decay. The inverseopf
will be denoted a$. and called the correlation time.

Aw=0— (UL -U)/h. (33

If we take the standard Markovian QME, Ed.7), the dis-
sipative part of Eq(28), readsX x| Run L0k, Where the
oun() ={(xem ()| xen)- (27 complex Redfield-tensor reads
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_ 7 *
RMN,KL_ 5M,K; M NA,AL( -

+ 5N,L; M MA,AK(@KA)

_M;M,NL(_L"NL)_MLN,MK(‘”KM)- (34

Here,I\A/IMN,KL(w) denotes the half-sided Fourier transform
of the function introduced in Eq(30) [note I\A/IMN,K,_(w)

=I\7I§L,NM(—w)]. The usual Redfield-tensor is obtained as
the real part of the above given expressidrFinally, the
time-dependent Redfield-tensBy k| (t,tfeq; E=0) intro-
duced in Eq.(17) follows from Eq. (34) in replacing

MMN,KL(w) by

— t—tield )
MKM,NL(wat):fO d7e'“Mgm nu( 7). (39

The last two versions of the QME are local in time, so the
solution can be found by a standard Runge—Kutta-type

method®?

IV. LAGUERRE POLYNOMIAL EXPANSION

A. Conversion of the density matrix equation
to the algebraic form

To obtain the solution of the non-Markovian density ma-
trix equation(28), we expand all parts with respect to the
Laguerre polynomials, Eq2). Therefore, we note their or-
thogonality with respect to the scalar product

[’

(f.9)= Jo‘dxe-Xﬂx)g(x).

In carrying out the expansion, time argumenhas to be
replaced by the dimensionless variakle

(36)

(37

where the time constaitg;,,, roughly fixes the characteristic
time interval in which the function to be expanded by La-
guerre polynomials can be properly described. Since we wil

X=ttchar,

Non-Markovian relaxation 1515

)

)

The algebraic equations determining the expansion coeffi-
cients are obtained from the expansion of the original

equation-of-motion(28). To do this we use relatiori3)
and®3

(n) _

OMN™ dxe_XLn(X)O'MN(tcheuX)- (40)

n—1

J
Ln<x)=—mEO Lin(X).

dXx (42)

It results in the recurrence relation for the density matrix
expansion coefficients (), :
2

(0) (n)

% ((itcha@mnT 1) Smk On T tenaMMn kL) O kL
(n—1)
~ount=01- 3 ol (MR
—~ MR |+ tonaF Wk - (42)
If the coefficientsM (M as well as={", , are known, the

MN,KL 1
density matrix may be deduced.

MN »

B. Determination of memory kernel expansion
coefficients

Computing the memory kernel expansion coefficients

M ko in similarity to Eq. (40), a detailed inspection of
relation(29) demonstrates that we must handle contributions

of the type

©

6(”)=f dX Ln(X)€4@e *Cod * tenaX). (43
0

Here, Aw=ty,,Aw, WhereAw denotes one of the various
transition frequencies.

To calculate the above given type of integrals we pro-
ceed as follows. First we note th@f(t) follows from an
jnverse Fourier transformation according to Egl1). In the

consider the correlation functions decaying on a time scale Ogeneral case this Fourier transformation must be carried out

some 10 fs we sdty,,= 10fs.[Indeed, such a value is large
enough to avoid any suppression@f(t) by an exponential
prefactor]

Carrying out the expansions for the density matrix we
get

UMN(tchaP():nZO Um?VLn(X)- (39

If we sett=0 this expansion reduces ffooteL(x=0)=1]

©

oMN<t=0>=n§0 o - (39)

Using the scalar product E¢36) the expansion coefficients
of the density matrix introduced in E¢38) are obtained as

Downloaded 01 Feb 2001 to 141.20.49.160. Redistribution subject to

numerically, and, consequently, the values of the function
Codt) are given for a set of pointk,,t;,...,ty on the time
axes (corresponding toxg,Xq,....Xy). Such a set may be
interpolated by so-called cubic splin&swhich result in a
function, analytical by parts, and continuous up to the second
derivative. Then, between any two poimts X; , 1 of the set,

the function C.(Xt.ha) IS represented by a cubic polyno-
mial, and the integral Eq43) turns to a sum of the integrals

~ X o~ .
Co= fx "ax La(x)€'4%e™*CU)( = Xtena), (44)

i
with C(Sjg|(t) being a spline interpolation df 4 =*t) in the
interval [t;,t;,1]. For all of these integrals special recur-
rence formulas may be derived. Accordingly, the complete
expansion coefficient, Eq43), may be computed in any

AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.



1516 J. Chem. Phys., Vol. 114, No. 4, 22 January 2001 T. Mancal and V. May

degree of accuracy, for any order of the polynomial expan-
sion, and any value cAw. Details on the derivation of the
recursion formulas are given in Appendix C.

In the same manner we can calculate the expansion co-
efficients F{"), of the field term in Eq.(28). Therefore,
Fun(tehaX) is determined for the discrete set of time argu-
mentsty,ty,...,ty, and the respective spline approximation
is used to calculaté () (tenaX) according to Eq(44).

log(e)

log(e)

log(e)

C. Applicability and accuracy of the polynomial

method 0 I
It has been already highlighted in Ref. 25 and can be g j: ___________
made obvious by an inspection of E@?2), i.e., that the LR T

accuracy of the memory kernel expansion determines the ac- _;ﬁ [

curacy with which we can compute the density matrix ele-
ments. Having at hand a sufficiently good approximation of
the memory kernel for the time interv@tl,tz], one may FIG. 2. Accuracy of the Laguerre polynomial expansions. The measure

; : ; ; t,=0, t,=300 fs; N), Eq. (45) andAe (t,=0, t,=300 fs;N+ 100N), Eq.
expect that the density matrix expansion results in the samge) are drawn versus the expansion ordér (@) e (solid line) and Ae

accuracy. _ (dashed ling determined for the correlation functide¢(t) with different
A convenient way to proof the convergence of the ex-t.. (b) The same as ife) but for the functionC,(t)e"v!, the single value

pansion is to compute the contribution given by the last fewt.=10fs, and differenn. (c) The same as ife) but for the time-dependent
terms in the expansion while enlarging the number of expanpart £(t) [ dté(t)exp—i(nw—Aw)(t-1) of the field term, Eq(31). Curve
sion coefficients. However, in a case where functigt), to ~ Pair 1:n=0; curve pair 2n=8. (d) Ae (ta=0, t,=300s; N+100N)

. . versusN for the diagonal elements of the harmonic oscillator density matrix.
be eXpanded’ is known, we can eaS”y check the accuracy lid line: pgy, dashed linep,,, dashed-dotted linepgg (for all other pa-

0 2000 4000 6000
Number of coefficients

the actual expansion  fo (t;N)="fe,(tenarX;N) rameters see Sec. lI)A
=3N WL (x) of orderN by introducing
_ 1 t .
€(ty,t;N) = t,—t, 'ftl dt|f(t) — fext;N)]. 49 the corresponding spline approximation with the same step

length is more accurate. This also leads to higher accuracy in

The expression gives the absolute value of the differencg,e polynomial expansion.
between the original function and itdth order expansion According to Eq.(29), which determines the memory
averaged with respect to the time intery,t,]. Since we  fynction, M(t) terms of the typeCo(t)expinayt) have to
are mainly interested in noting how the Laguerre polynomialye stydied. In parth) of Fig. 2 we again presertandAe but
expansion may be improved by enlarging the expansion ofgefined for those expressions incorporating oscillating con-
der, we will use the quantitg(ty,t>;N) instead of an ex-  triputions and fon=4,8 andt.=10fs. Now we are expand-
pression defining a relative deviation. ing highly oscillating functions what leads to the slower in-

If function f(t) is not known, one must compare differ- crease of the accuracy. However, in the caseef4, for
ent ordersN of the expansion, sajN and N+AN (AN example, we reach saturation at the same accuracy as in the
>0). For this reason one may introduce as a measure Qfase ofn=0 with some 4000 coefficients. As has to be ex-

accuracy pected, the accuracy of the term with=8 is lower. In the
N+AN case of such a highly oscillating term, we can, however,
tchar t2 tehar . . . .
Ae(ty,t;N+AN,N)=—— dx| > fWL.(x)|. expect that their contribution is small and a less accurate
27 Mty tghgr [n=NFL 46 expansion seems to be sufficient.

Next, in part(c) of Fig. 2 we show a similar picture for
In Fig. 2 we demonstrate the accuracy of the polynomiathe expansion of the laser pulse. The field term does not
expansions of the correlation function, the density matrixshow any dramatic oscillations and the functions die out very
elements, and the field term. fast far from the center of the pulse, so that the method
The quantitiese(0,300 fsN) and (0,300 fsN+ 100N) explained in Sec. IV B and Appendix C enables us to evalu-
[Egs.(45) and(46), respectively are presented in pafd) of  ate actual infinite integrals determining the expansion coef-
Fig. 2 as a function oN for the correlation functioiC.(t), ficients of the laser pulse with a high accuracy using a small
Eq.(B11) (/w.=t.,=10fs and 100 fs Both measures show finite interval. Interestingly, in part$a), (b), and (c), we
a strong decay foN less than 18 Afterward a saturation could observe that both quantitiesand Ae are approxi-
appears iN is further increased. This behavior points out themately of the same order. This indicates that they can be
fact that the accuracy of the expansion reaches its limit if itused alternatively.
coincides with the accuracy of the spline approximation. Of  Finally, the accuracy of the density matrix expansion is
course, this can be improved by shortening the step length @stimated where the only measure to be used is givekeby
the spline approximation. Thanks to the smoother behavioEq. (46). The accuracy of this expansion is determined by
of the Cg(t) with t,=100fs, as compared with,=10fs, the respective accuracy of the expansions of the memory
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FIG. 3. Population of the second exited vibrational level in dependence oifrlG. 4. Population of the second exited vibrational level in dependence on

the pulse-lengthr, based on the solution of the non-Markoviéull line) the pulse-lengthr, based on the solution of the non-Markoviéll line)

and Markovian(dashed ling QME. t,=30fs, J(w,;,) = 1.9 10~ 4/fs. and Markoviar(dashed lineQME. t,;=20 fs, J( wj,) = 1.9X 10~ */fs (upper
curves in graphsand J(w,;,) =3.5X 10~ 4/fs.

kernel, the field term, and the expansion of the free dynamics
of the system. Different contributions may be expanded with/0ir [Jo in our case, see E25)] is enlarged beyond a criti-
different accuracies. For the highly oscillating terms of thecal value[see, e.g., Ref. 35This drawback has to be ex-
memory kernel, which do not substantially contribute to thePected for the non-Markovian QME, too. But decreasing the
dynamics, low accuracy seems to be sufficient. The exparflecay time ofC.(t) one may reach the limi€e4(t) ~ 5(t)
sion of the free dynamics part is naturally involved in theresulting in the Lindblad form of dissipatichTherefore, we
algebraic equation42). Thus in part(d) of Fig. 2 we display —have to expect that our simulations may show violation of
A€(0,300fsN+AN,N) as a function oN for AN=100 and the positivity of the density matrix but not if we shorten
for the expansion of different matrix elements. further and further the decay time Gf(t).
Since in all cases we studied the duration of the laser
V. NUMERICAL RESULTS FOR THE MODEL SYSTEM pulse, Whlch has bgen chosen to be can|derany §hor'§er than
the typical decay time of the population of the vibrational
Of basic interest for the following would be the study of levels, we neglect the dephasing contribution in the field
the ultrafast laser-pulse action and its interplay with the nonsource ternjsee Eqs(B16) and (B17)].
Markovian dynamics of the vibrational DOF, as well as the = We start the presentation of numerical calculations by
comparison of the non-Markovian dynamics with the dy-displaying the populationr,,(t)=P,(t) of the second ex-
namic behavior present in the limit of the Markov approxi- cited vibrational levelwhich is the level positioned in reso-
mation. This latter comparison can be carried out in differenhance to the applied light field Figure 3 shows the time
ways®* Here, we will compare those types of non- development oP,(t) in its dependence on the length of the
Markovian dynamics which obey the same Markov limit as alaser pulse. In parta) we can identify three kinds of the
common feature. Inspecting EqR9) and (34) it becomes non-Markovian effects. First, one can immediately notice
obvious that the requirement for the same Markov approxithat P, reaches somewhat lower values in the non-
mation is equivalent with the demand for the same RedfieldMarkovian case. This behavior reflects the fact that the dy-
tensor. This can be translated to the requirement that theamics is determined by the preceding states of the system.
different types of correlation functio®.¢(t) used in the Further, we can observe that the fast oscillationsPgf
comparison should have the same val@gg(w) at certain  present in the Markov case become approximately twice as
frequencies. In the present case of a harmonic oscillator therdow in the non-Markovian case. After a certain time interval
remains only the single valu@. w,;,) of Co(w) at which  this smaller oscillation frequency changes back to that of the
all correlation functions should coincide. Markov case, but with a smaller amplitude. Finally, an alter-
It is well-accepted fact that the positivity of the density nation of the decay rate d?, appears if one changes to the
matrix can be violated if the coupling strength to the resercase of non-Markovian dynamicéThis latter effect can be
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FIG. 5. Influence of the correlation tintg on the dynamics of the occupa- FIG. 6. Influence of the system bath coupling on the population dynamics of
tion probabilities of the first four vibrational levels. Parametetm,;,) the E'ZSt four vibrational |EV9J§ %=5fs, t;=10fs). (@ J(wyp)=3.5
=1.9x10"%, 7,=5fs, t;=20fs andt,=30fs in (a) and (b), respectively. <10 “/fs. (b) I(wp) =2.3x10"/fs.

In particular, in the case of non-Markovian relaxation, the

seen more clearly in some other curves, presented belowequilibrium value is reached slightly faster.
Comparing the results of Fig. 3 valid for different pulse Let us summarize the phenomena which indicate a de-
lengths, one notices that the oscillating structures superimviation of the non-Markovian type of relaxation from the
posed toP, disappear with pulses comparable or longer adMarkov case. First, we observed a decrease of the light-
the vibrational period 2/ w., . pulse-induced vibrational levels population if non-

A similar behavior as in Fig. 3 is shown in Fig. 4, but Markovian relaxation is accounted for, and, second, the re-
now with a correlation time shorter than the vibrational pe-tardation effect somewhat slows down the relaxation.
riod 27/ w, . Using the same coupling strength as in Fig. 3Finally, as a third hint on non-Markovian effects, we men-
(upper curvey the situation changes considerably since wetion a reduction of the fast oscillations superimposed to the
observe only a very small deviation between the case of nonsibrational level populations. While the first two effects were
Markovian and Markovian dynamics. On the other handfound to be relatively unaffected by the pulse length, the
while increasing the coupling strengfly we can again re- oscillations are only present for pulse lengths sufficiently
store the situation from Fig. 3. shorter than the oscillation period of the vibrational coordi-

To further indicate the influence of the memory kernelnate. Therefore, only the observation of these fast oscilla-
decay time, e.g., the correlation timeon the dynamics, we tions just after the pulse action can be considered a suffi-
display in Fig. 5 the population of the first four vibrational ciently clear hint on non-Markovian effects in the molecular
levels for the two different correlation times of 20 fs and 30dynamics.
fs. Using the coupling strength of Fig. 3 we found in the case At the end of this section we will compare the given
of t,=10fs complete agreement between the Markovian andorrect description of non-Markovian dynamics with the ap-
non-Markovian dynamicgnot shown. This coincidence is proximate one introduced in Sec. Il C via establishing the
somewhat weakened far,=20fs [Fig. 5a]. But for t. QME Eg.(17) with a time-dependent Redfield-tensor. Since
=30fs the characteristics of the non-Markovian effects aghe nonequilibrium part\p of the complete RDO obeys a
described above arigpart b. QME starting at time;eq and having the same inhomogene-

A situation where the correlation tintg is shorter than ity whether non-Markovian dynamics or Markovian dynam-
the vibrational period 2/ w,;, is considered in Fig. 6. Using ics (including a time-dependent Redfield-tensare consid-
the coupling strengthsl,, already applied in Figs. 3 and 5, ered, we expect that both approaches should give similar
we again find complete agreement between the Markovianesults. But a problematic issue of this comparison would be
and non-Markovian type of dynamics. A small deviation be-the choice of the time;eq. In Fig. 7 we present respective
tween both cases can be observed in garof Fig. 6. This  results for the case of an impulsive excitati@mfinitely short
part also shows that a further increaselgimay cause some laser pulsg In such a casé;ey can be identified with the
small deviations between the Markov and non-Markov casecenter of the pulse, and the agreement between both types of
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1.2 T

A choice oftfeq. In particular, choosingyey too close to the
o ANAAIANN AN S AN center of the pulse leads to an underestimation of the level

APMAARAAARAAA - populations created by the pulBeurve (a) in Fig. 8]. The
opposite choice leads to a fast convergence to the corre-
sponding standard Markov results as demonstrated by curve
(c) of Fig. 8.

To conclude, we note that in the case of an instantaneous
excitation, the approach using a time-dependent Redfield-
tensor reproduces some of the non-Markovian effects quite
. A well. In particular, one is able, within this approximation, to
& T account for the initial dynamics leading to the difference in
the occupation probability after the action of the pulse and
also partly for the initial change of the fast oscillations su-
perimposed to the populations. Finally, we underline that the
0 100 200 300 a0 given evaluation of the approach based on the time-
time [fs] dependent Redfield-tensor justifies earlier studies on the

_ _ o ~ field-pulse alternation of dissipatiof.
FIG. 7. Population dynamics of some selected vibrational levels after im-

pulsive excitatiorJ(w,;p) = 3.5X 10" */fs, t,=20 fs]. Full line: solution of
the non-Markovian QME; dashed line: solution of the non-Markovian QME; VI. CONCLUSIONS

dashed-dotted line; solution of Markovian QME with time-dependent To account for retardednon-Markovian Couplings in
Redfield-tensor. . . . . .
the equation-of-motion which governs the time evolution of
a reduced statistical operator, the Laguerre polynomial

dynamics is very good. Since the pulse is infinitely short theMethod has been introduced. This numerically exact ap-
final population of the levels after the action of the pulse isproach offers the possibility to study the interplay of ultrafast

the same for both. the Markovian as well as the rlon_Iaser—pulse state preparation and non-Markovian relaxation.

Markovian case. However, details of the dynamics immedi_Furthermore, non-Markovian relaxation may be compared
ately after the pulse action differ in both cases with Markovian relaxation, which has been done for a broad

For a situation with laser pulses of finite duration oneS€t Of different coupling strengths, pulse durations, and res-

may expect a similar result, as in the case of the impulsiv@rvo'r correlation times. Three different indications on non-

excitation as long as the pulse length is shorter than the od¥irkovian relaxation could be identified, namely;the dif-
ference in the vibrational level population after the pulse

cillation period of the vibrational coordinate. Indeed, choos- = ~""~* he ch f the d i th ;
ing an optimal timet ;s one is able to reproduce the results 2Ction; (i) the change of the decay rate in the case of non-
Markovian dynamics; andii) the decrease of the frequency

of the non-Markovian case quite wéHlee Fig. 8, curvéb)]. hich d ) ilati f the vibrational level
However, the agreement appears to be very sensitive to grghich determines oscillations of the vibrational level popu-

01

08

06 |

Probability(x10 )

04

02

lations.
The main advantage of the given approach is its flexibil-
1.2 , ity with respect to the use of different types of reservoir
correlation functions as well as spectral densities. There is no
need to concentrate on a particular type of spectral density,
10 . . h
as is necessary in the method used in Ref. 20. Furthermore,
more distinct deviations of non-Markovian dynamics from
g %87 the Markov case must be expected if the active system spec-
= trum is not as regular as in the case of an harmonic oscillator
E 06 | and if more involved system-reservoir coupling functions are
8 used. Respective studies are under work.
[<]
O o4t 1
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0.0 ‘ ‘ . APPENDIX A: NAKAJIMA-ZWANZIG EQUATION
0 100 200 300 400

WITH EXTERNAL FIELDS

flG. 8. Population d s of th J ied vibrational level According to the standard projection operator technique,
. . opu ation ynamics O the second excited vibrational leve P 2 _
[I(we) = 1.8X 10°4/fs, t,=30 fs, =5 fs, ;=50 fs). Thick full ne: so- _ O1'e JELS the reduced statistical opergi(t) from the com
lution of the non-Markovian QME; dashed line: solution of the Markovian plete time-dependent statistical opera(t) by applying

QME; thin full lines; solution of Markovian QME with time-dependent the projector (projection superoperatbrP=§ tr { }
Redfield-tensor. The initial time, for the propagation with the time- eqrRL

dependent Redfield-tensor has been chosen in different Wayse= 7 Here, qu denotes the CanoniC_al statistical operator of the
—51s; (b) to=7—3.5fs; (C) ty=7;—2.5fs. reservoir and the trace exclusively concerns the state-space

time [fs]
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of reservoir states. IfP and the orthogonal complement Using Eq.(22) the expression changes foote the replace-
Q=1-7P are applied to the Liouville—von Neumann equa- ment oft—t_by 7)

tion valid for W(t), one ends up with a strict equation for

p(t) (see, for example, Ref.)9This equation is known as Jtitodw\/l(t t—1)p(t—7)

the Nakajima—Zwanzig equation and has already beeno ' P

quoted in Eq.7). In the following we list the concrete ex-

N t-t N
pressions for the initial correlation termand the memory => Odr(Cab(r)[ICa,Us(t,t— 7)
kernel M. These expression somewhat deviate from the 0
standard since the external field has been incorporated into P SR _
the zero-order part, i.e., ifis. X Kpp(t=Us(t,t=7)] = Cpa( = 7)

Usually one derives the Nakajima—Zwanzig equation in XKy, Ug(t,t—7)p(t— T)ICb —9)). (A6)
the interaction representation for which the reduced density &

operator is given as
APPENDIX B: THE DISSIPATIVE PART OF THE QME

P (1) =Us (t,to)p(1). (A1)  AND THE REDUCTION TO THE EXCITED-
STATE PES
Since an external field has been incorporated the active sys-
tem time-evolution superoperatbi depends independently According to the presence of two different electronic
ont andt, and follows as a time-ordered exponential levels,p(t) has to be expanded with respect to the electronic
T states yieldingb,,(t) which is just an operator in the vibra-
L{S(t,to):Texp{ 7, thS(t)). (A2) tional state-space. For the separation of the density operator
0

into an equilibrium part and a nonequilibrium deviation as
Changing back to the Schiimger representation, the introduced in Eq(12) we get
Nakajima—Zwanzig equation follows. We introduce the ab-

breviation Pab(t) = 8apa gl 8 + Apap(t), (B1)
(...)r=1rr{...Req (A3)  with
and obtain e HglkeT
P = —=rTRaTy - (B2)
a trvib{e 9 B}

Jd n
E?’(t)=trR{ﬁszUSJrR(t,to)S(t,to) OW(to)} . . , ,
The density operatoA p,,(t) obeys the following equation

—i(Lg(t) +{Ls RIRP(L) 58;] Eg. (13) and note the neglect of the field-dependence of

f dt{ L& R(OU(t,t0) S(t,1) QUs(t, to)

Apab(t) ab(t) ﬁ(H alpan(t) =Apap(t)Hp)
LER)RXP(). (Ad)

The first term on the right-hand side describes the influence

of initial correlations, whereas the last term corresponds to

the dissipative parD of the density operator equation. The
time-evolution superoperatdfs, g is obtained fronifs, Eq.

— D ap(t—trei; AD)

+ 7 EOS (dacden(t) ~ deppaclV).

(A2), if Lgis replaced byLs+ Lr, where Lg denotes the (B3)
Liouvillian generated by the reservoir Hamiltonitty. The  Here, the inhomogeneity is given as
guantity S can be obtained froni/s by replacing L5 by _
OUs(t,to) &% In this mannesS incorporates the complete 7 v _ | _ -
perturbatior? :xpansion with respect to the system-reservoir 'ab(1) = 77 E(1)(Gaedg g™ da,g%.ndge) Reg B4
interaction. o
As it can be seen from the second term on the right-hand N€ dissipative part reads
side of Eq.(A4), the reversible part of the density operator
equation has been extended by a mean-field-type term of th%ab (t=thera; AP)
system-reservoir interaction. Finally the quantﬂgf_)R(t) in- t=tfield .
troduced in the dissipative part of EGA4) has to be under- = 0 d7(Caa( T)KaKa( = 7) Tap(t—7,7)
stood asLg g translated into an interaction representation
defined byﬁR alone. + Cbb( — 7') Erab(t— T, T)Kb( — T)Kb_ Cba( 7')
The second Born approximation of the memory kernel .
follows if one neglects, in the last term on the right-hand side XKa(=7)ap(t=7,7)Kp=Cpa( = 7)
of Eq. (A4), the superoperata$, leading to XK 0 ap(t— 7 1)K(— 7). (B5)
M) =(LE (1) QLP (1) UL, 1). (A5  To have a sufficient compact expression we introduced
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Ka(—7)=Ua(1)KUZ(7) (B6) deviationADeg from this expression. On the one hand, this
d procedure enables us to derive an analytical formula for the
an field-dependent source term in the equation-of-motion for
Fap(t— 7, T)=Ua(T)A/3ab(t—T)UE(T), (B7) Apeg- And, on the other hand, we can improve the result
with the time-evolution operators denoted as step-by-step. The operatois, realize dephasing and are
_ given as
Uy(t)=e Hat/", (B8) .
The reservoir correlation functions refef. Eq. (A3)] Fa= fo d7Ca4(7)KaKa( = 7). (B14)
1 Instead of a contribution proportional tap now the
Cab(t)= 75 (Uf D Ur®p)g. B9 ) : proport Peg;
an(t) ﬁ2< rPaUrPolr (B9) equation-of-motion forApe. contains a source term and

To simulate the reservoir we provide that a normal modereads
analysis has been carried out. It results in an ensemble of ¢ [ R R R
independent harmonic oscillators which will be coupled lin- 77 APed) = 7 [He Apee() |- ~Ded t—tiieid; Apee)
early to the system DOF. Thus we suppose
+ Fedt,tiea; E)- (B1Y
CDa(Z):hzg ke(@)Z,, (B10) For the source term one gets
with k; being a coupling constant of a corresponding har- -~ e L ft Y N
e : : Fedt,thiei; E) =2 dt(degE(t))(dgeE(t
monic oscillator with system DOF. For such a reservoir the edLtred i E) = 72 ¢ (degE(1)) (dgeE(1))
correlation function takes the forfsee, e.g., Ref.)9

field
O (t— =0T (t—1
xOe(t—t)pPU; (t—t)+h.c. (B16)

o )
Cap(t)= J_w dwe™' Y1+ n(w))(Jap(®) =Jan(— @), The evolution operator§ (t) andU y(t) are defined accord-
(B11) ingto

with n(w)=1/(expfw/kgT)—1) being the Bose—Einstein

~ i A
distribution and the quantities Ua(t)=exp- ﬁ(Ha_'hra)’ (B17)

i.e., they are formed by a non-hermitian Hamiltonian includ-

Jab(w)=§§: Ke(a)kg(D) o= wy) (B12 ing dephasing operatof, .

representing the spectral densities of normal modes.

In the case of an arbitrary strength of the applied field,
all elements ofA p,(t) have to be considered. Here, we will APPENDIX C: EVALUATION OF THE MEMORY
concentrate on the case of weaker field strength realizingXPANSION COEFFICIENTS
only marginal population transfer to the excited electronic . . .
levels. Then, one can reduce the whole description to the use .In Sec. V.we cla|med that_, based on the spline approxi-
of the quantityAp,(t) describing vibrational dynamics on mation of the correlr?mon function, the_ integrals Eq4). can
the excited-state PES initiated by the external-field pulse. |pe evaluated analytlc'ally(._)Herg we give gome deta!ls of this
will enter the respective equation of motion in the second’rocedure. The functio@g(t) introduced in Eq(44) is an
order corresponding to a linearization in the field intensity. interpolation of the correlation function by cubic splines, i.e.,

As it isA we!l—known _such a result is obtgined if one de- C(sjp)|(Xtchar)= a(X) Ced Xjtenad + BX) Cod X+ 1tcha)
terminesA peq linearly with respect te and inserts the ex-
pression into the equation of motion fAp... According to + ¥(X)C"(Xjtcha) T 0(X)C" (X + 1tchad -
Eqg. (B3) one obtains for the electronic off-diagonal density (C1)
operator

The four different expansion coefficients can all be expressed

a . . i . . by the first one, which reads
5Apeg(t):_g(HeAPeg(t)_Apeg(t)Hg) Y

- 1
o) = 5T = S (L0~ L 10). (2

PN R i A
_ Deg(t - tfield; Apeg) + % E(t)degr (e%) .

Here, we introduced x=X; ;1 —X; . The remaining three co-
(B13)  efficients are

Solving this equation and inserting the result into the B(X)=1—a(x), (C3

equation-of-motion forAp.. gives the desired closed de- Ax)?

scription of the vibrational dynamics in the excited electronic y(X)= (Ax) (a3(x)— (X)) (C4)
6 1

state. To have an analytical expression we replﬁg@by a
time-local expressiof’¢Apeg+ Apegl’y and the respective and
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2
(Aé() (a3(X)—3a2(X)+2a(X)). (CS) aE]Z)

1 .
8(x)= - =i {(L100)%e 476 XLy 4 (x)

The second derivativ€” of Ceo(Xteha) at Xx=x;,Xj, are

—LaOO) I 2a0Y, —2a —iABag?, ),
computed using a standard interpolating algoritdnThe

above given relations indicate that it is necessary to compute (C14
integrals of type Eq(44) but with C)(xten,) replaced by .
a(X) up to its third power. In carrying out these integrations @6 = — m{[(l-l(x))ge'we X]i}”*‘ 3ay’},
it is useful to generate recurrence formulas. Therefore we (C15
define
and
X
(m) _ i+l m iADX 4~ X AT
ay ij dx(L1(x))"Lp(x)e'>“*e™™, (Co) aﬁ3)=m{[(Ll(x))3e IABXe=X(L,4(X)
In particular we hava$’=a{”, and —L, )10+ 4322 —3aP —iAwaly ).
J
a(0)= _ [ef(lfiAZ))X]XjJrl (C7) (C16)
0 1-iAw X At first glance the given formulas look too complex to be

useful for integrating a function of a single variable. But,
where the abbreviatiofg(x) Jo=g(a) —g(b) has been intro-  according to our efforts to reach a sufficient precision, they
duced. These expression enables us to express the requirgsbm to provide the only way to get precise results even for
integrals as Laguerre polynomials of the order 30r higher. Moreover,
these formulas, if accompanied by a routine to compute
Laguerre polynomials via standard recurrence formtflas,
can be put in a very compact computer code. Finally we note
that the given spline interpolation scheme to integrate the
product of a smooth and a highly oscillating function, such
as polynomials of a high order and/or e%ix, may be used
in many other cases.

X + - 1
fj 1an(x)Ln(x)e'A“'Xefxzﬁ(aﬁ]l)—aﬁ]o)), (C9
X

j

Xj o~
f“ldm?(x)Ln(x)e'We—X
N
]

1
=—5(a?—2Ly(x; )al+ (Li(x;41))%a),
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