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Exciton exciton annihilation dynamics in chromophore complexes.
I. Multiexciton density matrix formulation

B. Brüggemann and V. May
Institut für Physik, Humboldt-Universita¨t zu Berlin, Hausvogteiplatz 5-7, D-10117 Berlin, Germany

~Received 15 August 2002; accepted 2 October 2002!

The multiexciton~MX ! description of excitation energy transfer in chromophore complexes and
biological light harvesting antenna systems is extended to the incorporation of exciton exciton
annihilation~EEA! processes. To achieve a complete microscopic description the approach is based
on intrachromophore internal conversion processes leading to nonradiative transitions from higher
to lower lying exciton manifolds. Besides an inclusion of EEA the MX density matrix theory which
has been utilized for a description of excitation energy transfer also accounts for a coupling to
low-frequency vibrational modes and the radiation field. Concentrating on transitions from the two
to the single-exciton manifold exact and approximate expressions for the EEA rate are derived. In
part II of this paper the approach is applied to the LH2 antenna putting emphasis on the EEA
induced change of transient absorption spectra. ©2003 American Institute of Physics.
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I. INTRODUCTION

Femtosecond spectroscopy has been applied as the
experimental tool to reveal details of excitation energy~ex-
citon! relaxation and transfer in various types of chr
mophore complexes~CC! and biological light harvesting an
tennas~for a recent overview, see Ref. 1!. In particular, for
the latter systems one tried to reduce the laser pulse inte
ties as much as possible to remain at physiological co
tions. However, it is also a common practice to vary t
intensity of the laser pulse used to excite the chromoph
complex, and in this manner, to study higher excited sta
and new relaxation channels such as exciton exciton ann
lation ~EEA!. Although such experiments have original
been focused on dye aggregates~see, for example, Refs.
and 3! there is also some recent work where EEA has b
investigated in different photosynthetic antenna systems,
example in the FMO-complex,4 in the LH1,5,6 and in the
LH2.7,8

EEA in CC or dye aggregates is usually characterized
a two step process. First, two excitations being in theS1-state
of the chromophores have to move close together so
their excitation energy can be used to create a higher exc
Sn-state (n.1) at one chromophore. This step leaves beh
the other chromophore in theS0 ground-state and is usuall
named exciton fusion. In a second step an ultrafast inte
conversion~IC! process brings back the chromophore wh
is just in the higher excitedSn-state to theS1-state.

So far, EEA has been often described by the rate eq
tion ]n(r ,t)/]t52gn(r ,t)2, with the exciton densityn(r ,t)
at the spatial positionr and the annihilation rate constantg
~for a recent overview, see Ref. 9!. Besides such a macro
scopic description valid for larger aggregates~and organic
semiconductors! where exciton diffusion may take place
various microscopic theories have been presented.10–13 A
density matrix hierarchy has been derived in Ref. 10 wh
refers to the multiple presence of intrachromophore exc
7460021-9606/2003/118(2)/746/14/$20.00
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tions ~concrete estimations concentrated on single and t
exciton contributions!. The studies on EEA kinetics in Refs
11–13 have been based on microscopic computations o
annihilation rate constantg. Using ‘‘Golden Rule’’ argu-
mentsg follows as the square of the transition matrix el
ment between a state of two delocalized excitons and a s
of a localized higher intramolecular excitation multiplied b
the ~constant! density of final states.

If interested in phenomena on a subpicosecond t
scale coherences between different exciton levels bec
important which are best described in the framework of
density matrix theory. Consequently, an inclusion of EE
into an exciton density matrix theory is essential. Differe
approaches have been presented in the past~see Refs. 14–
18!. Concentrating on a chlorophyll dimer EEA could b
described by means of a direct derivation of nonadiab
transitions. They are characterized by simple microscopic
rates if the limit of instantaneous nonadiabatic transitions
taken. The possible incorporation of EEA into the anh
monic oscillator description of Frenkel excitons has be
demonstrated in Ref. 17, and a derivation of rate equati
including EEA rates can be found in Ref. 18.

In the present paper we explain in detail how to gen
alize the multiexciton~MX ! density matrix theory for an
inclusion of EEA processes and, in this way, we combine
concept on EEA we followed earlier in Refs. 14–16 with t
MX approach worked out in Ref. 18. First let us indica
some key points of the model. Since we will incorpora
EEA into the MX approach it is essential to work, at lea
with an electronic three level model for every single chr
mophore positioned at sitem. This three-level model~cf.
Fig. 1! comprises the ground-statewmg with energyemg , the
first excited statewme with energyeme and a higher excited
statewm f with energyem f . In most cases the statewme may
correspond to the first excited singlet stateS1 whereas the
state wm f represent one of the higher-excited sing
© 2003 American Institute of Physics
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statesSn (n.1). However, the latter is fixed by the deman
to have an energetic distance to the first excited state sim
to that between the first excited state and the ground s
Excitations within these levels are coupled by the Coulo
interaction leading to excitation energy motion and the f
mation of delocalized MX states.

The picture we will stress in the following is that of MX
states of the whole CC obtained by a change from the loc
excited electronic chromophore states to delocalized~or par-

FIG. 1. Electronic energy levels scheme for a single chromophore~left! and
the whole chromophore complex~right!. A three-level model with the
S0-ground statewg , the first excitedS1-statewe , and the higher excited
Sn-state (n.1) w f has been used for the various chromophores of the wh
complex.~The shaded box refers to further excited electronic levels.! The
electronic energy levels valid for the whole complex are ordered with
spect to different exciton manifolds. The scheme starts at the buttom
the chromophore complex electronic ground state. The first excited c
mophore states are given by the single-exciton manifold with energy s
trum E(a1) and exciton statesua1&. It follows the two-exciton statesua2&
with energyE(a2). The three-exciton statesua3& with energyE(a3) are
positioned at the top of the scheme. The shaded ellipses represent po
populations in the various exciton manifolds~which might follow from an
excitonic wave packet! and the vertical arrows indicate radiationless tran
tions from the three-exciton to the two-exciton manifold and from tw
exciton to the single-exciton manifold.~Note that the widths of the mani
folds have been artificially enlarged, and the number of the discrete leve
the manifolds has been taken arbitrarily.!

FIG. 2. Possible electronic excitations in a linear chromophore comple
13 three-level molecules~with S0 , S1 , and Sn-state!. The shaded ellipses
indicate which level is excited. The upper scheme corresponds to the s
excited stateum56,e& ~for notation also compare the text!. The threefold
excited stateum53, e;n59,f & is displayed in the middle and the buttom
shows the sixfold excited stateum52, e, m54, e;n58, f ,n511,f &.
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tially delocalized! states. As it has been discussed ma
times~see Ref. 18, and references therein! those states can b
ordered within the various exciton manifolds. The orderi
scheme starts with the CC electronic ground state denote
u0&. It is followed by the single exciton manifold, the tw
exciton manifold and so on@see Fig. 1~B!#. All these states
will be named MX states and will be written asuaN&, where
aN is the quantum number of the exciton state in t
N-exciton manifold. The numberN corresponds to the num
ber of basic excitations roughly given by theS0–S1-transi-
tion energy of a single chromophore. For example, the sin
exciton stateua1& follows from the presence of a singl
S1-excitation whereas the two-exciton stateua2& may be
formed by two S1-excitations or alternatively by a singl
Sn-excitation~Fig. 2!.

The reason to formulate the MX theory for an arbitra
number of excitations present in the CC is the following on
When considering EEA processes already at low excita
intensities a real population of the two-exciton manifo
comes into play. Furthermore, the transition amplitudes~co-
herences! between the two- and the three-exciton manifo
may become important, too. And if the pump-intensity
further increased even higher exciton manifolds have to
taken into consideration. Such a MX theory has been alre
given in Ref. 18. Here, we generalize this approach to
case where any chromophore is described by an electr
three-level model.

If the view on EEA mentioned above is embedded in
the MX theory, the description automatically accounts for t
first step of EEA—the exciton fusion. For example, the tw
exciton statesua2& already incorporate the mixture of tw
S1-excitations and a singleSn-excitation. Accordingly, EEA
is obtained as a radiationless transition from the two-exci
to the single-exciton manifold.18 For the description of the
nonadiabatic transition process we expect the incorpora
of transition rates which are in a certain sense the MX r
resentation of standard internal conversion rates. The la
describe a transition from the electronic~adiabatic! statewa

to statewb ~see, e.g., Ref. 19!,

ka→b
(IC) 5

2p

\
uQa,bu2Dab~vab!. ~1!

Here, the dependence of the nonadiabatic couplingQa,b on
the vibrational coordinates has been neglected what ena
to introduce the so-called Franck–Condon weighted a
thermal averaged combined density of states~DOS!,

Dab~v!5
1

2p\ E dteivt trvib$R̂aUa
1~ t !Ub~ t !%. ~2!

In the given expressions\vab5Ua
(0)2Ub

(0) denotes the dif-
ference of the minima of both potential energy surfac
~PES! at the respective equilibrium configuration of th
nuclear coordinates. Accordingly, the time-evolution ope
tors Ua

1(t) andUb(t) are defined by the vibrational Hamil
tonianHa andHb belonging to statewa andwb , respectively
~both starting at the energy minimum of the PES!, andR̂a is
the vibrational equilibrium operator for statewa . The vibra-
tional degrees of freedom~DOF! addressed here are of th
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intramolecular type and act as accepting modes for the n
radiative transition. It is a particular challenge to incorpor
nonadiabatic transition into the MX density matrix theory

But before explaining this in detail, the next sectio
spends some time on the correct derivation of the coup
between MX states and the intramolecular vibrations
volved in the EEA process. The density matrix theory
EEA is explained in the third section incorporating a
mechanisms of exciton relaxations studied elsewhere. A
tionally EEA will be represented by respective rate expr
sions. These EEA rates are discussed more extensive
Sec. IV. All technical details can be found in the vario
appendices.

Since the given paper represents the part I of a serie
two papers it exclusively concentrates on the foundation
EEA theory. In part II,20 we concentrate on the coupling to
laser field and apply our approach to a detailed analysi
EEA features in the frequency dispersed transient absorp
spectra of the B850 ring of the LH2 complex ofRb.
sphaeroides~see, e.g., Ref. 21!. A preliminary application of
the MX theory of EEA can be found in Refs. 22 and 2
where the intensity dependent transient absorption spect
Ref. 8 could be well reproduced.

II. THE MULTIEXCITON PICTURE

Some first remarks on the MX picture have been alre
given in the introductory part. In particular we fixed the n
tation for the intramolecular stateswma of chromophorem
with respective energiesema (a5g,e, f denotes the three
electronic levels of interest!. All these excitation energies a
well as the Coulombic coupling functions are modulated
the variety of vibrational DOF. These vibrational DO
~mainly the intermolecular vibrations! are responsible for
electronic excitation energy dissipation within a given ex
ton manifold. But intramolecular~intrachromophore! modes
participate in the IC-process which is the prerequisite
EEA.

All these types of couplings will be put into a represe
tation with respect to the MX statesuaN& ~a is the MX quan-
tum number andN indicates to which manifold the stat
belongs!. It results the MX vibrational coupling. So far thi
type of coupling cannot be specified by quantum chem
calculations and different types of assumptions become
essary.

A. The chromophore complex Hamiltonian

The details related to the derivation of the MX Ham
tonian including the coupling to intramolecular vibration
DOF and the radiation field can be found in Ref. 18~cf. also
Ref. 19!. Here we concentrate on the contributions of
tramolecular vibrations and nonadiabatic transitions b
necessary to account for internal conversion processes.

To present the CC-Hamiltonian we start with an order
scheme with respect to the numberN of basic excitations. It
can be best demonstrated by introducing electronic prod
states)mwma of the whole CC which are built up by th
single chromophore states. Contact to the ordering schem
established if the product states are abbreviated in the
lowing as u$me%M ;$n f%N.. Here the multi-index$me%M
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indicates theM chromophores at sitesm1 , . . . ,mM which
are in the first excited state and$n f%N stands for thedifferent
set ofN chromophores at sitesn1 , . . . ,nN which are in the
higher excited state. Although excited states with largeN
5M12N will be never produced in the experiment it
useful to derive expressions which are valid for an arbitr
N ~of course, less than the whole numberNCC of considered
chromophores!.

To make this ordering somewhat more obvious it b
comes helpful to introduce the following unity operator
the electronic CC state space,

1CC5 (
N50

NCC

(M50

N

(N50

N/2,(N21)/2

dN,M12N

3 (
$me%M

(
$n f%N

u$me%M ,$n f%N&^$me%M ,$n f%Nu. ~3!

The upper limit with respect to theN-summation takes into
account that the total numberN of excitations might be even
~what results in the maximum numberN/2 of doubly excited
chromophores! or odd@what leads to (N21)/2]. To have the
correct ordering with respect to the numberN of elementary
excitations Kronecker’sd-function guarantees that the actu
number of total excitations appears in the mixing of differe
states with different excited states. To ensure1CC1CC51CC

all states in Eq.~3! have to be properly normalized. Th
notation use so far is somewhat lengthly. Whenever poss
we will use the abbreviated versionu$me,n f%N& for the state
vector indicating the presence ofN excitation but mixed in
the way described above@any summation with respect t
these states has to be of the type of Eq.~3!#.

Before presenting the CC-Hamiltonian we note that
quantities mentioned so far depend on the set of all vib
tional coordinatesR incorporating intrachromophore coord
nates Rintra and interchromophore coordinatesRinter. The
consideration of vibrational DOF leads to an introduction
PES into the Hamiltonian instead of pure electronic energ
and we may write

HCC5(
N

H (
$me,n f%N

~Tnuc1U~$me,n f%N ;R!!

3u$me,n f%N&^$me,n f%Nu1Vel– el
(N) J

1(
m

~Qme fuwme&^wm fu1h.c.!2E~ t !m̂CC. ~4!

Besides the nuclear kinetic energy operatorTnuc this expres-
sion contains the PESU($me,n f%N ;R) of theN-fold excited
state~see below! and the interchromophore electronic inte
action Vel– el

(N) . The second part describes the nonadiaba
coupling between the statewm f and wme of every chro-
mophore where the coupling matrix element is given
Qme f . The action of the radiation field with electric field
strengthE(t) is accounted for in the last part (m̂CC is the CC
dipole operator comprising contributions from every chr
mophore!. Since the electronic interactionVel–el

(N) has been
discussed at length elsewhere we did not given any detail
it and refer, for example, to Ref. 18.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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The following discussion focuses on the electro
vibrational coupling. The PES introduced inHCC may be
written in detail as

U~$me,n f%N ;R!5U0~R!1~12dN,0!

3S (
kP$me%M

ek~eg;R!

1 (
kP$n f%N

ek~ f g;R! D U
N5M12N

, ~5!

where the quantitiesek(ag;R), a5e, f , are given as the
single chromophore excitation energieseka(R)2ekg(R).
They appear since the complete ground-state PES has
introduced asU0(R)5(memg(R)1Vnuc–nuc, where the re-
pulsive Coulomb interaction between all atoms involved h
been denoted byVnuc–nuc. The introduction of the excitation
energiesek(ag;R) is not obligatory but in the present ap
proach necessary to introduce MX states. To compute th
states we next provide thatU0(R) possesses a global min
mum at the setR5R0 of vibrational coordinates. Instead o
Eq. ~5! we write

U~$me,n f%N ;R!5E~$me,n f%N!1DU~$me,n f%N ;R!,
~6!

where theE($me,n f%N)5U($me,n f%N ;R0) are the Franck–
Condon transition energies to the particularN-fold excita-
tions and the DU($me,n f%N ;R)5U($me,n f%N ;R)
2U($me,n f%N ;R0) define the PES related to this excite
state.

B. Multiexciton states

To introduce MX states we rewrite the CC Hamiltonia
Eq. ~4! according to Eq.~6! and diagonalize the part define
by the excitation energiesE($me,n f%N) and the coupling
Vel–el

(N) both related to theNth excited state of the CC@a pos-
sible dependence ofVel–el

(N) on the vibrational coordinates wil
be shortly comment below#. It follow the energiesE(aN) of
theNth exciton manifold, and the respectiveN-exciton states
can be written as

uaN&5 (
$me,n f%N

CaN
~$me,n f%N!u$me,n f%N&. ~7!

According to the normalization of the statesu$me,n f%N&
one easily verifies the normalization conditio
($me,n f%N

uCaN
($me,n f%N)u251. Resulting from Eq.~7! the

MX representation of the CC Hamiltonian is introduced,

HCC5(
N

S (
aN

E~aN!uaN&^aNu

1 (
aN ,bN

Hvib~aN ,bN!uaN&^bNu D
1 (

N.1
(

aN21
(
bN

~Q~aN21 ,bN!uaN21&^bNu1h.c.!

2E~ t !m̂CC. ~8!
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Details on the MX matrix elements of the nonadiabatic co
pling can be found in Appendix A. The concrete form of th
coupling to the radiation field is discussed in part II of th
paper.20

The vibrational Hamiltonian depending twofold on th
MX quantum numbers is obtained as the MX matrix elem
of the sum ofTnuc as well asDU($me,n f%N ;R), Eq. ~6!. If
both quantum numbers are related to the CC electro
ground state we writeHvib(0,0)[Hvib5Tnuc1@U0(R)
2U0(R0)#. This expression may separate into the intrach
mophore contributionHvib

(intra) and into the contribution
Hvib

(inter) depending on the intermolecular coordinates. The
brational Hamiltonian which belong to excited CC stat
read (N.0)

Hvib~aN ,bN!5daN ,bN
Hvib1 (

$me,n f%N

CaN
* ~$me,n f%N!

3DU~$me,n f%N ;R!CbN
~$me,n f%N!. ~9!

For simplicity we provide that there is no mode-couplin
between the interchromophore vibrations and the intrach
mophore vibrations and separateDU($me,n f%N ;R) into an
intramolecular partDU intra($me,n f%N ;Rintra) and into a part
DU inter($me,n f%N ;Rinter) depending on the vibrations of th
whole complex. This separation results in the contribut
Hvib

(intra) and in the contributionHvib
(inter) , respectively.

As it has been already discussed elsewhere~see, for ex-
ample, Ref. 18! the low-frequency intermolecular vibration
can be accounted for in a manner where all deviations fr
the electronic ground-state vibrations are considered as
turbations. Additionally, modulations of the interchro
mophore electronic couplingVel–el

(N) @cf. Eq.~4!# may be taken
into account. The respective standard form of the linear M
vibrational coupling readsHvib

(inter)(aN ,bN)5daN ,bN
Hvib

(inter)

1(12dN,0)(j\vjgj
(inter)(aN ,bN)Qj , where the dimension-

less vibrational coordinate is given by oscillator operat
~with mode indexj! according toQj5cj1cj

1 . The related
vibrational frequency is denoted byvj andgj

(inter)(aN ,bN) is
the dimensionless coupling matrix.

C. Coupling to intramolecular vibrations

This section concentrates on the coupling between
MX states and the intramolecular vibrations which is ess
tial for a correct description of EEA. To end up with formu
las which contain expressions similar to the IC-rates Eq.~1!
a part of the complete coupling has to be treated beyon
simple second-order perturbation theory. Within the pres
MX scheme such a nonperturbative description becom
possible for the diagonal part of the intramolecular contrib
tion Hvib

(intra)(aN ,bN) to the complete vibrational Hamil
tonian, Eq. ~9!. The off-diagonal contributions will be
handled as a perturbation and can be included into the
pression valid for inter-molecular vibrations.

First, we note that any chromophore has its own setRm

of intramolecular coordinates, i.e., we haveRintra5$Rm%.
This will be accounted for in a modified notation of th
diagonal part of the intramolecular contributions toHvib ,
Eq. ~9!. The respective part is generated by t
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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DU intra($me,n f%N ;Rintra) which, according to Eq.~5! have to
be defined via a certain difference of the chromophore e
tation energies. We introduceDek(ag;Rk)5ek(ag;Rk)
2ek(ag;Rk

(g)) (a5e, f ), where the latter energy refers t
the transition energy at the electronic ground-state equ
rium configurationRk

(g) of the intramolecular coordinates
Before giving the complete expression of the vibration
Hamiltonian we note the separation of the ground-state
Hvib

(intra) into a sum of single-chromophore vibrational Ham
tonianHmg . If we incorporateHvib

(intra)[(mHmg into the sum-
mation with respect to the various excited states we m
write @cf. Eq. ~9!, N.0],

Hvib
(intra)~aN ,aN!5 (

$me,n f%N

uCaN
~$me,n f%N!u2

3H (
k¹$me%M ,$n f%N

Hkg

1F (
kP$me%M

Hke1 (
kP$n f%N

Hk fG
N5M12N

J .

~10!

The newly introduced vibrational Hamiltonian referring
the excited chromophore states readHka5Hkg

1Dek(ag;Rk). A specification of Eq.~10! to single and two-
exciton states can be found Appendix B together with so
modified notations.

The MX representation, Eq.~10! of the intrachro-
mophore vibrational Hamiltonian introduces a mixing of
local vibrations as it would be also the case if one chan
from a diabatic representation of a molecular Hamiltonian
the adiabatic representation. Here such an electronically
duced vibrational mode mixing is originated by the interm
lecular Coulomb forces~leading to the MX states!. It results
in a new arrangement of local modes as demonstrate
Appendix B 2.

III. DENSITY MATRIX THEORY OF EXCITON EXCITON
ANNIHILATION

So far the photoinduced kinetics of the MX system h
been described mainly within a version of the density ma
theory usually called multilevel Redfield theory. The M
density matrixr(aM ,bN ;t) represents the central quanti
to be determined. The diagonal elementsr(aM ,aM ;t) give
the MX level populationsP(aM ;t), whereas off-diagona
elements define the various coherences. Those can b
dered with respect to intramanifold coherences indicating
presence of excitonic wave packets in the particular ma
fold, and intermanifold coherences reflecting optical exc
tions and thus the presence of transition polarizations in
system.22 The main assumption of the standard approach
second-order perturbation theory with respect to the MX
brational coupling. Although one might think that this low
order exciton–vibrational coupling theory may fail in mo
of the cases, it could be successfully applied to the sim
tion of subpicosecond dynamics in different anten
systems.18
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In the present case, however, the mentioned appro
needs a certain extension to account for EEA in a pro
way. As already stated in the Introduction we expect in o
theory an IC-rate of the type given in Eq.~1!. As it is well-
known this rate expression contains the coupling between
electronic DOF and the intramolecular vibrations beyond
standard second-order perturbation theory. How to const
a density matrix theory which may take notice of all orde
of the exciton vibrational coupling is demonstrated in A
pendix C~cf. also Ref. 26!. As a result one can derive equa
tions of motion for the density matrixr(aM ,bN ;t) but now
including the correct expressions of the IC-rates. This
been achieved by incorporating the diagonal part, Eq.~10! of
Hvib

(intra) into the time-evolution operator.
The approach is most flexible formulated in the sta

representation. Since our model comprises two types
exciton–vibration couplings, the one related to~low-
frequency! intermolecular vibrations, and the other referrin
to ~high-frequency! intramolecular vibrations the complet
MX vibrational states readuA&5uaM&uxm&ux̄aMm̄&. Beside
the MX statesuaM& the expression contains the vibration
statesuxm& of the intermolecular vibrations. These states a
eigenstatesof the HamiltonianHvib

(inter) introduced in the fore-
going section. They factorize with respect to the differe
modes, and the respectiveeigenenergiesare denoted as
\Vm . The vibrational states of the intrachromophore mod
ux̄aMm̄& depend on the exciton quantum number and have
be understood as eigenstates of the Hamiltonian
Hvib

(intra)(aM ,aM), Eq. ~10!. The respectiveeigenvaluesare

denoted as\V̄aMm̄ . If all PES involved are approximated b

displaced parabola theV̄aMm̄ can be written asV̄aMm̄5V̄m̄

1DV(aM) ~cf. Appendix B 2!. Such an independency of a

intramolecular vibrational frequenciesV̄m̄ on the actual MX
state is essential for the incorporation of IC-rates. The p
DV(aM) which represents a MX state dependent energ
shift collects all respective contributions toHvib

(intra)(aM ,aM)
~reorganization energies, see Appendix B 1 and Appen
B 2!.

Since the whole density matrix theory~see Appendix C!
is based on a representation using the general MX vibratio
statesuA& the ~reduced! MX density matrix has to be de
duced from the total time-dependent statistical operatorŴ(t)
as follows:

r~aM ,bN ;t !5(
m,m̄

^aMu^xmu^x̄aMm̄uŴ~ t !ux̄bNm̄&uxm&ubN&.

~11!

The respective representation of the CC-Hamiltonian, Eq.~4!
in the statesuA& is given in Appendix D. Once this represen
tation has been introduced we can set up equations of mo
based on Eq.~C9! or Eq. ~C12!.

A. Equations of motion for the reduced multiexciton
density matrix

The equations of motion for the MX density matrix a
derived in the Appendix C read@cf. Eq. ~C12!, the explicit
consideration of the coupling to the radiation field is po
poned to part II#
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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]

]t
r~aM ,bN ;t !52 iV~aM ,bN!r~aM ,bN ;t !2 i V̄aMm̄ (

K,gK

~ v̄~aM ,gK!r~gK ,bN ;t !2 v̄~gK ,bN!r~aM ,gK ;t !!

2daM ,bN (
K,gK

~k~aM→gK!r~aM ,aM ;t !2k~gK→aM !r~gK ,gK ;t !!

2~12daM ,bN
! 1

2 (
K,gK

~k~aM→gK!1k~bN→gK!!r~aM ,bN ;t !. ~12!
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This type of density matrix equation follows from the s
called Bloch approximation~see, e.g., Ref. 19!. The pure
MX transition frequencies are defined according to

V~aM ,bN!5E~aM !/\1DV~aM !

2E~bN!/\2DV~bN!. ~13!

The \ v̄(aM ,gK) are thermal averages with respect to t
vibrational DOF@see Eq.~C10!# of the full coupling matrix
elementsVA,B5^AuV̂uB&. Here,V̂ denotes any type of cou
pling Hamiltonian appearing in Eq.~8!, anduA& as well uB&
represent the complete MX vibrational states. All transiti
rates which are of the second order with respect to the c
pling matrix VA,B follow from the relaxation matrix, Eq
~C14! according to k(aM→bN)52G(aMbN ,bNaM ;
V(aM ,bN)), Eqs.~C13! and ~C14!. The contributions pro-
portional to v̄(aM ,gK) form the so-called mean-field term
@Eq. ~C10!#. They enter the reversible part of the dens
matrix equation. Further on, they describe dissipation via
factorized part of the second-order correlation function@see
Eqs.~C11! and ~C14!#.

Next, let us specify how to tackle the different contrib
tions to the relaxation matrixG resulting from the various
parts of coupling potentials which enterVA,B. The part
V(mx–inter) following from the coupling to intermolecular vi
brations will be consider in the complete second-order fo
and has been discussed at length elsewhere.18 Note that there
does not appear any mean-field contribution if we conc
trate on linear MX vibrational coupling. The next part
VA,B stems from the off-diagonal part of the intramolecu
vibrations represented by the couplingV(mx–intra), Eq. ~D2!.
Since a specification of both contributions beyond the int
duction of a spectral density~see below! is not necessary we
include the ~off-diagonal! intramolecular MX vibrational
couplings into the excitation energy dissipation described
delocalized~intermolecular! vibrations.

As a further contribution the nonadiabatic couplin
V(na), Eq. ~D3! is considered up to the second-order. Ho
ever, the latter expression together with the mean-field c
tributions will not be discussed here but in one of the follo
ing sections. Finally we have to decide on the handling of
coupling to the radiation fieldV(field). Since the consideration
of any field-fluctuation described by second-order correlat
functions is outside the scope of the present studies we
centrate on the mean-field contribution.

Finally we focus on the second-order correlation fun
tions which are formed by different parts of the coupli
matrix, i.e., which lead to cross-correlations. A first set
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such cross-correlation functions if given byV(mx– inter), on the
one-hand, and on the other hand byV(mx– intra), V(na), and
V(field). Since we will not distinguish between intermolecul
vibrations and intramolecular vibrations as long as excitat
energy dissipation is concerned, there is no need to deal
the combination ofV(mx– inter) andV(mx– intra). Furthermore, a
cross-correlation withV(field) vanishes since the radiatio
field contributions are restricted to the respective mean-fi
term. It remains the contribution includingV(na). It becomes
easily obvious that the respective terms in the density ma
equations only represent small corrections to the used Blo
approximation. This results from the fact that a coupling p
tential acting within a given exciton-manifold is combine
with a coupling which relates different manifolds.

According to the foregoing discussion the complete
laxation matrix, Eq.~C14! and thus the general transition ra
splits off into a part reffering to intermolecular vibrations an
into a part following from nonadiabatic couplings,

k~aM→bN![2G~aMbN ,bNaM ;V~aM ,bN!!

5dM ,N2G (mx– inter)~aNbN ,bNaN ;V~aN ,bN!!

1~dM11,N1dM21,N!

32G (na)~aMbN ,bNaM ;V~aM ,bN!!. ~14!

Details on both contributions are given in the followin
section.

B. Relaxation matrix caused by a coupling
to intermolecular vibrations

The intermolecular part of the relaxation matrix follow
in somewhat more detail as@cf. Eq. ~D1!, although the in-
tramolecular vibrations give an additional time-depend
factor to the integral, this has been neglected here#

G (mx– inter)~aNbN ,bNaN ;V~aN ,bN!!

5ReE
0

`

dteiV(aN ,bN)t(
mn

f ~m!eiVmnt

3(
j

vjgj~aNbN!^xmucj
11cjuxn&

3(
j̄

vj̄gj̄~bNaN!^xnuc
j̄

1
1cj̄uxm&. ~15!

For simplicity we removed here and in the following th
index ‘‘mx–inter’’ at the frequencies and coupling constan
In a further step one transfers the terms oscillating with tr
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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sition frequencyVmn into two time-evolution operators em
bedding the oscillator operators. The completeness rela
for thexn enables us to remove the respective states and
related summation. Them-summation together with the the
mal distribution functionf (m) is replaced by a trace-formul
including the respective equilibrium statistical operator. T
finally leads to an expression including the spectral densitJ
of the MX intermolecular vibrational coupling. We replac
G (mx– inter) by the respective rate and get (n denotes the
Bose–Einstein distribution!,

k(mx– inter)~aN→bN!52pV2~aN ,bN!~11n~V~aN ,bN!!!

3~J~aNbN ,bNaN ;V~aN ,bN!!

2J~aNbN ,bNaN ;2V~aN ,bN!!!.

~16!

A further treatment of this expression together with an
planation of the spectral densities and the introduction
some useful approximations can be found in Ref. 18.

C. Relaxation matrix of exciton exciton annihilation

The contribution from the nonadiabatic coupling
handled in the same manner as demonstrated in the pre
ing section by starting from an expression similar to Eq.~15!
which is rewritten by introducing a trace, now, defined w
respect to all intrachromophore vibrational DOF@cf. Eq.
~D3!#. The rate of EEA is obtained from the nonfactoriz
part of the complete relaxation matrix. Again we remo
here and in the following section the index ‘‘mx–intra’’ a
frequencies, coupling constants, etc., and obtain

k(EEA)~aN→bN21!

5
2

\2 ReE
0

`

dteiV(aN ,bN21)t

3trintra$R̂~aN!U1~aN ,t !Q~aNbN21!

3U~bN21 ,t !3Q~bN21aN!%. ~17!

Since transitions from a lower to a higher exciton manifo
are of no interest we never refer to the respective rates.

The trace in Eq.~17! represents the correlation functio
formulated with the MX representation of the nonadiaba
coupling operator and has to be taken with respect to
intramolecular vibrational DOF of the CC@for the transition
frequenciesV(aN,BN21) , see Eq.~13!#. It incorporates the
equilibrium statistical operatorR̂(aN) of the intramolecular
vibrations in the MX stateuaN&. And, there appear vibra
tional time-evolution operators referring to the initial and t
final MX state. These operators read@cf. Eq. ~10!, and note
N.0]

U1(aN ,t)5expH i

\
Hvib

(intra)(aN ,aN)tJ . ~18!

If an approximation is taken where the dependence of
Q(aNbN21) on the vibrational DOF is neglected, it becom
useful to introduce an notation similar to that in Eq.~1!.
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Therefore, we split off Eq.~17! into 2p/\ times the square
of the coupling matrix element and the combined DOS,

k(EEA)~aN→bN21!5
2p

\
uQ~aNbN21!u2

3D~aN ,bN21 ;V~aN ,bN21!!. ~19!

The DOS reads

D~aN ,bN21 ;v!

5
1

2p\ E dteivt

3trintra$R̂~aN!U1~aN ,t !U~bN21 ,t !%. ~20!

The time-integration from2` to ` is simply derived be-
cause the real part is taken in Eq.~17!. It is obvious that
k(EEA), Eq. ~19! resembles the internal conversion ratekm

(IC)

introduced in Eq.~1!. The difference here is that the initia
statewm f and the final statewme defining kf→e

(IC) have been
replaced by the MX statesuaN& and ubN21&, respectively.

Besidek(EEA) the complete nonadiabatic relaxation m
trix includes the factorized part into which the quantities,

\ v̄ (na)~aMbN!5~dM11,N1dM21,N!Q~aMbN!S~aMbN!,
~21!

with

S~aMbN!5(
m̄

f ~m̄ !^x̄aM ,m̄ux̄bN ,m̄& ~22!

enter. Note that the quantityS(aMbN) also appears in the
definition of the MX density matrix~cf. Appendix C!.

As a pure coupling term in the reversible part of t
density matrix equations it relates two different excit
manifolds which are extremely off-resonant. Therefore,
can neglect this term. It remains to discuss how to handle
factorized part of the relaxation matrix. A general way
treating such contributions has been given in Ref. 24. I
based on the introduction of an auxiliary density mat
which partly replaces the factorized part ofG and obeys an
equation of motion free of any dissipative contribution b
with the mean-field term. Since it gives off-resonance co
tribution we will neglect all those terms including the expre
sion in Eq.~21!.

IV. THE TWO-EXCITON ANNIHILATION RATE

This final section is devoted to a detailed analysis of
EEA rate, Eq.~17! if specified to the transition from the two
to the single-exciton manifold. Since the concrete express
is of basic importance for the numerical calculations given
part II ~Ref. 20! we demonstrate in detail the existence o
rate formula similar to Eq.~19! but with a DOS valid for the
single chromophores. Such an expression can be obtain
the combined DOS is calculated for the limiting case of va
ishing electronic interchomophore coupling@neglect ofVel–el

(N)

in Eq. ~4!#. ~A rate expression which is improved b
incorporating MX effects into combined DOS is derived
Appendix E.!

The approximation including the single chromopho
DOS is best achived if the trace expression in Eq.~17! is
somewhat rewritten~note the specification to a transitio
from a two to a single-exciton state!,
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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trintra$R̂~a2!U1~a2 ,t !Q~a2b1!U~b1 ,t !Q~b1a2!%

5trintra$^a2uR̃2Ũ2
1~ t !Hnaub1&^b1uŨ1~ t !Hnaua2&%. ~23!

Here we replaced the various MX matrix elements by resp
tive operator expressions and introduced the Hamiltonian
the nonadiabatic coupling, Eq.~A1!. Furthermore, it sufficies
to setŨ1(t)5(g1

U(g1 ,t)ug1&^g1u becauseŨ1(t) acts from
the right-hand side on a single exciton state. The same
soning leads to the identification Ũ2

1(t)5(g2

U(g2 ,t)ug2&^g2u. Furthermore, the equilibrium statistica
operatorR̃2 can be restricted to the two-exciton manifol
too. Once the MX statesub1& andua2& are expanded accord
ing to Eq. ~7! the required approximation follows in takin
the remaining trace in the zeroth order with respect to in
chromophore electronic couplingVel–el

(N) . Since the time-
evolution operators andR̃2 are only defined by the diagona
~intramolecular! part, Eq. ~10! of the complete MX vibra-
tional coupling, Eq.~9! we do not get automatically the co
rect time evolution operators in the absence of the interch
mophore electronic coupling.

However, a detailed inspection of this limit shows~see
Appendix B 1! that the product of expiV(a2)t with Ũ2

1(t) as
well as the product of exp2iV(a1)t with Ũ1(t) can be iden-
tified by respective time evolution operatorsU0 for the
whole CC but with electronically decoupled chromopho
@first contribution toHCC, Eq. ~4!#. Therefore, we write Eq.
~23! as @note the inclusion of expiV(a2,b1)t and the expan-
sion of the MX states as well as the nonadiabatic coup
Hamiltonian#

trintra$R̂~a2!U1~a2 ,t !Q~a2b1!

3U~b1 ,t !Q~b1a2!%3eiV(a2 ,b1)t

5(
m,m̄

(
n,n̄

Ca2
* ~m f !Cb1

~ne!Cb1
* ~ n̄e!Ca2

~m̄f !

3(
k,l

Qk f eQ le f trintra$^m fuR̂0U0
1~ t !uwk f&^wkeu

3une&^n̄euU0~ t !uw le&^w l f u3um̄f &%. ~24!

To get this expression we already took into account that
part of the two-exciton state expansion which contains
presence of two singly excited chromophores does not c
tribute. Instead, it remainŝm fu at the left part of the trace
Eq. ~24! as well asum̄f & at the right part. We further note
uwk f&^wkeune& 5dk,nuk f&, as well as uw le&^w l f um̄f &
5d l ,m̄u le& and write the whole EEA rate, Eq.~17! as

k(EEA)~a2→b1!'
2

\2 Re(
m,m̄

(
n,n̄

Ca2
* ~m f !

3Cb1
~ne!Cb1

* ~ n̄e!Ca2
~m̄f !Qn f eQm̄e f

3E
0

`

dt trintra$^m fuR̂0U0
1~ t !un f&

3^n̄euU0~ t !um̄e&%. ~25!
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This expression further simplifies since only diagonal el
tronic matrix elements contribute (m5n andn̄5m̄). We ob-
tain ^m fuR̂0U0

1(t)um f&5eivm ftR̂m fUm f
1 (t))kÞmR̂kgUkg

1 (t)
and ^m̄euU0(t)um̄e&5e2 ivm̄etUm̄e(t))kÞm̄Ukg(t). The re-
spective single-chromophore energies\vma , equilibrium
statistical operatorsR̂ma , and time evolution operatorsUma

have been introduced in Eq.~2! and in Appendix B 1.
Both foregoing formulas give for the whole trace~note

the replacement ofm̄ by n),

trintra$^m fuR̂0U0
1~ t !um f&^neuU0~ t !une&%

5dm,neivm f et trm$R̂m fUm f
1 ~ t !Ume~ t !%

1~12dm,n!eivm f gt trm$R̂m fUm f
1 ~ t !Umg~ t !%

3e2 ivnegt trn$R̂ngUng
1 ~ t !Une~ t !%. ~26!

The newly introduced trace expressions trm$¯% only refer to
those vibrational DOF which belong to chromophorem.
They lead to the type of correlation functions which are ty
cal for nonadiabatic transitions and which determine, for
ample, the IC-rate, Eq.~1!. And indeed the term of Eq.~26!
proportional todm,n just corresponds to an IC process
chromophorem from statew f to statewe . In the second term
of Eq. ~26! a transition fromw f to wg ~at chromophorem) is
combined with a transition fromwg to we ~at chromophore
n). If expression Eq.~26! is inserted into the rate expressio
Eq. ~25! the term proportional todm,n can be expressed b
the DOS of the type of Eq.~2! Dm f e(vm f e) ~now additionally
labeled by the site indexm). In contrast, the second term ca
be written as a frequency integral with respect toDm f g and
Dnge. Accordingly the whole EEA rate reads25

k(EEA)~a2→b1!

'
2p

\ (
m,n

Ca2
* ~m f !Cb1

~me!Cb1
* ~ne!Ca2

~n f !

3Qm f eQne fS dm,nDm f e~vm f,me!1~12dm,n!

3E d\vDm f g~vm f g2v!Dnge~v2vneg! D . ~27!

It would be an acceptable approximation to assume that
intramolecular vibrational structure of all chromophores
identical. Therefore, the intrachromophore nonadiabatic c
pling matrices as well as all single chromophore combin
DOS become independent on the site indices. To achiev
quantitative estimate for the rate we additionally restrict o
selves to the high-temperature case and replace all D
Dmab(vmab) by

D~vab ;lab!5A p

\2kBTlab
expH 2

~\vab2lab!
2

4labkBT J .

~28!

These quantities are only characterized~beside temperature!
by the transition frequencyvab and the reorganization en
ergylab ~cf. Ref. 19! The expression, Eq.~28! simply allows
us to carry out the frequency integral in the second par
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Eq. ~27! which leads toD(v f g ;l f g1lge). This DOS has to
be distinguished from the DOSD(v f g ;l f e) entering the first
term in the rate Eq.~27!.

The first term will become maximal if\v f e5l f e ~acti-
vationless case!. If at the same timel f g1lge is much
smaller or much larger thanl f e , the second part of the rat
expression~27! remains small and the whole expression
dominated by the first term. It results in

k(EEA)~a2→b1!'(
m

uCa2
~m f !Cb1

~me!u2kf→e
(IC) , ~29!

with the ~single chromophore! internal conversion ratekf→e
(IC)

introduced in Eq.~1!. The complete EEA rate has been o
tained by the uniform single chromophore internal conv
sion rate times the overlap~with respect to all sites! between
the probability uCa2

(m f )u2 to have a double excitation a
site m and the probabilityuCb1

(me)u2 to have a single exci-
tation at sitem.

The obtained formula is ready for an application in t
MX density matrix theory since it correctly describes t
transition from a two-exciton to a single-exciton state. T
use of single chromophore IC-rates, of course, may be
proved if one includes MX effects.~Some details how to
include MX effects into the combined DOS are given
Appendix E.! The EEA rate of Eq.~29! can be reduced to th
rate for a transition from the doubly excited stateume,ne& to
the singly excited stateume& if uCa2

(m f ) Cb1
(me)u2 is ex-

panded up to the second order in the interchromophore e
tronic coupling. Than it describes the fusion process of t
local single excitation to the doubly excited state (Sn-state!
at a single chromophore~cf. Ref. 18!.

Another limiting case for the EEA rate Eq.~27! is found
if l f e5l f g1lge . Now the first and the second type of th
DOS in the EEA rate become equal and the whole rate re

k(EEA)~a2→b1!'U(
m

Ca2
* ~m f !Cb1

~me!U2

kf→e
(IC) . ~30!

In contrast to Eq.~29!, kf→e
(IC) results from the combination o

two different IC processes at two different chromophor
Since such transition processes enter which couple diffe
sites via the transition from statew f to wg at sitem with the
transition fromwg to we at siten the EEA rate incorporate
the square of an expansion coefficient overlap. It is given
the overlap between the probability amplitudeCa2

* (m f ) to

have a double excitation at sitem and the probability ampli-
tudeCb1

(me) to have a single excitation at the same sitem.
The relation among the different reorganization energ

necessary to getk(EEA)(a2→b1) from Eq. ~30! might be
fulfilled if either l f g50 or lge50. Discussing this in terms
of PES, eitherU f and Ug , or Ug and Ue should be not
shifted horizontal one to another. Since this case seems
probable than the case leading to Eq.~29! ~where it is only
required thatUg is shifted horizontal away fromU f andUe)
we already used Eq.~29! to study EEA in the B850 ring of
LH2 ~cf. Ref. 22!. In part II,20 we will demonstrate the use
fulness of Eq.~29! again.
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V. CONCLUDING REMARKS

The MX description of chromophore complexes and b
logical antenna systems has been supplemented by the i
sion of exciton exciton annihilation processes. This beca
possible by allowing for nonadiabatic transitions from
higher intrachromophore level to the first excited electro
level. If translated into the MX picture exciton exciton ann
hilation proceeds as the following two-step process. F
there appears the exciton fusion where the single excitat
of two different chromophores are translated into a hig
excitation of one chromophore. This is a process which
troduces an internal rearrangement of the concreteN-exciton
wave function but takes place without changing the act
exciton manifold. Afterwards the internal conversion proce
move the higher excited chromophore back to its first exci
state. This corresponds to a radiationless transition from
N-exciton to theN21-exciton manifold.

To incorporate exciton exciton annihilation into the M
density matrix theory an approach has been chosen w
was used earlier for the description of electron trans
reactions.26 If the internal conversion is considered as a p
cess which proceeds instantaneously on the time scale
which all other MX processes take place, the radiationl
transitions can be described by respective rate express
These expressions resemble the standard form of inte
conversion rates but carry certain informations on the pr
ence of MX states. A prerequisite has been the correct d
vation of a coupling between the MX states and the intra
romophore vibrations which act as accepting modes wit
the internal conversion process.

A detailed analysis has been given for the exciton ex
ton annihilation rate entering the MX density matrix equ
tions. The actual form of the annihilation rate depends on
chromophore PES. Providing a uniform internal convers
rate for all chromophores in the complex two limiting cas
for the annihilation rate based on transitions from the two
the single-exciton manifold have been presented.

Using such types of expressions the whole theory
ready for an application to concrete systems. In part II of t
series of papers we apply the whole theory to simulate int
sity dependent transient absorption spectra taken at the B
ring of the LH2 complex ofRb. sphaeroides.8 In particular,
we will search for exciton exciton annihilation features in t
frequency dispersed absorption signal. Preliminary res
can already be found in Refs. 22 and 23.
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APPENDIX A: INTRAMOLECULAR NONADIABATIC
TRANSITIONS

For the proper description of the EEA process and
step involving the IC process the general type of the no
diabatic coupling operator~see, e.g., Ref. 19! has to be speci-
fied to the three-level chromophore model,
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Hna5(
m

Qme fuwme&^wm fu1h.c. ~A1!

The expression combines all nonadiabatic couplings at
various chromophores resulting in transitions from the hig
excited statef to the first excited statee ~and the reverse!.

To get the correct matrix elements in the MX represe
tation one first introduces the unity operator1CC, Eq. ~3! of
the state space of multiple excitations in the CC. Then
change to the MX representation can be carried out to y

Hna5 (
N.1

(
aN21

(
bN

Q~aN21bN!uaN21&^bNu1h.c. ~A2!

The MX matrix elements of the nonadiabatic coupling fo
low as

Q~aN21bN!5 (M50

N

(N50

N/2,(N21)/2

dN,M12N

3 (
$me%M

(
$n f%N

(
kP$n f%N

(
k¹$me%M

Qke f

3CaN21
* ~$me%M ,ke,$n f%N21

nÞk !

3CbN
~$me%M ,$n f%N!. ~A3!

This notation is more detailed with respect to the MX expa
sion coefficients. The coefficientCaN21

* notices that as the

result of the nonadiabatic transition from statew f to statewe

the number of chromophores in statew f is reduced by one
~all n have to be different fromk). At the same time there
appears an additional excitation of statewe at sitekÞm. If
specified to a transfer from the two-exciton to the sin
exciton manifold Eq.~A3! reads

Q~a1 ,b2!5(
m

Qme fCa1
* ~me!Cb2

~m f !. ~A4!

APPENDIX B: THE HAMILTONIAN
OF INTRAMOLECULAR VIBRATIONS

To have more concrete expressions at hand we pre
the single and the two-exciton version of the general c
pling expression of MX levels to intramolecular vibration
Eq. ~10!. In the case of single-exciton states it reads@note
Hka5Hkg1Dek(ag;Rk)],

Hvib
(intra)~a1 ,a1!5(

m
uCa1

~me!u2

3H (
kÞm

Hkg1Hmg1Dem~eg;Rm!J . ~B1!

This expression can be rearranged to give

Hvib
(intra)~a1 ,a1!5(

m
hm~a1!, ~B2!

with

hm~a1!5Hmg1uCa1
~me!u2Dem~eg;Rm!. ~B3!
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According to the presence of a superposition state of sin
excited chromophores~the single exciton state! a superposi-
tion of ground and excited-state contributions appears
similar result follows for the two-exciton vibrational Hami
tonian,

Hvib
(intra)~a2 ,a2!

5 (
m1 ,m2

uCa2
~m1e,m2e!u2

3H (
kÞm1 ,m2

Hkg1Hm1g1Dem1
~eg;Rm1

!

1Hm2g1Dem2
~eg;Rm2

!J
1(

n
uCa2

~n f !u2H (
kÞn

Hkg1Hng1Den~ f g;Rn!J ,

~B4!

which can be rearranged to give

Hvib
(intra)~a2 ,a2!5(

m
hm~a2!, ~B5!

with

hm~a2!5Hmg12(
n

uCa2
~me,ne!u2Dem~eg;Rm!

1uCa2
~m f !u2Dem~ f g;Rm!. ~B6!

Again a superposition of excited-state contributions appe

1. Limit of vanishing interchromophore electronic
coupling

To derive the approximate version of the EEA rate
Sec. IV we needhm(a1) and hm(a2), Eqs. ~B3! and ~B6!,
respectively, in the limit of vanishing electronic interchr
mophore coupling (Vel–el

(N) →0). Taking this limit for the
single-exciton coefficients we obtainCa1

(me)→ dm,m0
. A

single excited chromophore at sitem0 remains and the
single-exciton quantum numbera1 degenerates to this par
ticular chromophore indexm0 . This behavior results in

hm~a1!→Hmg1dm,m0
Dem0

~eg;Rm0
!. ~B7!

In the case of the two-exciton state we have to distingu
between the limit leading to two single excitations or a sin
double-excitation. In the first case we get~note the normal-
ization condition for the two-exciton state! Ca2

(me,ne)
→(dm0 ,mdn0 ,n1dm0 ,ndn0 ,m)/&. The latter case results in
Ca2

(m f )→dm,k0
. Accordingly we obtain

hm~a2!→Hmg1~dm0 ,m1dn0 ,m!Dem~eg;Rm!, ~B8!

or

hm~a2!→Hmg1dk0 ,mDem~ f g;Rm!. ~B9!

A somewhat more intuitive notation is achieved if we com
bine Hmg with Dem(ag;Rm) (a5e, f ). This combination
can be rewritten asHka2lka , where we introduced the ex
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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cited state vibrational HamiltonianHka5Hkg2(ek(g;Rk)
2ek(g;Rk

(g)))1ek(a;Rk)2ek(a;Rk
(a)) and the related reor

ganization energylka5ek(a;Rk
(g))2ek(a;Rk

(a)). Here, the
Rk

(a) denote the equilibrium configuration which belongs
the electronic statewa of chromophorek. The PES corre-
sponding to the vibrational HamiltonianHka are defined in a
way to have their minimum at zero energy~as it has already
been done for the quantitiesHkg). Therefore the minimum
energyek(g;Rk

(g)) of the ground-state PES has been remov
and replaced by the minimum energyek(a;Rk

(a)) of the ex-
cited state.

All this allows to write the vibrational Hamiltonian Eqs
~B2! and ~B5! in the limit of vanishing electronic interchro
mophore coupling in the form.

Hvib
(intra)~a1 ,a1!→ (

mÞm0

Hmg1Hm0e2lm0e , ~B10!

and

Hvib
(intra)~a2 ,a2!→ (

mÞm0 ,n0

Hmg1Hm0e1Hn0e2lm0e

2ln0e , ~B11!

as well as

Hvib
(intra)~a2 ,a2!→ (

mÞm0 ,n0

Hmg1Hk0f2lk0f . ~B12!

If both Hamiltonians are combined with the associated e
tronic excitation energyE(m0e), as well asE(m0e,n0e) and
E(k0f ) @in the limit of vanishing electronic interchro
mophore coupling, cf. Eq.~4!# we obtain the correct Hamil
tonian of electron intramolecular vibrational interaction va
for decoupled chromophores.

The respective time-evolution operator~restricted up to
the presence of double excitations! can be written as

U0~ t !5)
m

Umg~ t !u0&^0u

1(
m

e2 ivmegtUme~ t ! )
nÞm

Ung~ t !ume&^meu

1(
m,n

e2 i (vmeg1vneg)tUme~ t !Une~ t !

3 )
kÞm,n

Ukg~ t !ume,ne&^me,neu

1(
m

e2 ivm f gtUm f~ t ! )
nÞm

Ung~ t !um f&^m fu. ~B13!

The single-chromophore time-evolution operators are
fined via the vibrational HamiltonianHma , and the transition
frequencies have been already introduced in Eq.~2!.

2. Linear coupling to intramolecular vibrations

The formulas given in the preceeding section will be p
into a form of PES belonging to the intramolecular vibr
tions. Therefore, we proceed as in the case of the couplin
intermolecular vibrations.18 First, as a result of a normal
Downloaded 19 Sep 2005 to 141.20.41.167. Redistribution subject to AIP
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mode analysis the ground-state PES should be described
set of uncoupled harmonic vibrational coordinates with mo
index z ~note the difference to the intermolecular norm
modes!. Second, a linear expansion of the quantit
Dem(ag;Rm) with respect to the deviationsDRm j5Rm j

2Rm j
(0) is carried out (j labels all Cartesian coordinates o

chromophorem). Remember that theRm j
(0) refer to the CC

electronic ground state. If we introduce the normal mod
coordinatesQz the desired linear coupling to intramolecul
vibrations has been derived. We may write~note the replace-
ment ofDem by em on the right-hand side!,

Dem~ag;Rm!'(
j

S ]

]DRm j
em~ag;Rm! DU

Rm5R
m
(0)

3(
z

aj zQz . ~B14!

Here, theaj z mediate the linear transformation between t
Cartesian intramolecular coordinates and the normalm
coordinates~written in a dimensionless form based on t
use of harmonic oscillator operators!. Since the coupling ex-
pression is linear in the vibrational coordinates the sin
chromophore coupling constant follows as

gz
(intra)~ma!5

1

\vz
(intra)(

j
S ]

]DRm j
em~ag;R! DU

R5R0

am jz .

~B15!

Once these local coupling constants have been introduce
may write

Dem~ag;Rm!5(
z

\vzgz
(intra)~ma!Qz . ~B16!

This enables us to introduce the coupling of MX states
intramolecular vibrations via simple shifted harmonic osc
lator PES. For the coupling to the single-exciton state
obtain from Eqs.~B7! and ~B3!,

hm~a1!5Tm
(intra)1(

z
\vz$2gz

(intra)2~m,a1!

1 1
4 ~cz2cz

112gz
(intra)~m,a1!!2%. ~B17!

The new coupling constant reads

gz
(intra)~m,a1!5uCa1

~me!u2gz
(intra)~me!. ~B18!

In a similar manner we may derive the expression valid
the two-exciton manifold,

hm~a2!5Tm
(intra)1(

z
\vz$2gz

(intra)2~m,a2!

1 1
4 ~Cz2Cz

112gz
(intra)~m,a2!!2%, ~B19!

but now with the coupling constant

gz
(intra)~m,a2!52 (

kÞm
uCa2

~me,ke!u2gz
(intra)~me!

1uCa2
~m f !u2gz

(intra)~m f !. ~B20!
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The energetic shifts\DV(aN) of the particular MX level
introduced, for example in Eq.~13! can simply be deduced
from Eqs.~B17! and ~B19! as the so-called polaron shift.

APPENDIX C: DENSITY MATRIX THEORY
ACCOUNTING FOR NONADIABATIC TRANSITIONS

To explain the main idea of the used density mat
theory we apply it in the following to a system of exciton
vibrational statesuA&[ua&ux̄am& which are somewhat re
duced as compared to those introduced in Sec. III. Herea
reminds on the MX quantum number but to have a suffici
simple notation any hind on the given manifold is su
pressed. Them denote vibrational quantum numbers of t
vibrational statesxam , which in addition depend on the~ex-
citonic! quantum numbera.

The statesuA& are characterized by energiesEA5\va

1\vm ~including excitonic and vibrational contributions!
and coupled one to another via the matrix elements\vAB .
The density matrix in the state representation reads

WAB~ t !5^AuŴ~ t !uB&. ~C1!

It is defined by the time-dependent nonequilibrium statisti
operatorŴ(t). Let us introduce a reduced density matr
~RDM! by taking the trace with respect to the vibration
quantum numbers

rab~ t !5(
m

Wam,bm~ t ![(
m

^au^x̄amuŴ~ t !ux̄bm&ub&. ~C2!

As it has been already demonstrated in Ref. 26 this RDM
be calculated in a standard way by applying the project
superoperatorP which acts on an arbitrary matrix as follow

PAam,bn5dm,n f ~m!(
k

Aak,bk . ~C3!

The expression includes the thermal distributionf (m) with
respect to the vibrational levels. Its independency on the
citonic quantum numbera is essential for the whole ap
proach and may follow directly from the assumption of
linear exciton–vibrational coupling@cf. Eq. ~B14!#.

Unfortunately the RDM, Eq.~C2! cannot be directly re-
lated to observables like, for example, the expectation va
of the CC dipole operator. To get such a quantity a RDM h
to be defined in taking the trace trvib$¯% with respect to the
vibrational ~reservoir! states. It follows

r̄ab~ t !5tr$Ŵ~ t !ub&^au%[^autrvib$Ŵ~ t !%ub&. ~C4!
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This RDM is of primary interest and it will be clarified in th
following how rab(t), Eq. ~C2! can be related tor̄ab , Eq.
~C4!. Since the vibrational states depend on the excito
~system! quantum numbersa there is no unique way to cal
culate the trace. Let us take the statex̄am which belongs to
the exciton stateua&. We obtain

r̄ab~ t !5(
m

^au^x̄amuŴ~ t !ux̄am&ub&, ~C5!

what is essentially different fromrab(t), Eq. ~C2!. If we
apply the displacement operatorDab

1 [Da
1Db ~see, e.g., Ref.

19! which moves the~harmonic oscillator! statex̄bm to x̄am

it follows

r̄ab~ t !5(
m

^au^x̄amuŴ~ t !Dab
1 ux̄bm&ub&. ~C6!

To have a simple interrelation betweenr̄ab andrab we take
in the spirit of a mean-field approximation the expectati
value ofDab

1 and write

r̄ab~ t !5(
m

^Dab
1 &^au^x̄amuŴ~ t !ux̄bm&ub&

[^Dab
1 &rab~ t !. ~C7!

This expression offers the required interrelation betwe
both types of RDM. In the following we demonstrate how
calculaterab(t). Once this has been doner̄ab(t) can be
computed in using the above given formula. A more detai
analysis of this computation scheme will be given elsewhe

It remains to fix the definition of the expectation valu
^¯&. A reasonable way to define the expectation value of
displacement operator would be the thermal average w
respect to those vibrational statesx̄m to which Da and Db

refer. Therefore, we noteDaux̄m&5ux̄am& and obtain̂ Dab
1 &

5(m f (m)^x̄amux̄bm&. This quantity has bee already intro
duced in Sec. III C. If the given RDM-theory is applied to th
MX vibrational system discussed in the main part of th
paper it has to be defined for the intramolecular~intrachro-
mophore! vibrations. However, it becomes equal to one f
the intermolecular vibrations since for those vibrations a
shift of the equilibrium position has been neglected.

Next, the density matrix theory will be formulated i
such a manner that an equation of motion for the RDM, E
~C2! is obtained in the second order with respect to the c
pling matrix v. To get this equation we start with th
Liouville–von Neuman equation for the total statistical o
erator. It results in the following equation of motion for th
density matrix Eq.~C1!:
h respect
]

]t
WAB~ t !52 ivABWAB~ t !2 i(

C
~vACWCB~ t !2vCBWAC~ t !! ~C8!

with the transition frequenciesvAB5(EA2EB)/\ andvAB5VAB/\.
As in the standard projection operator technique and by concentrating on a second-order perturbation theory wit

to v we get the following equation of motion for the RDM~for details see Ref. 26,vab5va2vb)
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



758 J. Chem. Phys., Vol. 118, No. 2, 8 January 2003 B. Brüggemann and V. May
]

]t
rab~ t !52 ivabrab~ t !2 i(

g
~^vag&rgb~ t !2^vgb&rag~ t !!2(

g,d
E

0

`

dt~eivdgt^vgd~2t!vdb&rag~ t !

1eivgdt^vad~t!vdg&rgb~ t !$eivbdt^vdb~2t!vag&1eivgat^vdb~t!vag&%rgd~ t !!. ~C9!
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Here, already the Markov approximation has been car
out. The averaging with respect to the vibrational~reservoir!
DOF has been abbreviated by

^vab&5(
m

f ~m!vam,bm ~C10!

and

^vab~ t !vgd&5(
m,n

f ~m!eivmntvam,bnvgn,dm2^vab&^vgd&,

~C11!

wherevmn5vm2vn .
For the applications within this paper we change to

so-called Bloch model in decoupling the dynamics of t
diagonal elements of the RDM from that of the off-diagon
ones,

S ]rab

]t D
diss.

52da,b(
g

~kagPa2kgaPg!

2~12da,b!
1

2 (
g

~kag1kbg!rab . ~C12!

The transition rates are given as

kab52G~ab,ba;vab! ~C13!

with

G~ab,gd;v!5ReE
0

`

dteivt^vab~t!vgd&. ~C14!

Equation ~C12! describes the redistribution of electron
state populationPa as well as electronic coherencesrab

among the various excitonic levels\va .

APPENDIX D: MULTIEXCITON VIBRATIONAL
STATE REPRESENTATION OF THE DENSITY
MATRIX THEORY

The state representation explained here is based on
MX vibrational states introduced in Sec. III. The respect
representation of the complete CC Hamiltonian, Eq.~4!
readsHCC5(A,BHA,BuA&^Bu, with the Hamiltonian matrix
HA,B5dA,BEA1VA,B . The energiesEA correspond to the
complete stateuA& and split off into excitonic and vibrationa
contributions @cf. Eq. ~13!#, EA /\5E(aM)/\1DV(aM)
1Vm1V̄m̄ , and the coupling matrix elements incorpora
different contributions VA,B5VA,B

(mx– inter)1VA,B
(mx–intra)1VA,B

(na)

1VA,B
(field)(t). The elements resulting from the coupling to t

intermolecular vibrations follow as~note the presence of th
intramolecular Franck-Condon factor which will be di
cussed elsewhere!
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VA,B
(mx– inter)5dM ,N~12dN,0!^x̄aNm̄ux̄bNn̄&3(

j
\vjgj~aNbN!

3^xmu@cj
11cj#uxn&. ~D1!

The off-diagonal matrix elements ofHvib
(intra)(aM ,bN), con-

tained in Eq.~9! are used to introduce a coupling which
combined with the part following from intermolecular vibra
tions. It reads

VA,B
(mx–intra)5dM ,N~12dN,0!~12daN ,bN

!dm,n

3^x̄aNm̄uHvib
(intra)~aN ,bN!ux̄bNn̄&. ~D2!

Finally, the matrix element of the nonadiabatic transition f
low as (N.1)

VA,B
(na)5~dM ,N211dM ,N11!dm,n

3^x̄aMm̄uQ~aNbN!ux̄bNn̄&. ~D3!

APPENDIX E: EEA RATE WITH AN EXACT ACCOUNT
FOR MX EFFECTS

In this Appendix we demonstrate how to fully cover e
citonic effects into the DOS of the EEA ratek(EEA)(a2

→b1). Most appropriate would be the use of the coupli
Hamiltonian based on a linear expansion with respect to
intramolecular vibrational coordinates introduced in Appe
dix B 2. Now the Hamiltonian describing intramolecular d
namics in the two-exciton manifold as well as in the sing
exciton manifold are characterized by the same harmo
oscillators only displaced one to another. For such a case
well-known ~see, e.g., Refs. 19, 27! that the trace in Eq.~17!
can be expressed by the so-called line-shape function app
ing in the exponent. As a result the combined DOS read

D~a2 ,b1 ;V~a2 ,b1!!5
1

2p\ E dt exp~ iV~a2 ,b1!t

2G~a2,b1;0!1G~a2 ,b1 ;t !!.

~E1!

The G-function is defined as

G~a2,b1 ;t !5E dve2 ivt)~11n~v!!J~a2,b1 ;v!

2J~a2,b1;2v!), ~E2!

wheren(v) denotes the Bose–Einstein distribution and t
spectral density reads

J~a2 ,b1 ;v!5(
m

(
z

~gz
(intra)~m,a2!

2gz
(intra)~m,b1!!2d~v2vz!. ~E3!
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For the coupling constantsgz
(intra) we refer to Appendix B 2.

The general structure of Eq.~E1! is standard and no expla
nation is necessary here. For a possible treatment we ref
Ref. 27. We only note that MX effects enter the expressi
in a direct way via MX transition energies, but also in a mo
indirect way via the coupling constants to the vibration
DOF.
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23V. May and B. Brüggemann, inFemtochemistry and Femtobiology, edited

by A. Douhal and J. Santamaria~World Scientific, Singapore, 2002!, p.
820.

24T. Mancal and V. May, Chem. Phys.268, 201 ~2001!.
25To be completely correct it has to be mentioned that the given formula

k(EEA) is only valid if we provide real exciton expansion coefficients. Th

can however be achieved but will be not indicated explicitly in the f
mulas which follow.
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