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To describe nonadiabatic bridge-assisted donor-acceptor (D-A) electron transfer (ET) kinetic equations for
the electronic site, populations are presented that simultaneously account for the sequential as well as the
superexchange transfer mechanism. The derivation of the kinetic equations is based on the precondition of
fast intrasite vibrational relaxation, which is used to introduce a coarse-grained kinetic description. If the
electron hopping across the bridge units is fast compared to the overall D-A ET, the number of kinetic
equations can be reduced additionally. A set remains that covers only the donor, acceptor, and the integral
bridge populations, independently on the number of bridging units. The case of a small bridge population is
studied in detail. In such a situation, the D-A ET process can be described by single-exponential kinetics
with a transfer rate that is the sum of the overall sequential and superexchange rate. The ratio of these overall
rates is analyzed in the framework of the Song and Marcus model for the vibrational spectral function. If the
reorganization energy of the D-A ET amounts to about 1 eV the sequential mechanism can dominate the
superexchange ET, even though the population of the bridge by the transferred electron is of the order of
10-4 to 10-10. The dominance of the sequential ET mechanism increases not only with increasing bridge
length but also with increasing frequency of the ET reaction coordinate. Finally, the whole approach is applied
to earlier experiments on D-A ET through a peptide bridge formed by proline oligomers of varying length.39

The measured fast decrease of the overall transfer rate with an increase of the bridge length for short oligomers
(trimers and tetramers) followed by a much weaker decrease for larger oligomers can be completely reproduced.

I. Introduction

Originally proposed by McConnell,1 the superexchange
mechanism of distant donor-acceptor (D-A) electron transfer
(ET) mediated by a bridging molecular chain has received
constant interest during the past decades. The concept could be
successfully applied to the analysis of ET reactions in chemical
as well as biological systems (see, e.g., the overviews2-7 and
the textbooks8-10). It has been already realized in the late
seventies that the superexchange type of ET occurs in combina-
tion with thermally activated8,11-14 or hopping15-20 ET. Such a
theoretical conclusion has been supported by recent experiments
where DNA fragments act as the bridging system.21-24 To
evaluate the contribution of each mechanism, and in this manner
to specify the details of bridge-assisted ET (oxidation-reduction
reactions), one needs an approach that simultaneously accounts
for all ET mechanisms.

First results in this direction have been published by Mukamel
in the late eighties18,19 (see also the more recent descrip-
tion10,14,17,20). Within this approach so-called Liouville space
pathways could be introduced that correspond either to the
superexchange or to the sequential mechanism of D-A ET.
Therefore, these pathways allow for a classification of the
various rate expressions and lead to a universal form of the
corresponding ET rates. An alternative derivation of such general
ET rates has been given in an approach where properly defined

reduced density matrix equations are solved numerically. The
respective density matrix describes ultrafast ET by incorporating
into the description a very restricted number (1...3) of active
vibrational coordinates. The latter can be understood as reaction
coordinates of the ET and are coupled to passive coordinates
that form a heat bath13,15,25-30 (see also the various contributions
in ref 31). Unfortunately, the numerical solution of the density
matrix equations becomes practically impossible if one tries to
treat systems with more than 3 or 4 active vibrational coordi-
nates. A further attempt to derive ET rates has been given in
the framework of the path integral technique applied to the spin-
boson model.32 But these treatments are restricted to systems
with a small number of electronic states (at least two in the
case of the standard spin-boson model).

However, a solution of the mentioned reduced density matrix
equations becomes possible if the ET is not of the ultrafast type.
This would be the case if the characteristic time of the ET
reaction,τET, becomes larger than the characteristic time of
(intrasite) vibrational relaxation,τrel, i.e.,

It is just this type of ET reaction we will exclusively concentrate
on in the present paper. In particular, inequality (1) suggests a
coarse-grained description of bridge-mediated D-A ET. Ac-
cording to the coarse-graining procedure, the huge set of density
matrix equations for the whole DBA system is reduced to a
dramatically smaller set of Pauli-like equations for the electronic
level populations (integral site populations)Pm(t). Since the
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characteristic timeτrel is typically of the order of 0.1-10 ps,20,25

the coarse-grained description is valid for those ET systems
where the rate constants do not exceed values of 1011to 1013

s-1. Such a situation is typical for nonadiabatic bridge-mediated
ET where the electronic couplings between neighboring sites
are too small to form an electronic band covering the whole
bridging system.

As shown in the subsequent considerations, inequality (1)
paves the way for a correct description of D-A ET across a
bridge with an arbitrary number of bridging units and with each
single unit characterized by a complicated vibrational structure.
A characterization of the relative importance of the superex-
change and the sequential ET mechanism for bridges with a
rather large number of units becomes possible. For appropriate
chosen energetic parameters it can be shown that the sequential
mechanism may strongly dominate the superexchange one.
Especially for systems with a large number of bridging units,
this dominance can be demonstrated even though the population
of the bridge by the transferred electron is very small (of the
order of 10-4 to 10-10 depending on the energy gap and the
various coupling parameters). In this manner the results of18,19

are generalized to D-A ET reactions mediated by a molecular
bridge with an arbitrary number of units. In particular, our
approach avoids the use of certain projection operators that fix
the considered type of vibrational distribution from the very
beginning.

The paper is organized as follows. In the next section the
basic ideas to derive the kinetic equations for the overall
electronic site-populations are given with the hint on Appendix
A where the collection of technical details can be found. The
assumption of fast intrabridge hopping processes is used in
section III to obtain an effective three-site system where the
whole bridge acts, beside the D and A, as a third effective site.
This simplification is valid for an arbitrary number of bridge
units and enables us to present an analytical expression for the
ET rate. A discussion of the dependence on the various
parameters entering the ET rate-expressions is given in section
IV together with an application to ET experiments on DA
systems where the bridge is given by polypeptide chains of
varying length. Our conclusion are presented in section V.

II. Rate Equation Approach

Let us start with the standard model for bridge-mediated ET
(cf. Figure 1a) where the D and the A are interconnected by a
linear molecular chain ofN bridging units B. Each unit and the
D and the A are characterized by a set of local electron-vibration
states|mR〉 with corresponding energiesEmR. Here,m labels
the sites of the whole ET system (m ) D, 1, 2,...,N, A, Figure
1b), andR counts the respective vibrational levels.

As it has been mentioned in the introductory section, the
coarse-grained approach is based on inequality (1), which is
valid for the case ofnonadiabaticbridge-mediated D-A ET.
This type of ET is characterized by a weak coupling between
electron-vibrational states|mR〉 of sitem and the states|nâ〉 of
site n.

The quantityVmn denotes the electronic intersite coupling matrix
element (cf. Figure 1b) whereas〈ømR|ønâ〉 is the overlap integral
between the corresponding vibrational wave functions. Relation
(1) indicates that the ET occurs on the background of fast
intrasite relaxation processes. For the timet ∼ τrel, these

processes establish a Boltzmann distribution among the electron-
vibration states|mR〉 of eachmth site. As a consequence, specific
relations can be established among the elements of the density
matrix FmR nâ(t) of the whole DBA system. This type of density
matrix we have to deal with is defined as

whereF(t) denotes the reduced statistical operator of the ET
system. It has been already discussed in ref 33 that for ET
processes for which eq 1 is valid, the various elements of the
density matrix reach particular values. All off-diagonal elements
FmR mâ(t) related to a single sitem vanish, whereas the diagonal
elements, i.e., the populationsPmR(t) ≡ FmR mR(t) obey Boltz-
mann’s relationPmR(t)/Pmâ(t) ) exp[-(EmR - Emâ)/kBT]. This
behavior can be cast into the following expression:

where we introduced the complete electronic site population
(integral population),

and the Boltzmann equilibrium distribution functions of sitem,

Relation (4) underlines the main property of the chosen coarse-
grained description. According to a fast intrasite relaxation, the
populationsPmR(t) vary only via an alteration of the total site
populationsPm(t) caused by the weak intersite couplings (2).
The respective time scale, as well as that for the change of the
intersite off-diagonal elementsFmR nâ(t), coincides with the
characteristic timeτET of the ET reaction.

The resulting set of coarse-grained equations follows from
the generalized master equation (written out in tetradic repre-
sentation via the elements (3)10,13,15,17) by taking into consid-

VmR nâ ) Vmn〈ømR|ønâ〉 (2)

Figure 1. Linear molecular DBA nanostructure composed ofN
bridging units. Part a: The sequential (gn and rn) and superexchange
(κ3 andκ-3) rate constants are indicated only. Part b: The ET occurs
as the result of the off-diagonal couplingsVmRm nRn ) Vmn〈ømRm|ønRn〉
between the energy levelsEnRn ≈ EmRm related to neighboring sitesn
andm, (n, m) D, 1, 2,...N - 1, A) and as a result of the superexchange
coupling TARA DRD between the separated donor and acceptor centers.

FmR nâ(t) ) 〈mR|F(t)|nâ〉 (3)

FmR mâ(t) ) δR,âW(EmR)Pm(t) (4)

Pm(t) ) ∑
R

FmR mR(t) (5)

W(EmR) )
1

Zm

exp(-EmR/kBT), Zm ) ∑
R′

exp(-EmR′/kBT) (6)
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eration the property (4). Within this set of equations, the integral
site populations are coupled to the intersite off-diagonal elements

Here, we introduced transition energies∆EmR nâ ) EmR - Enâ

and a respective energy broadeningΓmR nâ ) (p/2)(τmR
-1 + τnâ

-1)
defined via the inverse lifetimesτmR

-1 and τnâ
-1 of those states

involved in the transition. The lifetimes directly describe the
fast intrasite relaxation processes and thusτmR ∼ τrel. In
concentrating on the much slower ET process proceeding on a
time-scaleτrel, one can neglect the time derivative ofFmR nâ(t)
in comparison to the first term of the right-hand side. It follows
that

Equations 7 and 9, along with relation (4), constitute the basis
for an appropriate description of nonadiabatic bridge-mediated
ET. It is easy to see from eq 9 that the coarse-grained description
is characterized by the smallness of the parameters

These parameters can be attributed to the various steps of the
iteration procedure necessary to derive the closed set of
equations for the site populationsPm(t). All details of the
derivation together with concrete expressions for the different
types of rates can be found in Appendix A (in particular, see
eqs A10-A12).

III. Overall D -A ET Rates

The subsequent analysis of the D-A ET will be based on
the standard type of kinetic eqs A10-A12, which will be written
here as (noten, m ) D, 1, 2,...N, A)

Obviously, they are of such a type to guarantee probability
conservation, i.e., the site populations satisfy

wherePB(t) ) ∑n)1
N Pn(t) denotes the integral bridge popula-

tion.
If the ET proceeds between the neighboring sites (cf. Figure

1a), the rate constants in eq 11 coincide with sequential transfer
rates

and

If m and n in the rate expressions of eq 11 do not belong to
neighboring sites, they express the superexchange transfer rates
according to

Concrete expressions for the rates are listed in Appendix A,
eqs A17 and A18.

The solution of the set (11) leads toN + 2 different transfer
rates that completely specify the ET reaction. The number of
rates can be drastically reduced if an ET reaction is considered
where the energy gap∆En D(A) ≡ En0 - ED(A)0 is large compared
to the bridge internal energy gaps∆En n′ ≡ En0 - En′0, (n, n′ )
1, 2,...N). In such a case the bridge interior rate constantsκnfn′
significantly exceed the rate constantsκnfD(A) and κD(A)fn.
Accordingly, the D-A ET occurs on the background of much
faster hopping processes within the bridging with characteristic
time τhop. This behavior can be reflected by the inequality

which leads us to a second type of coarse-grained description,
valid on a time scaleτET. On this time scale, according to the
fast hopping processes within the bridge the alteration, of the
bridge-internal site populationsPn(t), (n ) 1, 2,...N) is exclu-
sively determined by an alternation of the total bridge population
PB(t). Bearing in mind the ratioPm(t)/Pn(t) ) Zm/Zn (Zm is the
partition function, cf. eq 6) valid att . τhop, we see that

Introducing this expression into the set of eqs 11, we obtain a
reduced set of kinetic equations

with effective transfer rates

and

Ṗm(t) ) -(i/p)∑
R

∑
kê

(VmR kêFkê mR(t) - Vkê mRFmR kê(t)) (7)

F̆mR nâ(t) ) -
i

p
[(∆EmR nâ - iΓmR nâ)FmR nâ(t) +

∑
kê

(VmR,kêFkê nâ(t) - Vkê,nâFmR kê(t))] (8)

FmR nâ(t) )
1

∆EmR nâ - iΓmR nâ
∑
kê

(Vkê nâFmR kê(t) - VmR kêFkê nâ(t)) (9)

|VmR nâ|2

∆E mRnâ
2 + Γ mRnâ

2
, 1 (10)

Ṗn(t) ) - ∑
m*n

(κnfmPn(t) - κmfnPm(t)) (11)

PD(t) + PB(t) + PA(t) ) 1 (12)

κDf1 ) κDf1
(seq) ≡ κ-1

κAfN ) κAfN
(seq) ≡ κ-2 (13)

κ1fD ) κ1fD
(seq) ≡ κ1

κNfA ) κNfA
(seq) ≡ κ2 (14)

κnfn+1 ) κnfn+1
(seq) ≡ gn (15)

κnfn-1 ) κnfn-1
(seq) ≡ rn (16)

κnfm ) κnfm
(sup) (17)

τrel , τhop , τET (18)

Pm(t) )
Zm

Z
PB(t), Z ) ∑

m)1

N

Zm (19)

ṖD(t) ) -(ø-1 + κ3)PD(t) + ø1PB(t) + κ-3PA(t)

ṖB(t) ) -(ø1 + ø2)PB(t) + ø-1PD(t) + ø-2PA(t)

ṖA(t) ) -(ø-2 + κ-3)PA(t) + ø2PB(t) + κ3PD(t) (20)

ø1 )
Z1

Z
κ1 +

1

Z
∑
n)2

N

ZnκnfD
(sup)

ø2 )
ZN

Z
κ2 +

1

Z
∑
n)1

N-1

ZnκnfA
(sup) (21)

ø-1 ) κ-1 + ∑
n)2

N

κDfn
(sup)
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The superexchange transfer rates

are defined by eqs (A16) and (A18) withn ) D, j ) A and
n ) A, j ) D, respectively. Taking the initial conditions
PD(0) ) 1, PA(0) ) 0, andPB(0) ) 0 the following analytical
solution of the rate eqs 20 is obtained

The two overall transfer rates,

with

give a complete description of the coarse-grained D-A ET
kinetics.

The solution (24) indicates that the coarse-grained bridge-
assisted ET is generally characterized by double exponential
kinetics. However, at large energy gaps∆En D(A) the rate
constantsø-1 and ø-2 (as well asκ-3 and κ3) become small
compared to the rate constantsø1 andø2. As a result, the overall
transfer rates reduce to the expression

and expression

with K1 . K2. It follows from the solution of eq 24 that the
largest population of the bridge is reached within time interval
K1

-1 , t , K2
-1. The respective value is given by the ratio

If ø-1 , ø1 + ø2, the maximal populationPB
(max) becomes

negligibly small so that the transferred electron populates mainly
either the donor or acceptor site. A detailed inspection of the
solution (24) indicates that atø-1,ø-2 , ø1,ø2, whenK1 . K2,

the D-A ET appears att . K1
-1 where only the small overall

transfer rateK2 specifies the D-A ET. Thus, the condition
PB

(max) , 1, which corresponds completely to inequalityK1 .
K2, can be taken as the condition for the single-exponential D-A
ET process. Now, the D-A ET is described by

where the overall D-A ET rate

can be represented as the sum of the combined forward transfer
rate

and the combined backward rate

Such a structure of the forward and backward transfer rates is
well known from the case of a bridge with a single unit only
(cf. refs 8, 34). Here, a generalization is given for the case of
an arbitrary number of bridging units. Just this result becomes
especially important for a comparison of the bridge-mediated
sequential and superexchange mechanisms of D-A ET.

IV. Results and Discussion

The combined forward and backward transfer rates introduced
at the end of the foregoing section contain contributions that
result from pure superexchange (rate constantsκ3 andκ-3) as
well as from the superposition of the sequential and superex-
change mechanisms of ET (transfer ratesø1(2) andø-1(-2)). In
the following we will analyze the ET in D-A complexes where
the energy gaps∆En D and ∆En A largely exceed the bridge
internal energy gaps∆En n′, (n, n′ ) 1, 2,...N). For such a case
it becomes possible to show that the sequential rate constants
κ1, κ2 andκ-1, κ-2 give the main contribution to the transfer
ratesø1, ø2 and ø-1, ø-2, respectively. Correspondingly, the
combined transfer rates (eq 32) and (eq 33) reduce to the
expression

with the sequential component

and the superexchange component

of forward (backward) D-A ET rates.
Because it is the purpose of this paper to compare the

sequential and superexchange mechanism of bridge-assisted
D-A ET in dependence on the number of bridging units and
because the D-A ET can be described by single-exponential
kinetics, we rewrite the overall transfer rate as

ø-2 ) κ-2 + ∑
n)1

N-1

κAfn
(sup) (22)

κ3 ≡ κDfA
(sup), κ-3 ≡ κAfD

(sup) (23)

PD(t) )
a1ø1 + d2ø2

K1K2 [1 - 1
K1 - K2

(K1e
-K2t - K2e

-K1t)] +

1
K1 - K2

[(a1 + ø1)(e
-K2t - e-K1t) + K1e

-K1t - K2e
-K2t]

PA(t) )
a2ø1 + d1ø2

K1K2 [1 - 1
K1 - K2

(K1e
-K2t - K2e

-K1t)] +

a2 + ø2

K1 - K2
(e-K2t - e-K1t)

PB(t) ) 1 - PD(t) - PA(t) (24)

K1,2 ) 1
2
(a1 + d1 ( x(a1 - d1)

2 + 4a2d2) (25)

a1 ≡ ø2 + ø-2 + κ-3, a2 ≡ κ3 - ø2,

d1 ≡ ø1 + ø-1 + κ3, d2 ≡ κ-3 - ø1 (26)

K1 ≈ a1 + d1 ≈ ø1 + ø2 (27)

K2 ≈ a1d1 - a2d2

a1 + d1
≈ κ3 + κ-3 +

ø1ø-2 + ø2ø-1

ø1 + ø2
(28)

PB
(max) )

ø-1

ø1 + ø2
(29)

Pn(t) = (Pn(0) - Pn(∞))e-Kt + Pn(∞), (n ) D, A, B) (30)

K ) τET
-1 ≡ K2 ) kf + kb (31)

kf ≡ κ3 +
ø-1ø2

ø1 + ø2
(32)

kb ≡ κ-3 +
ø-2ø1

ø1 + ø2
(33)

kf(b) ) κf(b)
(seq)+ κf(b)

(sup) (34)

κf(b)
(seq)≡

κ-1(- 2)(ZN(1)/Z)κ2(1)

(Z1/Z)κ1 + (ZN/Z)κ2

(35)

κf(b)
(sup)≡ κ3(- 3) (36)

K ) K(seq)+ K(sup) (37)
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Here, we set

and

Furthermore, we introduce the ratio

which is well suited to characterize the relative efficiency of
both discussed ET mechanisms.

To have somewhat more concrete results at hand, we use the
rate constants as introduced in eqs A17 and A18, with the Franck
Condon factor specified according to eq A22. The latter is based
on the use of the spectral function localized at a single vibration
with frequencyω0 (Song-Marcus model,35,36 for details see
Appendix A2). We obtain

wheren denotes the Bose distribution,Iν is the modified Bessel
function andTDA(N) gives the DA superexchange matrix element
(all other parameters have been explained in the appendix). The
reverse rates simply follow from

with the driving force∆E ≡ ED0 - EA0 of the D-A ET reaction
(cf. Figure 1b).

An easy consideration of the dependence ofη(N), eq 40
becomes possible for a regular bridge with identical bridge units.
In this case, all partition functionsZm coincide, and we have
Z ) NZ0 whereZ0 ≡ Z1 ) Z2 ) ... ) ZN. Noting this property
and bearing in mind relations (42), we can reduce the ratio
(40) to

The numberN of bridge units is only contained in the
superexchange rate constantκ3. In line with the general
expression, eq A16, the square of the superexchange D-A
coupling reads

Here, ∆ED ≡ ∆E1D ) ∆E2D ) ... ) ∆END, ∆EA ) ∆E1A )
∆E2A ) ...∆ENA ) ∆ED + ∆E, and the quantityVB ≡ Vn n+1

gives the electronic coupling between the nearest-neighbor
bridge units of the regular bridge.

According to expressions (41), (42), and (44), one can use
eq 43 to evaluate the efficiency of each ET mechanism in
dependence on the various parameters (electron couplings, gaps,
driving force of ET reaction, vibration frequencies, number of
bridge units, and temperature). Analogously, one can estimate
the bridge population (eq 29), which reads

Below, we will focus on the influence of the bridge length on
the ET that represents the most interesting effect. Therefore we
will vary the gap∆ED, the driving force∆E, as well as the
frequencyω0 and use ratio (43) in the form

Note that the quantityκ̃3 follows fromκ3, eq 41, if one replaces
|TDA(N)|2 by |TDA(1)|2.

Figure 2 shows the contribution assigned to the sequential
and the superexchange mechanism of distant D-A ET for
various values of the energy gap and the driving force. The
most striking feature is the substantial increase of the part of
the overall transfer rate related to the sequential mechanism with
the increase of the number of bridge units. For common values
of the reorganization energies,λlk ) Slkpω0 ∼ 1 eV and the
energy gap∆ED ∼ 1 eV (cf. refs 3-5, 7, 34), the sequential
mechanism exceeds the superexchange one (lnη(N) > 0) if
the number of bridge units becomes larger than 5 or 7 (see the
set II of lines in Figure 2). More precisely, for∆ED ) 0.5 eV

K(seq)≡ κf
(seq)+ κb

(seq) (38)

K(sup)≡ κf
(sup)+ κb

(sup) (39)

η(N) ) K(seq)/K(sup) (40)

κ1 ) 2π
p

|V1D|2
pω0

e-S1Dcothpω0/2kBT(1 + n(ω0)

n(ω0) )ν1D/2

×

I|ν1D|(2S1Dxn(ω0)(1 + n(ω0)))

κ2 ) 2π
p

|VNA|2
pω0

e-SNAcothpω0/2kBT(1 + n(ω0)

n(ω0) )νNA/2

×

I|νNA|(2SNAxn(ω0)(1 + n(ω0)))

κ3 ) 2π
p

|TDA(N)|2
pω0

e-SDAcothpω0/2kBT(1 + n(ω0)

n(ω0) )νDA/2

×

I|νDA|(2SDAxn(ω0)(1 + n(ω0))) (41)

κ-1 ) κ1 exp(-∆E1D/kBT)

κ-2 ) κ2 exp(-∆ENA/kBT)

κ-3 ) κ3 exp(-∆E/kBT) (42)

η(N) )
κ-1

κ3

1
1 + κ1/κ2

(43)

Figure 2. Relative contribution of the sequential and the superexchange
mechanism of D-A ET in dependency on the number of bridge units
N at various driving forces∆E and energy gaps. I:∆ED ) 0.5 eV, II:
∆ED ) 1.2 eV, III: ∆ED ) 2.0 eV. The curves are calculated in using
eqs 46, 41, 42, and 44 withλ1D ) S1Dpω0)0.9 eV,λNA ) SNApω0)1
eV, λDA ) SDApω0)1.2 eV,|V1D| ) |VNA| ) 0.04 eV,|VB| ) 0.02 eV,
ω0 ) 100 cm-1 andT ) 300 K.

|TDA(N)|2 ) |TDA(1)|2 ú2(N-1)

(|TDA(1)|2 ≡ |VNA|2|V1D|2
∆ED∆EA

, ú ≡ |VB|
x∆ED∆EA

, 1) (44)

PB
(max) )

κ-1

κ1

1
1 + κ2/κ1

(45)

η(N) ) η0 ú-2(N-1), (η0 ≡ κ-1

κ̃3

1
1 + κ1/κ2

) (46)
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only the sequential mechanism is responsible for ET at room
temperature (the set I of lines in Figure 2) while at∆ED ) 2
eV the sequential mechanisms becomes important forN > 12.

The influence of the energy gap is demonstrated in Figure 3
in detail. For a fixed number of bridge units, the relative
contribution of the superexchange mechanism to the formation
of the overall transfer rateK increases with increasing∆ED.N-
evertheless, even at∆ED ) 1.5 eV, the sequential mechanism
can dominate atN > 5-6. It is very important to note that the
sequential mechanism works effectively at very small bridge
populations. An estimation based on eq 45 with∆ED ) 0.8
eV, T ) 300 K, andN ) 6 gives a value ofPB

(max) ∼ 10-10.
But, even at a rather small energy gap,∆ED ) 0.21 eV, which
is typical for photoinduced D-A ET in DNA,14,21 the integral
bridge population remains small (PB

(max) ∼ 10-4) to guarantee a
description of long-range D-A ET by a single effective transfer
rate.

Figure 4 illustrates the frequency dependence of ratio (46).
The influence ofω0 becomes more significant for larger energy
gaps∆ED. ForN ) 10, the sequential mechanism dominates if

∆ED < 2 eV. However, for∆ED ) 2.2 eV, the superexchange
mechanism is more efficient ifω0 < 400 cm-1, while the
sequential mechanism exceeds the superexchange ifω0 > 400
cm-1.

So far the D-A ET has been analyzed with the supposition
of fast hopping transitions between the bridge units. Following
from inequality (18), a further coarse-grained description could
be used, finally resulting in an analytic form for the overall
D-A transfer rate. However, if bridge-internal hopping transi-
tions are the limiting step of the ET, the derivation of analytical
expressions for the ET rates becomes impossible and one has
to apply numerical methods to solve the complete set of kinetic
equations (eq 11). To explore the typical features of this case
we will consider a regular bridge where all intersite rate
constants coincide (κnfn(1 ) gn ) rn). In analogy to eq 41,
we set

The supposition of slow hopping across the bridge is guaranteed
by

Figure 5 displays the crossover from the predominance of the
superexchange mechanism to that of the sequential mechanism
with the increase of the bridge length. The superexchange ET
rate decreases according to the factor

where N is the number of bridging units andR - R0 )
a(N - 1) denotes the total distance the transferred electron has
to overcome along the bridge. The decay constantâ ) R/a
depends strongly on the bridge constanta and the intersite decay
parameterR. In the present case of nonadiabatic D-A ET, the
latter is defined viaú, eq 44, asR ) -2lnú, which gives here
R ) 4.2. Consider, for example a bridge formed by a
polypeptide structure for whicha ≈ 4-4.2 Å per residue

Figure 3. Relative contribution of the sequential and the superexchange
mechanism of bridge-assisted DA-ET in dependency on the energy gap
and for different numbers of bridge units. The curves are calculated
in using eqs 46, 41, 42, and 44 withλ1D ) S1Dpω0)0.9 eV, λNA )
SNApω0 ) 1 eV, λDA ) SDApω0 ) 1.2 eV,∆E ) 0, |V1D| ) |VNA| )
0.04 eV,|VB| ) 0.02 eV,ω0 ) 1000 cm-1 andT ) 300 K.

Figure 4. Relative contribution of the sequential and the superexchange
mechanism of bridge-assisted DA-ET in dependency on the vibrational
frequencyω0 at a fixed numberN ) 10 of bridging units and for
different energy gap (curves 1, 2, 3, 4, and 5 for∆ED ) 1, 1.5, 2.2,
2.5, and 3.0 eV, respectively). The curves are calculated using eqs 46,
41, 42, and 44 withλ1D ) S1Dpω0 ) 0.9 eV,λNA ) SNApω0 ) 1 eV,
λDA ) SDApω0 ) 1.2 eV, ∆E ) 0.2 eV, |V1D| ) |VNA| ) 0.04 eV,
|VB| ) 0.02 eV, andT ) 300 K.

Figure 5. The overal transfer rate of distant D-A ET versus
the number of bridging units. The limiting stage of the sequential
ET is given by the hopping across the bridge. Calculations are based
on a numerical solution of the set of kinetic eqs 11, 41, 42, and 47
with parametersωB ) ω0 ) 50 cm-1, λ1D ) S1Dpω0 ) 0.8 eV,λNA )
SNApω0 ) 0.6 eV, λDA ) SDApω0 ) 1 eV, λB ) SBpωB ) 0.6 eV,
∆E ) 0.25 eV,∆ED ) 0.35 eV, |V1D| ) |VNA| ) 0.05 eV, |VB| )
0.055 eV, andT ) 298 K.

κB ≡ κnfn(1 ) 2π
p

|VB|2
pωB

e-SBcothpωB/2kBT(1 + n(ωB)

n(ωB) )νDA/2

×

I|νB|(2SB xn(ωB)(1 + n(ωB))) (47)

κB , κ1,κ2 (48)

exp[-R(N - 1)] ) exp[-â(R - R0)] (49)
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(through-bond distance), then the decay factor amounts to
â ≈ 1 Å-1, which is typical for an idealizedR-helix structure.37

In contrast, the part of the transfer rate referring to the
sequential mechanism is proportional toN-1. It is just this
distance dependence that has been described recently in ref 38
for relatively large bridging systems. However, the same
behavior,K(seq) ∼ N-1, is valid in the case of a short regular
bridge, provided the ET across the bridge is the limiting step
of the overall D-A ET process. A detailed inspection of the
solution of the rate eqs 11 shows that at a small total bridge
population (PB

(max) < 10-3) for which the inequality

is fulfilled, the nonadiabatic D-A ET can always be character-
ized by a single-exponential time dependence. The correspond-
ing overall transfer rate contains contributions from the super-
exchange and the sequential ET mechanism. The crossover
region (with respect to an increasingN) between these two
mechanisms is mainly determined by the energy gap∆ED, the
driving force ∆E, the reorganization energiesλmn, and the
intrasite bridge couplingVB. A weak dependence, however, is
obtained with respect to the couplingsVD andVA. (In Figure 5,
the crossover region is found for bridges withN ) 4...5.)

There exists a further case of interest characterized by
inequality (48), i.e., by slow hopping transitions inside the
bridge. This type of bridge-mediated ET will be related below
to experimental results on ET reactions through D-A complexes
interconnected by a rigid peptide bridge of proline oligomers
with different lengths.39 We will concentrate on two types
of ET reactions, first on Ru(II)f Co(III), and second on
Os(II) f Ru(III). In all measurements, the D and A have been
interconnected by oligomers with up to six proline units.

As the main experimental result it could be demonstrated
(at room temperature conditions) that the ET rate decreases
drastically with an increase of the number of proline units up
to N ) 2...4. Afterward, a further increase ofN only leads to a
slightly decrease of the rate (cf. Figure 6). From the perspective
of all preceding discussions of this paper, such a behavior should
be explainable as the transition from the dominance of the
superexchange mechanism to that of the sequential one. And
indeed, the nice agreement of our numerical calculations with
the measurements of ref 39 as presented in Figure 6 justify this
conjecture. All parameters taken for the computations are given
in the caption to Figure 6. Although theD andA are different
in both studied examples the bridge units are not. For that reason
the same intersite bridge couplingVB ≈ 0.076 eV and identical
reorganization energiesλB ) 1.35 eV haven been taken for both
examples. Of course, there remains a certain arbitrariness with
respect to the choice of the parameters, in particular with respect
to the transfer couplingsV1D andVNA. Because they do not alter
essentially the general form of theN-dependence of the ET rate,
we have putV1D ≈ VNA for the sake of simplicity. Unfortunately,
only a restricted amount of experimental data is available on
theN-dependence atN > 4, which avoids a more extended fit
of all parameters.

As can be seen in both parts of Figure 6, we also addressed
the question of the relatedâ-values of the ET. It is very
important to note that the superexchange decay parameters,
R ) 4.2 (â )1 Å-1) for Ru(II) f Co(III) ET and R ) 4.6
(â ) 1.1 Å-1) for Os(II) f Ru(III) ET, are defined via the
same bridge internal parametersVB and λB. In which manner
the given set of ET parameters has to be changed if structural
and energetic disorder is taken into account will be the subject

of a separate study40 (see also the discussion of disorder
influence on the conductivity of molecular wires in refs 41, 42).
Nevertheless, the main experimental findings of ref 39 could
be explained in a natural way and with reasonable values for
all involved parameters, indicating in particular that the ET in
proline oligomers proceeds as a nonadiabatic reaction.

V. Conclusions

In the present paper we gave a unifying theory of bridge-
mediated D-A ET utilizing a coarse-grained approximation of
the dynamics of the transferred electron. This approximation
describes the ET on the background of fast intrasite relaxation
and is based on the smallness of the intersite electron couplings.
Consequently the ET proceeds in the nonadiabatic regime.
Within our approach, the huge set of electron-vibrational density
matrix equations can be reduced to the set ofN + 2 kinetic
equations, eq 11, governing the redistribution of the site
populations. The two types of rate constants contained in the
rate equations are originated by the sequential as well as the
superexchange mechanism of ET reactions.

In most cases of nonadiabatic bridge-assisted D-A ET, the
energy gaps between the terminal bridging units and the donor
and the acceptor strongly overcome the energy gaps among the
bridging units themselves. The resulting small populationPB(t)

κ-1,κ-2, , κ1,κ2 (50)

Figure 6. Comparison with the experimental data of ref 39 (T ) 298
K) for the D-A ET system (a) [(bpy)2Ru(II)L‚(Pro)nCo(III)(NH3)5]3+

and the D-A ET system (b) [(NH3)5Os(II)i(Pro)nRu(III)(NH3)5]4+.
Theoretical results follow from the solution of the set of eqs 11 with
rate constants according to eqs 41, 42, and 47. The fit is reached with
the parameters|VB| ) 0.076 eV,λB ) SBpωB ) 1.35 eV,ωB ) ω0 )
50 cm-1, andλ1D ) S1Dpω0 ) 0.8 eV,λNA ) SNApω0 ) 1.8 eV,λDA )
SDApω0 ) 3.05 eV,∆E ) 1.7 eV,∆ED ) 0.21 eV,|V1D| ) |VNA| )
0.06 eV (case a), andλ1D ) 0.9 eV,λNA)1 eV, λDA ) 2.9 eV,∆E )
1.35 eV,∆ED ) 0.36 eV.|V1D| ) |VNA| ) 0.03 eV (case b).
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of the complete bridge makes it possible to characterize the
overall ET process by a single-exponential time dependency.
A detailed description has been given for the case of fast
hopping transitions within the bridge. In this case, an additional
reduction of theN + 2 coupled rate equations to the set of three
equations forPD(t), PA(t), andPB(t), eq 20 referring to the D,
A, and total bridge population, respectively, became possible.
Interestingly, an exact solution, eq 24, can be derived describing
the D-A ET as a double-exponential process. It reduces to a
single-exponential ET if the bridge population becomes small
enough.

We consider it as a main result of our studies that the
nonadiabatic bridge-assisted D-A ET can be described by
single-exponential kinetics. The description is independent of
the numberN of bridging units, and the related overall transfer
rateK is obtained as the sum of sequential and superexchange
transfer rates, eqs 30 and 34-36. Accordingly, an illuminative
analysis becomes possible, which characterizes the efficiency
of the sequential and the superexchange mechanisms in depen-
dence on various ET parameters, including the energy gaps,
the reorganization energies, the driving force of the ET reaction,
the temperature, and the bridge length. To compare the
efficiency of both ET mechanisms, the ratio has been introduced
between the overall sequential and the overall superexchange
transfer rates, eq 40. For our numerical analysis we used the
Song and Marcus model for the vibrational spectral function
dominated by a single active vibrational mode.35 The model
leads to concrete expressions for the sequential and the
superexchange rate constants, eqs 41 and 42. Furthermore, it
allows to study the various regimes of D-A ET via an
estimation of the ratio of transfer rates, eq 46. We have been
able to demonstrate that at room temperature the D-A ET is
dominated by the sequential mechanism if the number of bridge
units exceeds 5. This result is valid even for an extremely small
total bridge population,PB

(max) ∼ 10-10. We consider this as a
novel insight into the mechanisms of bridge-mediated ET. So
far, the standard treatment of nonadiabatic bridge-assisted D-A
ET concentrated on the superexchange mechanism if the bridge
population becomes small.

Therefore, we would like to underline as our final conclusion
that the sequential mechanism of D-A ET must be be taken
into consideration if one deals with long-range ET pathways.
This is especially important for ET reactions that proceed in
complex three-dimensional bridging systems, as they can be
found, for example, in proteins. Our main conclusion is
supported by the analysis of the peptide-mediated intramolecular
D-A ET as described in ref 39. In the considered bridging
system formed by proline oligomers, the superexchange decay
parameter amounts toâ ≈ 1 Å-1. For such aâ-value, a crossover
from the dominance of the superexchange mechanism to that
of the sequential mechanism occurs atN ) 3...4. If â exceeds
1 Å-1, as it is the case for a number of proteins studied in ref
43, the crossover region can even be shifted toN ) 2...3.
Although this statement is related to peptide bridges, it is
supported by recent studies on DNA bridges where the super-
exchange mechanism with characteristicâ-values of 0.6-1.5
Å works effectively for short-range transfer only (up to
10 Å).44,45

Acknowledgment. We thank J. Jortner for some insightful
comments. The support of this work by the Volkswagen-
Stiftung, Germany, priority area “Intra- and Intermolecular
Electron Transfer” is gratefully acknowledged.

Appendix A: Kinetic Equations and Rate Constants
Following from a Coarse-Grained Description

1. Iteration Procedure.To derive a kinetic equation forPD(t)
from eq 7, one has to substitute the off-diagonal elements
F1R1 DRD(t) and FDRD 1R1(t) on the right-hand side of eq 7 by
expressions that exclusively contain diagonal density matrix
elements. This substitution becomes possible if one notices eq
9, which may connect off-diagonal elements with the diagonal
elementsFDRD DRD(t) andF1R1 1R1(t), as well as with the additional
off-diagonal elementsF2R2 DRD(t) andFDRD 2R2(t). The presence
of additional off-diagonal elements indicates that the derivation
of closed equations for the diagonal density matrix elements is
embedded in an infinite iteration procedure. Within the first
iteration step we obtain

where the contribution (OD)1, which includes off-diagonal
density matrix elements, reads

To derive the part on the right-hand side of eq A1, we used eq
4 but did not further specify the diagonal density matrix
elements.

One easily realizes via an inspection of eq A1 that the first
iteration step results in the formation of a rate that describes
sequential ET. Using relation (4), the first term on the right-
hand side of eq A1 reduces to the conventional kinetic form
-κDf1

(seq)PD(t) + κ1fD
(seq)P1(t). The rate constants characterize the

transfer between sitesm ) D and n ) 1 (and m ) 1 and
n ) D) and are given by

Note the use of eq 2 to specify the intersite coupling as well as
eq 6 to introduce the thermal distribution functionW(EmR). The
quantity

gives the Lorentzian-like broadening of the energy-conserving
δ-function of the rate expressions.

Next we perform the second iteration step with respect to eq
9. In this manner the part (OD)1 of eq A1, which is formed by
off-diagonal density matrix elements, can be replaced by an

ṖD(t) ) -
2

p
∑
RD

∑
R1 {|VDRD 1R1|2

Γ1R1 DRD

∆E1R1 DRD

2 + Γ1R1 DRD

2

(FDRD DRD
(t) - F1R1 1R1

(t))} + (OD)1 (A1)

(OD)1 )
i

p
∑
RD

∑
R1

∑
R2

{ VDRD 1R1
V1R1 2R2

∆E1R1 DRD
- iΓ1R1 DRD

F2R2 DRD
(t) -

V2R2 1R1
V1R1 DRD

∆E1R1 DRD
+ iΓ1R1 DRD

FDRD 2R2
(t)} (A2)

κmfn
(seq) )

2π

p
|Vmn|2 ∑

R
∑

â

〈ømR|ønâ〉2W(EmR)L(EmR - Enâ)

(A3)

L(EmR - Enâ) ) 1
π

ΓmR nâ

(EmR - Enâ)
2 + ΓmR nâ

2
(A4)
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expression that contains again diagonal and off-diagonal ele-
ments. This second iteration step starts from the set of equations

and

which all follow from eq 9. These equations connect the off-
diagonal density matrix elementsF2R2 DRD(t) andFDRD 2R2(t) with
diagonal elementsFDRD DRD(t), F1R1 1R1(t), andF2R2 2R2(t), as well
as with off-diagonal elementsF3R3 DRD(t) and FDRD 3R3(t). With
the help of the relations (A5)-(A7), the off-diagonal term (A2)
can be reduced to a rather complicated expressions with
additional diagonal and off-diagonal elements. However, due
to the inequality (10), we can omit corrections to the terms that
are proportional toF1R1 1R1(t). These corrections are of the fourth
order with respect to the intersite couplings and are small in
comparison to the more important contribution given by the
diagonal part on right-hand side of eq A1. Keeping only those
terms that are different from the corrections to standard
nonadiabatic ET rates, one obtains

The part (OD)2 contains the terms that are proportional to off-
diagonal elementsFDRD 3R3(t), FDRD 2R′2(t), F3R3 1R′1(t) (and corre-
sponding complex conjugated elements). With the utilization
of relation (9), all these elements can be expressed via other
diagonal and off-diagonal elements (the third iteration step). A
detailed inspection shows that only terms that contain the off-
diagonal elementsFDRD 3R3(t) andF3R3 DRD(t) lead to terms that
do not give higher-order corrections to the nonadiabatic rate
expressions. So, the part of (OD)2, eq A8, which is of main
interest for us, reads

Just this expression is the result of the third iteration step. It
connects the diagonal elementsFDRD DRD(t) with the diagonal
elementsF3R3 3R3(t) and the off-diagonal elementsFDRD 4R4(t) and
F3R3 DRD(t). After the Nth iteration step, a connection is estab-
lished betweenFDRD DRD(t) andFARA ARA(t). The (N + 1)th iteration
step completes the iteration procedure, resulting in the formation
of a kinetic equation for the site populationPD(t). This equation
contains only diagonal elementsFDRD DRD(t) and FnRn nRn(t),
(n ) 1, 2,...N, A). After N, iteration terms that connect D and
A via the superexchange mechanism could be generated. Any
further iteration steps result in less important corrections, which
will be omitted.

According to the basic coarse-grained relation (4) and the
required iteration, we may write down the kinetic equations in
the form

which contains sequential and superexchange types of rate
constants.

The iteration procedure introduced so far can also be carried
out for the A-site and any bridge unitn ) 1, 2...N. One obtains

and

Note that the summation with respect toj covers all possible
DBA sites, i.e.,j ) D, 1, 2,...N, A.

2. Rate Constants.In the set of kinetic eqs A10-A11, all
sequential rate constants are given by eq A3. The superexchange
rate constants read (n, j ) 0, 1, 2,...N, N + 1, 0 ≡ D, N +
1 ≡ A)

FDRD 2R2
(t) ) F*

2R2 DRD
(t) ) -

1

E2R2 DRD
+ iΓ2R2 DRD

×

[∑
R′1

(V1R′1 2R2
FDRD 1R′1

(t) - VDRD 1R′1
F1′R′1 2R2

(t)) +

∑
R3

V3R3 2R2
FDRD 3R3

(t)] (A5)

FDRD 1R′1
(t) ) F*

1R′1 DRD
(t) ) -

1

E1R′1 DRD
+ iΓ1R′1 DRD

×

[VDRD 1R′1
(FDRD DRD

(t) - F1R′1 1R′1
(t)) + ∑

R′2

V2R′2 1R′1
FDRD 2R′2

(t)]

(A6)

F1R′1 2R2
(t) ) F*

2R2D 1R′1
(t) ) -

1

E1R′1 2R2
- iΓ1R′1 2R2

×

[V1R′1 2R2
(F1R′1 1R′1

(t) - F2R2 2R2
(t)) +

∑
R3

V3R3 2R2
F1R′1 3R3

(t) - ∑
R′D

V1R′1 DR′D
FDR′D 2R2

(t)] (A7)

(OD)1 ≈ { i

p ∑
RD,R2

∑
R1,R′1

[ VDRD 1R1
V1R1 2R2

V2R2 1R′1
V1R′1 DRD

FDRD DRD
(t)

(∆E1R1 DRD
- iΓ1R1 DRD

)(∆E1R′1 DRD
- iΓ1R′1 DRD

)(∆E2R2 DRD
- iΓ2R2 DRD

)
-

VDRD 1R1
V1R1 2R2

V2R2 1R′1
V1R′1 DRD

F2R2 2R2
(t)

(∆E1R1 DRD
- iΓ1R1 DRD

)(∆E1R′1 2R2
+ iΓ1R′1 2R2

)(∆E2R2 DRD
- iΓ2R2 DRD

)] + c.c.} +

(OD)2 (A8)

(OD)2 ≈ -
i

p
∑

RD,R3

∑
R1,R2

{ VDRD 1R1
V1R1 2R2

V2R2 3R3

(∆E1R1 DRD
- iΓ1R1 DRD

)(∆E2R2 DRD
- iΓ2R2 DRD

)
F3R3 DRD

(t) -

V3R3 2R2
V2R2 1R1

V1R1 DRD

(∆E1R1 DRD
+ iΓ1R1 DRD

)(∆E2R2 DRD
+ iΓ2R2 DRD

)
F3R3 DRD

(t)}
(A9)

ṖD(t) ) -[κDf1
(seq) + ∑

n)2

N

κDfn
(sup) + κDfA

(sup)]PD(t) + κ1fD
(seq)PD(t) +

∑
n)2

N

κDrn
(sup)Pn(t) + κDrA

(sup)PA(t) (A10)

ṖA(t) ) -[κAfN
(seq) + ∑

n)1

N-1

κAfn
(sup)+ κAfD

(sup)]PA(t) + κNfA
(seq)PN(t) +

∑
n)2

N

κArn
(sup)Pn(t) + κArD

(sup)PD(t) (A11)

Ṗn(t) ) -[κnfn+1
(seq) + κnfn-1

(seq) + ∑
j*n

κnfj
(sup)]Pn(t) +

κn+1fn
(seq) Pn+1(t) + κn-1fn

(seq) Pn-1(t) + ∑
j*n

κnrj
(sup)Pj(t) (A12)
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and

Note that eqs A13 and A14 are written for the case wheren >
j. The casen < j is described by similar expressions.

The expressions (A13) and (A14) for the transfer rates show
that κnrj

(sup) * κjfn
(sup). This is due to the fact that the itera-

tion procedure has been carried out in using a representation of
the density matrix in a local basis, which results in different
denominators in the above given expressions. In particular,
the denominator ofκnfj

(sup) contains only energy differences
∆EqRq nRn whereas the denominator ofκnrj

(sup) contains (in a
symmetric form) both types of energy differences,∆EqRq nRn and
∆EqRq jRj. Note, however, that our description of site-to-site
transitions is based on the assumption of small intersite
couplingsVmRm nRn. Therefore, the use of local basis states|mRm〉
may lead to correct results (i.e., the steady density matrix,F(∞),
coincides with the correct equilibrium expression). Such a
correct description provides that the ET process is mainly
accompanied by isoenergetic intersite transitions,EmRm ≈ EnRn

(see the discussions in, e.g., refs 15, 33). Therefore, according
to relation EjRj ≈ EnRn we may conclude thatκnfj

(sup) ≈ κjrn
(sup).

Because this relation is fulfilled with high accuracy, we will
take a symmetric form (with respect to energy differences
∆EqRq nRn and∆EqRq jRj) of the transfer rates, eq A14.

The superexchange mechanism of ET between the sitesn
and j is important when the lowest energy levelsEq0 of an
internal bridge siteq differs considerably from the lowest energy
levelsEn0 andEj0 of sitesn andj. As far as the superexchange
transition takes place forEjRj ≈ EnRn, we may omit the
broadeningsΓqRq nRn andΓqRq jRj in comparison with the corre-
sponding energy differences∆EqRq nRn and∆EqRq jRj, respectively.
But the broadeningΓnRn jRj cannot be omitted. Below, the
superexchange transfer rates are given for the case where the
vibrational energies are small compared to the energy gaps

∆Eqn ) Eq0 - En0 and∆Eqj ) Eq0 - Ej0. Accordingly, one can
set∆EqRq nRn ≈ ∆Eqn and∆EqRq jRj ≈ ∆Eqj. The following use
of expression (2) and the summation with respect to all interior
vibrational states reduces eq A14 to (n > j)

The pure electronic superexchange matrix element,Tnj, is given
in a symmetric form (with respect to energy gaps∆Eqn and
∆Eqj),

This symmetric form,Tnj ≡ Tnj
(sim), follows from eq A14. If one

notices eq A13, the couplingTnj ) Tnj
(nonsim) will contain only

energy gaps∆Eqn. However, both forms differ insignificantly,
Tnj

(nonsim) ≈ Tnj
(sim)[1 + (1/2)∑q)n+1

j-1 (∆E/∆Eqj)], if the driving
force of then f j ET reaction,∆E, is much smaller than the
gaps∆Eqj (i.e., if |∆E/∆Eqj| , 1) and if the amount of bridging
sites,n - j, is not too large. Just such a situation is valid for
superexchange ET.

The sequential and superexchange transfer rates, eqs A3 and
A15, completely specify the ET processes in the DBA system.
The rates are defined via pure electronic couplingsVnn(1 or Tnj,
overlap integrals〈øjRj|ønRn〉, distributionsW(EmR), and Lorent-
ziansL(EmR - Enâ). If the energy spectrumEmR within each
site is dense and forms a quasi-continuum, the broadening of
the energy levels can be ignored and the LorentzianL(EmR -
Enâ) changes to a delta-functionδ(EmR - Enâ). Such a
substitution reduces the above given transfer rates to the
conventional form

and

The expression

gives the Franck Condon factor3-5 for the k f l ET. If the
vibrational frequencies are equal for all ET sites, this factor can
be rewritten as46

This expression is well known from the spin-boson model.10,32,47,48

The quantity

can be expressed via the vibrational spectral functionsJkl(ω),
which are specified by the coupling to the vibrational modes

κnfj
(sup)) -
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×

{ ∏
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(A13)
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∑

â
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|ønRn
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Tnj )
Vjj-1Vj-1 j-2...Vn+2 n+1Vn+1n

x|∆En+1n∆En+1j∆En+2n∆En+2j...∆Ej-1n∆Ej-1j|
(A16)

κmfn
(seq) ) 2π

p
|Vnm|2(FC)mn (A17)

κnfj
(sup)) 2π

p
|Tnj|2(FC)nj (A18)

(FC)kl ) ∑
Rk

∑
Rl

|〈øRl
|øRk

〉|2W(EkRk
)δ(EkRk

- ElRl
) (A19)

(FC)kl ) 1
2πp

∫-∞

+∞
dt e-i∆Eklt/p e-Qkl(t) (A20)

Qkl(t) )

2∫-∞

+∞
dω

Jkl(ω)

ω2
[coth(pω/2kBT)(1 - cosωt) - i sinωt]

(A21)
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and the respective frequency spectrum.10,32,47,48Since the rather
popular model of a single reaction coordinate of frequencyω0

coupled to a nonpolar solution will be used, the spectral function
as shown by Song and Marcus35,36has to be chosen in the form
Jkl(ω) ) (1/2p)λklωδ(ω - ω0), whereλkl is the reorganization
energy of thek f l ET. It results the well-known Jortner
expression7,49

Here, νkl ≡ ∆Ekl/pω0, ∆Ekl ) Ek0 - El0 denotes the driving
force of thek f l ET, Skl ≡ λkl/pω0, n(ω0) ) [exp(pω0/kBT) -
1]-1 is the Bose distribution, andIν(z) represents the modified
Bessel function.
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