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Donor-acceptor electron transfer (D-A ET) through a linear molecular bridge is studied for the particular
case of large electronic couplings among the molecular fragments inside the bridge. This makes it possible
to choose a description in terms of extended bridge states, whereas the weak coupling of the bridge levels to
the D and A centers guarantees the individuality of these terminal sites. Since fast vibrational relaxation
within the D and A centers as well as within the system of bridge levels is provided, we can utilize our
recently developed coarse graining description of ET (Petrov et al.,J. Chem. Phys.2001, 115, 7107). In
particular, it is demonstrated that the whole ET process can be reduced to single-exponential kinetics for the
electronic level populations characterized by an effective D-A transfer rate. This rate contains contributions
from the overall superexchange and the overall thermally activated rate. The ratio of both contributions is
calculated in the framework of the Song and Marcus model valid for a vibrational spectral density describing
a single active vibrational mode. Taking reasonable parameters for the D-A ET reaction, it is demonstrated
that the thermally activated mechanism can dominate the superexchange ET, even though the population of
the bridge by the transferred electron is extremely small. And this dominance increases with increasing bridge
length. Drawing the overall ET rate versus the number of bridge units, a novel behavior is predicted. First
there is a strong decay of the rate up to a certain bridge length. But it is followed by a remarkable increase
which is continued by a modest further increase or an in dependence on the bridge length. Furthermore,
simple analytic expressions are given to decide which mechanism may work in a given experiment. Finally,
it is underlined that ET pathways along hydrogen bonds or the key amino acids in proteins are extremely
favorable for the thermally activated mechanism, while the pathways along covalent bonds are generally
realized via the superexchange mechanism even at a small energy gap.

I. Introduction

Long-range donor-acceptor (D-A) electron transfer (ET)
mediated by a molecular bridge represents one of the funda-
mental charge-transfer processes in systems of chemical and
biological interest. This fact has been pointed out in dozens of
textbooks and review articles (see, e.g., refs 1-11 and references
therein). Concentrating on those D-A ET reactions where the
population of the bridge by the transferred electron remains very
small, the superexchange mechanism is supposed to be mainly
responsible for the ET. Therefore, superexchange ET has been
taken to model electron motion in proteins7,9,10 or to explain
the formation of an elastic electron tunnel current through
different types of molecular wires connecting, e.g., two micro-
electrodes.7,11

However, long-range D-A ET is not determined exclusively
by the superexchange mechanism (of D-A coupling via virtual
states offered by bridging units). Already a decade ago it has
been underlined by Mukamel that one has to choose a
description that not only accounts for the superexchange
mechanism but simultaneously for alternative ET mechanisms
such as the sequential one.12 The presented unifying description
has been based on a certain projection operator technique, which

ends up with generalized rate equations for properly defined
electronic level population. It is the great advantage of this
approach that one may derive perturbation series for the rates,
which graphical visualization leads to the concept of the so-
called Liouville space pathway (see also refs 8, 13, 14). These
pathways let one decide whether the respective contribution to
the total rate expression refers to the superexchange mechanism
or not.

A similar conclusion could be drawn in studying the
photoinduced ET related to the charge separation in bacterial
photosynthesis. Two mechanisms, the superexchange and the
sequential one, have been suggested to contribute to the overall
ET,15,16 and there are recent impressive experimental data on
ET through DNA,17-22 which show the possible simultaneous
presence of the superexchange and the sequential mechanisms
and which demonstrate the dominance of the sequential mech-
anism with respect to the superexchange one if the length of
the considered DNA strand is increased (see also refs 23-25).

Some of our own recent work touched the aspect of a unifying
description of ET reactions (see refs 26, 27). In contrast to the
mentioned projection operator technique of ref 12, we took an
approach that starts from the density matrix defined for the set
of electron-vibrational states referring to the entire ET system.
Providing that the vibrational relaxation processes are fast in
relation to characteristic times of the ET reaction a coarse-
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grained description could be introduced, ending up with rate
equations for the total electronic level populations. The descrip-
tion given in refs 26 and 27 concentrated on nonadiabatic ET
in assuming a sufficient weak intersite coupling. Studying the
ET in dependence on the number of bridge units, it could be
shown that the sequential mechanism works more efficient than
the superexchange method if the bridge contains more than 5
up to 7 units. In this connection it is very important to underline
that the sequential mechanism can dominate even at extremely
small bridge populations (less than 10-5 to 10-10).

However, if the electronic coupling between the bridge units
becomes sufficiently large to form extended bridge states, the
sequential mechanism of D-A ET is replaced by the so-called
thermally activated mechanism. The strong intersite coupling
may cover the D and A levels, too. But in the present studies
we will assume that the coupling of the D and the A to the
bridge levels remains small enough to let be the transition of
the nonadiabatic type. Furthermore, providing a slow overall
ET reaction compared to the vibrational relaxation within the
bridge, again a coarse graining description can be taken leading
to rate equations which, besides the D and A populations, only
account for the total bridge population.

The importance of thermally activated ET through vacant
bridge states has already been discussed by one of us (E.G.P.)
years ago for bridging protein chains.28,29 A more recent
discussion on thermally activated ET proceeding through a DNA
strand is given in ref 30. The present paper is dedicated to a
further discussion of this particular ET mechanism. Its efficiency
will be compared with that of the superexchange mechanism
in putting emphasis on the dependence of both mechanisms on
the number of bridge units. Additionally, the fundamental
difference to the sequential mechanism will be discussed. Our
calculations based on reasonable ET parameters show that
indeed the thermally activated mechanism can exceed the
superexchange one, even at a very small bridge population.
Furthermore, it is demonstrated that the influence of the
thermally activated mechanism increases with increasing bridge
length what is especially pronounced for strong bridge-internal
electronic couplings. Drawing the overall ET rate versus the
number of bridge units, a novel behavior is predicted. First there
is a strong decay of the rate up to a certain bridge length. But
it is followed by a remarkable increase which is continued by
a modest further increase or an in dependence on the bridge
length. For short bridges a fundamental difference of the
dependence of the overall rate on the bridge length is obtained
if the thermally activated mechanisms is compared with the
sequential one.

To achieve a unified description of the different ET mech-
anisms becomes also necessary for the case of electron
transmission through a molecular wire embedded between to
microelectrodes. A recent description can be found in ref 31
where the contributions of the coherent (tunneling) and incoher-
ent (activated) pathways to the temperature dependent transmis-
sion probability have been analyzed in concentrating on a steady-
state regime and providing conditions that justify the application
of the Redfield theory. However, a basic difference between
the ET in a DBA system and through a molecular wire is related
to the possible existence of an additional relaxation mechanism
in the latter case caused by the presence of macroscopic
electrodes. In the present paper, however, we will concentrate
exclusively on the unifying description of ET reactions in DBA
systems.

The paper is organized as follows. In the next section the
ET model is introduced, the basic kinetic equations together

with all rate expressions are given, and finally the possible
reduction to a single-exponential ET process is demonstrated.
Some more technical aspects of the approach are put into the
appendix. All concrete computations and estimations are given
in section III. The paper ends with some concluding remarks
in section IV.

II. Model and Theory

A comprehensive description of the ET process can be
achieved in using the generalized master equation (GME) (cf.,
e.g., refs 8, 13, 32, 33) which governs the (reduced) electron-
vibrational density operatorF(t) of the DBA system. However,
if there is a hierarchy of interactions within the DBA system as
well as between the system and the thermal environment, usually
a hierarchy of time scales∆t results, reflecting the presence of
different kinetic phases of the overall evolution process.
Recently, for such a situation we presented a reduction scheme
which started from the GME of the electron-vibrational density
operator and ended up with a set of simple rate equations to
model nonadiabatic bridge mediated long-range D-A ET.26,27

The electronic intersite couplings,Vmn, which are weak com-
pared to the intrasite vibrational relaxation, result in strongly
different characteristic transfer times. Within the shortest kinetic
phase the thermal equilibrium is formed within the manifold
{EmR} of local vibrational energy levels belonging to themth
localization site of the transferred electron. The intrasite
relaxation times{τmR} ∼ τrel characterize this phase. They are
all much smaller than the characteristic timeτET of the ET
reaction, i.e., the conditionτrel , τET indicates that the D-A
ET proceeds on the background of fast intrasite relaxation
processes. The given inequality enables one to describe the
complex transfer process by introducing a coarse graining time
scale∆t . τrel. The ratioúmR nâ ) |VmR nâ|2/[(EmR - Enâ)2 +
(p2/4)(τmR

-1) + τnâ
-1)2] , 1 may serve as the small parameter

of a perturbation expansion with respect to the couplingVmR nâ
between local vibratinal states|mR〉 and|nâ〉 (belonging to site
m andn, respectively). Within this approach a reduced set of
kinetic equations is derived including rates of sequential and
superexchange ET.

If the electronic intersite couplingsVmn, however, become
large compared to the couplings that describe the interaction
with the thermal reservoir, the conditionsúmR nâ , 1 will be
violated. Therefore, the construction of a reduced set of kinetic
equations has to be strongly modified. It is the goal of the present
paper to show the details of this modification and to give an
analysis of the different regimes of bridge-assisted D-A ET
now valid for large intrasite couplingsVmn. The latter property
is best accounted for in choosing the basis of extended electronic
bridge states|µ〉. They specify (in the adiabatic approximation)
the eigenstatesof the whole bridge. In contrast to the strong
coupling between individual bridge units, the coupling to the
D and the A levels should be weak. In particular the related ET
step becomes much slower if the gaps between the D (A) level
and the bridge levels are much larger than the respective
electronic couplingsVD1 and VNA between these levels (cf,
Figure 1). Such a parameter relation can be found in a number
of DBA systems2-4 including electron transferring proteins.1,7,28

Consequently the whole DBA Hamiltonian can be written as

HDBA ) ∑
m)D,A

Hm(Q)|m〉〈m| + ∑
µ

Hµ(Q)|µ〉〈µ| +

∑
m)D,A

∑
µ

(Tµm|µ〉〈m| + h.c.) + ∑
µ,µ′

θµµ′(Q)|µ〉〈µ′| (1)
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Here the quantum numbersµ ) 1, 2, ...N count the extended
bridge levels characterized by the vibrational Hamiltonian
Hµ(Q). TheHm(Q) (m ) D, A) denote the vibrational Hamil-
tonian belonging to the D and the A. To all these vibrational
Hamiltonians correspond vibrational manifolds, which lowest
level will be denoted byεµ andEm, respectively (cf. Figure 1).

The coupling of the D and A to the bridge levels is given by
the quantitiesTµD andTµA, respectively. If the bridge levels refer
to a molecular chain with the first unit attached to the D and
the last to the A, one obtainsTµD ) V1Duµ(1) and TµA )
VNAuµ(N) whereV1D is the electronic coupling between the D
and the first bridge unit andVNA is the one between the last
unit and the A. Theuµ(n) denote the elements of the transforma-
tion matrix which define the extended (adiabatic) states|µ〉 via
the local (diabatic) states|n〉. The relation of Hamiltonian, eq
1, to that given in the site representation (diabatic representation)
is briefly outlined in Appendix A. Among the adiabatic bridge
levels, nonadiabatic interactions become possible which are
accounted for by the matrixθµµ′. At present there is no need to
specify in detail the dependence ofHm, Hµ, and θµµ′ on the
vibrational coordinates. It is sufficient for our calculations to
provide an independence of the couplingsTµm on deviations
around the equilibrium positions of the setQ of vibrational
coordinates.

The kinetics of the considered ET process depends substan-
tially on the relation between the characteristic time of the
overall transfer process,τET, and the characteristic times of
vibrational relaxation within the states related to the D and A
centers,τ(m)

rel, (m ) D, A), and within the states related to the
whole bridge,τ(µ)

rel. These relaxation times are defined via the
interaction of the DBA system, with vibrational modes forming
a dissipative environment (thermal reservoir). For many mo-
lecular systems, vibrational relaxation proceeds on a time scale
of 0.1 to 0.10 ps,30 while τET may be several orders of magnitude
larger.7,9,10 Therefore, we provide the following inequality to
be fulfilled

This relation indicates that the kinetics of the D-A ET can be
evaluated in the framework of a coarse-grained approximation
leading to Pauli balance-like kinetic equations for the overall
populations of the various electronic states. Concentrating on
the case of nonadiabatic D-A ET, it has been explained in detail
in our foregoing papers26,27how to derive such kinetic equations
and how to get the respective rate expression when starting from
the basic electron vibrational density matrix. In which manner

this approach has to be modified to be applicable for the present
case is briefly explained in Appendix B. Here we quote only
the finally obtained rate equations valid for the populationsPm,
(m ) D, A), andPµ, (µ ) 1, 2, ...N)

The rate constantsκDµ and κAµ, as well asκµD and κµA,
characterize the ET from the D and the A, respectively, to the
µth bridge level as well as the reverse process. The direct
transitions between the D and the A are accounted for by the
forward superexchange rateκDA and the backward rateκAD.
Transitions among different bridge levels are described by the
ratesκµµ′. All ET rates except the last mentioned type read as
follows (concerningκµµ′ see the discussion below and Appendix
B)

and

In the latter relation we have to identifym andn with D and A
as well as with A and D. The square of the superexchange D-A
coupling has the form

To have a sufficient simple expression for the various Franck-
Condon factors (FC) we provide the harmonic approximation

Figure 1. Energetic position of the local and extended bridge LUMO levels relative to the donor and acceptor electronic levels.E0 gives the
position of the local LUMO levels in a regular chain. Wavy lines indicate the relaxation between the extended LUMO levels.

ṖD(t) ) - (∑
µ

κDµ + κDA)PD(t) + ∑
µ

κµDPµ(t) + κADPA(t)

Ṗµ(t) ) - (κµD + κµA + ∑
µ′*µ

κµµ′)Pµ(t) +

∑
µ′*µ

κµ′µPµ′(t) + κDµPD(t) + κAµPA(t)

ṖA(t) ) - (∑
µ

κAµ + κAD)PA(t) + ∑
µ

κµAPµ(t) + κDAPD(t)

(3)

κmµ ) 2π
p

|Tmµ|2(FC)mµ (4)

κµm ) 2π
p

|Tmµ|2(FC)µm (5)

κmn ) 2π
p

|TAD|2(FC)mn (6)

|TAD|2 ) Re∑
µµ′

TAµTµDTDµ′Tµ′A

(εµ - ED)(εµ′ - EA)
(7)

τET . τrel
(m), τrel

(µ) (2)
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for every set of vibrational coordinates. In this case the electron
vibrational coupling can be described by spectral densities for
which we will utilize the Song-Marcus model35,36in its simplest
version (coupling to a single active vibrational mode with
frequencyω0). Finally, such a treatment leads to the well-known
Jortner expression7,37 (which can be also derived in the
framework of the spin-boson model8,38,39):

Here, s, s′ ) D, A, µ, νss′ ≡ ∆Ess′/pω0, Sss′ ≡ λss′/pω0

(∆Ess′ ) Es0 - Es′0 is the driving force andλss′ is the
reorganization energy of the sf s′ ET reaction); furthermore,
n(ω0) ) [exp (pω0/kBT) - 1]-1 denotes the Bose distribution,
and Iν(z) stands for the modified Bessel function.

Let us turn to the ratesκµµ′, which are responsible for
relaxation processes among different bridge levels. Obviously,
they determine the effective bridge relaxation timeτB, which
exceeds the characteristic timesτrel

(µ), what reflects the common
observation that the vibrational relaxation within a single
electronic bridge level (so-called intraterm relaxation) is faster
than internal conversion-like relaxation processes between
different levels (interterm relaxation caused by the nonadiabatic
coupling).40 Additionally to that, we will provide that the bridge
interlevel relaxation is not the limiting process of the ET
reaction, i.e., we set

This inequality leads us to a further essential simplification of
the D-A ET description. It is based on a second type of coarse-
grained description that leads to kinetic equations valid on a
time scale large compared toτB. At such a time scale the bridge-
level populationsPµ(t) are in equilibrium to each other and vary
only via an alteration of the overall bridge population

Resulting from this, the bridge-level populations satisfy the
relationPµ(t)/Pµ′(t) ) exp[-(εµ - εµ′)/kBT] and we can derive
the following important relation

where

is the Boltzmann distribution of the bridge. Noting eq 11, the
set of rate equations (eq 3) reduces to

with κ3 ≡ κDA andκ-3 ≡ κAD. Furthermore, we introduced the
integral D(A)-bridge rate constants

and the integral bridge-D(A) rate constants

Taking the normalization condition

the set of equations (eq 13) can be solved exactly to give (see
also ref 26)

whereK1 andK2 are the overall transfer rates. The prefactors
Am andBm are determined by the rate constants as well as the
initial conditions. Due to the presence of a large energy gapEg

between the D(A) level and the extended bridge levels (cf.
Figure 1), the forward rate constantsκ1 andκ2 strongly exceed
the backward rate constantsκ-1 andκ-2. Also, due to a weak
superexchange coupling between the D and A,κ1 and κ2 are
much larger than the superexchange rate constantsκ3 andκ-3.
Therefore, it becomes an excellent approximation to set26 K1 =
κ1 + κ2 andK2 = κ3 + κ-3 + (κ-1κ2 + κ-2κ1)/(κ1 + κ2). As far
asK1 . K2, the fast part of the ET process with characteristic
transfer timeτ1,tr ≡ K1

-1 proceeds for times much less than
τ2,tr ≡ K2

-1. It is completed att . τ1,tr, for which an
intermediate population of the D, A, and B can be introduced

and

Accordingly, the first part of the ET reaction does not result in
any notable electron redistribution in the DBA system. As a
result, the kinetics of D-A ET can be described by the rather
simple single-exponential expression41

The overall transfer rateK ≡ K2 can follows as

κ-1 ) ∑
µ

κDµ

κ-2 ) ∑
µ

κAµ (14)

κ1 ) ∑
µ

κµDWB(εµ)

κ2 ) ∑
µ

κµAWB(εµ) (15)

PD(t) + PB(t) + PA(t) ) 1 (16)

Pm(t) ) Pm(∞) + Am e-K1t + Bm e-K2t (m ) D, B, A) (17)

PD(t . τ1,tr) ) 1 -
κ-1 + κ3

κ1 + κ2
≈ 1 (18)

PA(t . τ1,tr) )
κ3

κ1 + κ2
, 1 (19)

PB(t . τ1,tr) )
κ-1

κ1 + κ2
, 1 (20)

Pm(t) = (Pm(0) - Pm(∞)) e-Kt + Pm(∞) (m ) D, A, B)
(21)

K ≡ τET
-1 ) kf + kb (22)

(FC)ss′ ) 1
pω0

exp(-Sss′ cothpω0/2kBT) ×

(1 + n(ω0)

n(ω0) )νss′/2

I|νss′|(2Sss′xn(ω0)(1+n(ω0))) (8)

τET . τB (9)

PB(t) ) ∑
µ)1

N

Pµ(t) (10)

Pµ(t) ) WB(εµ)PB(t) (11)

WB(εµ) ) exp[-(εµ - ε1)/kBT]/∑
µ)1

N

exp[-(εµ - ε1)/kBT]

(12)

ṖD(t) ) - (κ-1 + κ3)PD(t) + κ1PB(t) + κ-3PA(t)

ṖB(t) ) - (κ1 + κ2)PB(t) + κ-1PD(t) + κ-2PA(t)

ṖA(t) ) - (κ-2 + κ-3)PA(t) + κ2PB(t) + κ3PD(t) (13)
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It is given as a sum of the combined forward

and the combined backward

transfer rates. Both types of rates include the contributions
kf

(sup) and kb
(sup) stemming from the superexchange mechanism

of ET and the partkf
(act) as well askb

(act) related to the activated
ET mechanism.

III. Results and Discussion

To clearly demonstrate the efficiency of the thermally
activated and the superexchange mechanisms of D-A ET, we
will consider a sufficiently simple model of a regular chain-
like bridge formed byN identical units. They are characterized
by electronic energy levelsE0 and linked together by a common
nearest-neighbor electronic intersite couplingV0 (for the sake
of clarity we putV0 > 0). The eigenvalues of the electronic
part of the bridge Hamiltonian (A1) as well as the transformation
coefficientsuµ(n) have the well-known form

Taking into consideration the definitions ofTµD andTµA, which
specify the coupling of the D/A centers to theµth bridge level
in the Hamiltonian (1) and noting the expressions (4), (5), (8),
and (15), one derives

Here,∆E1 ≡ Eg ) ε1 - ED ) ∆EB - 2V0cos[π/(N + 1)] and
∆E2 ) Eg + ∆E ) ε1 - EA are the energy gaps for forward
and backward ET transitions, respectively, while∆E ≡ ED -
EA is the driving force of the ET reaction and∆ED ) E0 -
ED ≡ ∆EB and∆EA ) E0 - EA ) ∆EB + ∆E are the energy
gaps at vanishing electronic intersite coupling (cf. Figure 1).
Furthermore, we introduced in eq 26ν1(2)µ ≡ (εµ - ED(A))/pω1(2),
ν3 ≡ ∆E/pω3, andSj ) λj/pωj, whereλj is the reorganization
energy of the corresponding donorfbridge (j ) 1), acceptor
fbridge (j ) 2), and donorf acceptor, (j ) 3), ET whileωj

denotes the active mode of each mentioned transition.
In line with eqs 23, 24, and 27, the overall transfer rate can

be represented asK ) K(act) + K(sup)) (kf
(sup) + kf

(act))[1 +
exp(-∆E/kBT)]. Therefore, to compare the efficiencies of the
thermally activated and the superexchange mechanisms we
introduce the ratio

The dependence on the numberN of bridge units is contained
in the transfer rateK(act) mainly via the factorsuµ

2(1(N)) and
WB(εµ) while it is located in the rateK(sup) in the square of the
effective D-A coupling |TAD(N)|2. Its analytic form follows
from eqs 7 and 25 resulting in

where the intersite decay constantê ) 1/2(êD + êA) is expressed
via the partial decay constants

For the condition∆E , ∆EB, the expressionsêD and êA are
equal to each other. Hence, the measured intersite decay constant
reduces to the conventional formê ) êD ) êA≈ ln[2|V0|/
(∆EB - x∆EB

2-4|V0|2)].7,28 Figure 2a demonstrates the rela-
tive importance of both mechanisms for a given number of
bridge units and in dependence on the energy gap. It can be

kf ≡ kf
(sup)+ kf

(act)

kf
(sup)) κ3

kf
(act) )

κ-1κ2

κ1 + κ2
(23)

kb ≡ kb
(sup)+ kb

(act)

kb
(sup)) κ-3

kb
(act) )

κ-2κ1

κ1 + κ2
(24)

εµ ) εµ(N) ) E0 - 2V0cos[ πµ
N + 1]

uµ(n) ) x 2
N+1

sin[ πnµ
N + 1] (25)

κ1(2) )
2π

p

|V1D(NA)|2

pω1(2)

exp (- S1(2) cothpω1(2)/2kBT)

∑
µ)1

N

uµ
2(1(N))WB(εµ)(1 + n(ω1(2))

n(ω1(2))
)ν1(2)µ/2

I|ν1(2)µ|(2S1(2)xn(ω1(2))(1 + n(ω1(2))))

κ3 ) 2π
p

|TAD(N)|2
pω3

exp (- S3 cothpω3/2kBT)

(1 + n(ω3)

n(ω3) )ν3/2

I|ν3|(2S3xn(ω3)(1 + n(ω3))) (26)

κ-1(-2) ) κ1(2)ZB exp(-∆E1(2)/kBT)

κ-3 ) κ3 exp(-∆E/kBT) (27)

Figure 2. Relative contribution of the thermally activated and the
superexchange mechanisms of D-A ET in dependence on the energy
gap∆EB at room temperatureT ) 298 K and for a fixed number of
bridge unitsN (part a), and the maximal integral bridge population
PB(t . τ1tr) vs the energy gap∆EB (part b). The curves are calculated
in using eqs 22-24 and 26-30 with λ1 ) S1pω1 ) 0.9 eV, λ2 )
S2pω2 ) 1 eV,λ3 ) S3pω3 ) 1.2 eV,ω1 ) ω2 ) 200 cm-1, ω3 ) 100
cm-1, |V1D| ) |VNA| ) 0.02 eV, and∆E ) 0.1 eV atV0 ) 1 eV (a) and
V0 ) 2 eV (b).

η(N) ) K(act)

K(sup)
)

kf
(act)

kf
(sup)

)
κ-1

κ3

κ2

κ1 + κ2
(28)

|TAD(N)|2 ) |TAD(1)|2 exp[-2ê(N-1)]

|TAD(1)|2 ≡ |V1DVNA|2/∆ED∆EA (29)

êD(A) ) ln[ 2|V0|
∆ED(A) - x∆ED(A)

2 - 4|V0|2] (30)
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clearly seen that the influence of the activated mechanism on
the overall transfer rate increases substantially with the number
of bridge units. At realistic reorganization energiesλj of the
order of 1 eV and an energy gap∆EB ∼ 1 eV (cf. refs 1, 2, 4,
7), the thermally activated mechanism can exceed the super-
exchange one (logη(N) > 0) if at V0 ) 1 eV the number of
bridge units becomes larger than 7. It is very important that for
the same parameters the maximum integral bridge population
PB(t . τ1tr) is rather small (e.g., atV0 ) 1 eV, ∆EB ) 2.6 eV
whenK(sup)/K(act) ≈ 10-2, cf. Figure 2a, the populationPB(t .
τ1tr) amounts about 10-11, cf. Figure 2b).

The effect of the driving force of the D-A ET reaction is
demonstrated in detail in Figure 3a. At a fixed number of bridge
units, the contribution of the superexchange mechanism to the
overall transfer rateK becomes more important for large∆E.
Nevertheless, even at∆E ) 0.3 eV the thermally activated
mechanism can dominate ifN > 7.

Below we will discuss the influence of the bridge length on
the overall ET rate. Figure 4a shows that the D-A transfer rate
K, eq 22, is given as the sum of two contributions. The
superexchange contribution reflects the exponential decrease of
the transfer rate with increasing bridge length. In line with eqs
26 and 29 it can be represented by a simple analytic expression

with K0
(sup) being the rate forN ) 1. In contrast to the decrease

of the superexchange rate, the thermally activated mechanism
results in a rise (at small number of bridge units) and a saturation
(at largeN) of the rateK(act). Such a behavior is generally
dictated by the dependence of the energy gapEg ) ∆EB -
2V0cos[π/(N + 1)] on N as well as by the variability of the
energetic distance between the nearest bridge energy levels
εµ - εµ-1 (cf. Figure 1) with respect toN. If the number of
bridge units increases, the gap reduces to a limiting valueEg )
∆EB - 2V0 while the energetic distance mentioned before
becomes so small that the condition exp[-(εµ - εµ-1)/kBT] ,
1 is satisfied for any pair of neighbored energy levels. Just this
circumstance is responsible for the saturation of the thermally
activated transfer rate with increasing bridge length as well as
for the temperature effect, which is more pronounced for longer
bridges, cf. Figure 3b.

The quantitative description of the crossover region between
the two mechanisms of the D-A ET is a valuable tool for the
analysis of experimental data. Due to the decreasing role of the
superexchange mechanism and the increasing role of thermally
activated ET (cf. Figure 4a) an overall D-A transfer rateK
exhibits a nonmonotonic dependence onN with a minimum
around 4-6 bridge units, i.e., in the vicinity of the crossover
pointN ) 5. It is very important that just for such small number
of bridge units an approximate analytic form ofK(act) can be
found if only the strict condition

is satisfied for the bridge with a limited number of units. Indeed,
at such a condition, only the very lowest bridge levels, Figure
1, are populated by the transferred electron and thus the main
contribution to the ratesκ1 andκ2, eq 26 follows from the term
µ ) 1 of the common sum. Figure 4b shows that up toN ) 12
the exact and the reduced description (with the single termµ )
1 in the sum) coincide with an extremely high accuracy. This
behavior enables one to introduce an approximate analytic form
for K(act) that can be applied for a qualitative analysis of the ET
process taking place in a bridge with a small number of units.
It reads (noteV0 > 0)

The rateK0
(act) plays the role of certain parameter which can be

estimated from the general (exact) formula at a concreteN. In
Figure 4bK0

(act) has been estimated forN ) 7 to achieve the
best coincidence of the analytic form (eq 33) with the exact
result, especially for the crossover region 4e N e 10. When
the bridge number increases and thusK(act) saturates, the
condition in eq 32 is no longer fulfilled. Therefore, the simple
analytic expression, eq 33, does not hold. To evaluateK(act) one
has to take the general expressions (eqs 23 and 26). Neverthe-
less, the analytic expressions eqs 31 and 33 for the transfer rates
are suitable to analyze experimental data, especially in the
vicinity of the crossover point.

Next let us estimate those conditions for which the crossover
point can be observed. If the superexchange rate decreases with
the D-A distanceR according to exp(-âR) a distant-decay
constant â is used as the main characteristic of the ET
process.7,10 The constantâ varies in a broad interval from 2e

Figure 3. Relative contribution of the thermally activated and the
superexchange mechanisms of D-A ET for a fixed number of bridge
unitsN in dependence on the driving force of the ET reaction∆E and
at room temperature (part a), and in dependence on temperature for
∆E ) 0.1 eV (part b). The curves have been calculated in using eqs
26-30 with V0 ) 1 eV, ∆EB ) 2.2 eV. All other parameters are
identical with those used in Figure 2.

Figure 4. Formation of the overall D-A ET rate as the sum of
superexchange and thermally activated transfer rates given by the
general expressions of eqs 22-24 along with eqs 26 and 27 (part a),
and comparison of the exact form forK(act) (see eq 26 forκ1(2)) with
the reduced form (the sum in eq 26 has been limited to the single term
with µ ) 1), and the approximate analytic form eq 33 (part b). The
curves are calculated using the same parameters as in Figure 2.

K(sup)) K0
(sup)exp[-2ê(N - 1)] (31)

exp{-[ε2(N) - ε1(N)]/kBT} , 1 (32)

K(act) ≈
K0

(act) 2
N + 1

sin2[ π
N + 1] exp{2V0cos[π/(N + 1)]/kBT} (33)
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â e 3 Å-1 for model compounds2 and modified proteins45 up
to 0.9e â e 1.15 Å-1 and 1.25e â e 1.6 Å-1 for theâ-sheet
andR-helix regions in native proteins, respectively.10 For the
DNA, â-values between 0.2 Å-1 and 0.9 Å-1 or between 1.2
Å-1 and 1.6 Å-1 have been reported.17-20,23

Let a be the distance between the neighboring units in a
regular bridge (in the case of a helical-bridge, the parametera
is the distance between the nearest turns). For example, we refer
to a rigid peptide bridge given by a polyproline oligomer which
has a through-bond distance per residue ofa ) 4.2 Å51 (a )
3.1 Å for the shortest through-space distance), while a value
ab ) 1.4 Å corresponds to an average length of the covalent
bond. When measuring the distanceR in units ofa one obtains
R ) Na and thus exp(-2êN) ) exp(-âR) whereê ) aâ/2. If
an electron pathway is present along covalent bonds,9,42-44 the
corresponding through-bond decay constantêb is deduced from
exp(-êN) ) exp(-êbnb), where nb ) sN denotes the total
number of covalent bonds forming the D-A pathway whiles
is the number of covalent bonds that are responsible for the ET
within a single bridging unit. Consequently,ê ) sêb, and thus
the measured distant-decay constantâ can be expressed via the
calculated covalent bond-decay constantâb as â ) âbs(ab/a).
In Figure 4a, the intersite decay parameter is equal toê ) 0.88.
It means that, for example, ata ) 3.1 Å the distance-decay
constant amounts the value ofâ ) 0.57 Å-1. If the ET occurs
through covalent bonds withs ) 2 bonds per bridge, then the
covalent decay constant is given byâb ) 0.63 Å-1 while êb )
0.44. Both constants,â ) 0.57 andâb ) 0.63, correspond to a
rather slow decrease of superexchange transfer rate (compare
the above given explanation forâ). But even in this case the
superexchange mechanism is already replaced atN ) 6-7 by
the mechanism of activated ET.

In molecular bridges whereâ exceeds 1 Å-1 (for instance in
peptides and proteins) the crossover point has to be shifted down
to N ) 2 - 4. The presence of the crossover point strongly
depends on the relation between the energy gapEg and the
intersite couplingV0. Let ET occur at a small driving force so
that∆E , ∆EB and thusê ≈ êD ≈ êA. Then, in noting∆EB )
2V0 + Eg (cf. Figure 1) and eq 30, we have the condition

At any fixed decay parameterê (or â ) 2ê/a) the expressions
gives a relation between the intersite electron couplingV0 and
the energy gapEg. For â ) 1.3 Å-1 (ê ≈2.02) andâ ) 1 Å-1

(ê ≈1.55), eq 34 yieldsV0 ≈ 0.17Eg and V0 ≈ 0.35Eg,
respectively. At room temperature, a thermally activated ET can
be effective only ifEg does not exceed 0.3 eV. Let, for example,
Eg ) 0.2 eV. Then, the crossover between the superexchange
and activated ET becomes possible atV0 ≈ 0.03 eV (â ) 1.3
Å-1) andV0 ≈ 0.07 eV (â ) 1 Å-1). However, for such a very
small electronic intersite coupling, the electron-vibrational
interaction completely destroys the extended bridge states. The
ET through the bridge takes place as a nonadiabatic reaction
and a competition between the superexchange and the sequential
ET mechanism results (for details see refs 23, 26, 27).

Now we will assume that the two decay constantsâ ) 1.3
Å-1 andâ ) 1 Å-1 used above are related to ET reactions across
covalent bonds.9,42-45 For the typical decay factorεb ) exp(-
êb) ) 0.6 it yieldsâb ) 0.72 Å-1 (êb ) 0.51). (This means that
distant decay constantsâ ) 1.3 Å-1 andâ ) 1 Å-1 are formed

by s ) 4 and s ) 3 covalent bonds per single bridge unit,
respectively.) Noting eq 34, we obtainV0

(cov) ) 3.65Eg. There-
fore, a crossover between the superexchange and thermally
activated ET mechanism is only possible if an electronic
pathway along covalent bonds exist where the inter-site coupling
V0

(cov) amounts values less than 1 eV. However, quantum
chemical computations show thatV0

(cov) ≈ 2.5 eV.42 This fact
indicates that an activated ET mechanism is not realized in
systems where the ET proceeds along covalent bonds.

Finally we will discuss the case where the bridge is formed
via a hydrogen-bond network (the hydrogen bonds will be
considered as specific covalent bonds9,10,42). The corresponding
coupling decay parameter can be estimated via the relation
εh ) exp(-êh) ) εb

2 exp[-1.7(R - 2.8)], whereR is measured
in Å.9,46 In the case of ET reactions along hydrogen bonds, a
possible value of the distant-decay constantâ may be positioned
in a rather wide range around 1-2 Å-1.10 We will consider the
situation whereεh ≈ εb ) 0.6.9,46 Such a relation is valid if the
effective tunneling lengthR ) ah is equal to 2.51 Å. Atεh )
0.6, one derivesêh ) 0.51 and thusâh ) 2êh/ah ≈ 0.40 Å-1.
The correspondence with the measured valueâ follows from
the inequalityâ ) shâhah/a wheresh is the number of hydrogen
bonds that corresponds to an elementary lengtha along a linear
bridge. In the case of a helical bridge, this length coincides with
the distance between the nearest turns. The condition in eq 34,
taken atê ) êh ) 0.6, indicates thatV0

(hyd) ≈ 3.67Eg. Thus, if
the ET occurs along hydrogen bonds the crossover between the
superexchange and thermally activated ET mechanism is
possible for anyV0

(hyd) < 0.8 eV, provided thatEg ) ∆EB -
2V0

(hyd) does not exceed values of 0.2-0.25 eV. Figure 5
demonstrates the appearance of the crossover point for the case
of ET along the hydrogen bonds. The crossover is shown to be
take place at aboutnh ) 4 (i.e.N ≈ 2-3 if the ET occurs along
a helical-bridge).

IV. Conclusion

We consider it as the main result of our computations that
bridge-mediated D-A ET can be described as a single-
exponential kinetic process, independently on the number of
bridging units. The corresponding overall transfer rate (eq 22)
includes the contribution of the thermally activated and the
superexchange mechanisms of ET (cf. eqs 23 and 24). The
derivation of the set of kinetic equations (eq 13) and the

2V0 ) Eg
γ

1 - γ

γ ≡ 2 exp(-ê)

1 + exp(-2ê)
(34)

Figure 5. The dependence of the overall D-A transfer rate on the
number of hydrogen bondsnh and for a fixed driving force∆E if the
ET occurs along hydrogen bonds. The curves are calculated using the
general expressions of eqs 22-27 for V0 ) V0

(hyd) ) 0.72 eV,∆EB )
1.64 eV, andT ) 298 K. All other parameters are identical with those
used in Figure 2.
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corresponding solution (eqs 21-24) has been based only on
the fundamental inequalities of eqs 2 and 9. In particular, these
equations do not depend on the concrete interaction of the DBA
system with the heat bath. However, the given single-exponential
(coarse-grained) description is valid only if the overall bridge
population (eq 20) becomes very small (less than 10-4). Such
a small bridge population can be achieved if the extended bridge-
states couple weakly to the D and A states, i.e., if the coupling
matrix elementsV1D and VNA are small compared to the
intrabridge couplingsVn,n(1 as well as to the energy gapsEn -
ED(A) (cf. Figure 1). Furthermore, the D-level has to be
positioned below the lowest extended bridge level.

As already stated, there does not exist the general possibility
to get the exact solution for the ET reaction as a single
exponential kinetic process which appears to be independent
of the number of electron-vibrational levels in the DBA system
and which is valid at any timet. Therefore, the recently
published results of refs 47-49 on a unified description of
bridge-assisted D-A ET have to be considered to be incorrect
since they are based on the assumption of a single exponent
valid in the whole time region 0e t e ∞.

Realistic conditions for DBA-ET have been given where the
thermally activated ET mechanism becomes much more effec-
tive than the superexchange one, even if the bridge population
is of the order of 10-5 to 10-11 (cf. Figure 2). We consider this
as a novel result since within the conventional approach
thermally activated D-A ET (or sequential ET in the case of
nonadiabatic reactions) is taken into account only if the
transferred electron populates the bridge levels with a suf-
ficiently high probability (0.1 to 0.01). The thermally activated
mechanism is especially important for long bridges. For such
systems the overall ET rate is dictated by the different
dependence on the numberN of bridge units of the rate of
thermally activated ET and of the rate referring to the super-
exchange ET. The given analytic formula (eq 33) offers a good
opportunity to estimate for a given ET experiment whether the
thermally activated or the superexchange ET mechanism
dominates. This can be achieved by comparing theN-depen-
dence on the basis of the expressions given in eqs 31 and 33.
It is only necessary to remember that eq 33 forK(act) is valid if
the condition of eq 32 is fulfilled (e.g., forV0 ) 1 eV, it works
up to N ) 10).

If one remembers that the superexchange and the sequential
ET rates,K(sup)andK(seq), drop with the rise of the bridge length
as exp(-êN) andN-1, respectively while the rate of activated
ET K(act) increases up to its saturation value (cf. refs 5, 23, 26),
there is an excellent possibility to clarify which type of ET takes
place in a given system. In particular, one can specify the
mechanisms of distant D-A ET in complex molecular systems
such as DNA strands or proteins. In the case of the DNA, it
has already been stressed that just the sequential mechanism is
responsible for long-range ET.21-23,25,30,50Considering peptide-
mediated D-A ET as measured in ref 51, it could be also
interpreted in the framework of the superexchange and sequen-
tial mechanisms.26,27 Note that the interplay of the sequential
(incoherent) and superexchange (coherent) ET mechanism is
valid for small ratiosúmR nâ (see the discussion at the beginning
of Section II). Since the most effective transitions occur at
EmR ≈ Enâ, the inequalityúmR nâ , 1 roughly reduces to the
simple condition|Vmn|/p , τrel

-1. In contrast, if the relation
|Vmn|/p . τrel

-1 is valid for all bridge units, thenN specific
coherent ET channels through the extended bridge levels are
formed. Just these coherent channels are responsible for the
mechanism of activated D-A ET studied in the present paper.

Each channel contributes via thermal activation of an electron
from the D(A) center. As a result, strong electronic intersite
couplings in the bridge can provide an effective thermally
induced coherent ET through the bridge, even though the overall
electronic population of the bridge remains small. IfN > 5-7,
the rate of activated transferK(act) becomes independent of the
number of bridge units reflecting the predominance of the
specific thermally induced coherent mechanism of ET compared
with the superexchange (pure coherent) ET. Thus, for|Vmn| .
pτrel

-1 the combined action of the sequential (incoherent) and
superexchange mechanism of D-A ET is replaced by the
interplay between the thermally activated coherent and purely
coherent superexchange mechanism of ET.

Concentrating on ET reactions in proteins, we demonstrated
that if the main ET pathway in proteins is associated with the
electron motion along covalent bonds, the superexchange
mechanism dominates, even for a small energy gap between
the donor level and the lowest extended bridge level (of the
order 0.2 eV). If, however, the pathway is determined by ET
along specific hydrogen bonds, then the crossover from super-
exchange to thermally activated transfer takes place already at
a number of four hydrogen bonds. The mentioned considerations
also indicated that the condition for activated D-A ET can be
fulfilled in R-helical andâ-strand structures if the ET occurs
along hydrogen bonds. But thermally activated ET can also take
place along the key amino acid residues. This statement is
supported by the results of quantum-chemical calculation on
the electronic couplings.52

Therefore, our central conclusion is that the specification of
electron pathways through complex macromolecular structures
requires the comparison of three different types of ET mech-
anisms, the superexchange mechanism, the sequential mecha-
nism, and the mechanism of thermally activated coherent ET.
Possibly the sequential mechanism can become important for
small intersite couplings (V0 in the order of 0.01-0.1 eV), while
the activated mechanism dominates the ET reaction ifV0 lies
in the range of 0.1 eV up to 1 eV. In both cases, the energy gap
Eg should not be larger than 0.3 eV to allow for thermal
activation of coherent channels at room temperature.
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Appendix A: Diabatic vs Adiabatic Representation

In Section II we introduced the ET Hamiltonian, eq 1, which
gives the basis for all following considerations. Here, we will
concentrate on the bridge part of eq 1 and briefly indicate how
to obtain this Hamiltonian. The site representation (diabatic
representation) uses the LUMO levels of the localized bridge
units with energiesEn (n ) 1, 2,...N), whereN denotes the
number of units within the bridge. To be more concrete, we
consider a DBA complex where the intrabridge gaps∆En ≡
En - En+1 are small compared with interbridge electronic
couplings Vn,n(1 (cf. Figure 1). Large intersite electronic
couplings can be found, for example along covalent bonding
(Vn,n(1

(cov) > 2 eV) and hydrogen bridges (Vn,n(1
(hyd) < 1 eV).42-44

The supposed inequality|∆En| , |Vn,n(1| indicates that just the
extended LUMO levels give the most adequate representation
to study ET through the bridge (cf. the discussions in refs 5,
23, 28, 29). These levels can be understood as adiabatic states
of the whole bridge, leading to adiabatic potential energy surface
(PES) as introduced in Section II. Of course sophisticated
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quantum-chemical methods have to be applied to calculate these
adiabatic PES. In such quantum-chemical framework the
derivation, which will be given in the following, corresponds
to a simple Hu¨ckel approach where the bridge energiesεµ and
the bridge states|µ〉 are found from a diagonalization of the
bridge Hamiltonian (electronic part). Consequently, we have
the following one-to-one correspondence:

which is established by the unitary transformation|µ〉 )
∑nuµ(n)|n〉 (for the case of a bridge withN identical units and
identical electronic couplings between the neighboring units,
the uµ(n) have the well-known form given in eq 25).

Next we briefly indicate how the electron-vibrational coupling
is affected by this transformation. To do this we include
vibrational degrees of freedom but neglect any vibrational
modulation of the electronic intersite coupling. Therefore, to
get the complete bridge HamiltonianHB the energiesEn in eq
A1 have to be replaced by the vibrational HamiltonianHn )
Tvib + Un(Q) with the kinetic energy operatorTvib and the PES
Un(Q) ) Un

(0) + ∑jpωj(Qj - Qj
(n))2/4 written here in a

representation of dimensionless normal-mode oscillator coor-
dinates (Qj

(n) denotes the replacement of vibrational modej).
To establish a connection to the bridge part of the ET

Hamiltonian, eq 1, we proceed as follows. First we split off
the PES according toUn(Q) ) Un

(0) + ∑jpωjQj
(n)2/4 -

∑jpωjQj
(n)Qj/2 what enables us to introduce the site energies

En ) Um
(0) + ∑jpωjQj

(n)2/4 and a reference vibrational Hamil-
tonianHvib ) Tvib + ∑jpωjQj

2/4. Using the electronic states|µ〉
the bridge Hamiltonian can be written in the following form

where the electron vibrational coupling constant has been
introduced according togj(µ,µ′) ) - ∑muµ

/(m)uµ′(m)Qj
(m)/2.

Their separation into those parts being diagonal with respect to
the electronic quantum numbers and those being off-diagonal
offers the possibility of a second type of notation for the bridge
Hamiltonian. A simple rearrangement of the part of eq A2 being
diagonal with respect to the electronic quantum numbers
suggests the introduction of a new type of PESUµ(Q) ) εµ -
∑jpωjgj

2(µ,µ) + ∑jpωj(Qj + 2gj(µ,µ))2/4 ≡ Uµ
(0) + ∑jpωj(Qj +

Qj
(µ))2/4. This finally gives the Hamiltonian, eq A2 in the new

form

with vibrational HamiltonianHµ ) Tvib + Uµ(Q) and vibra-
tionally induced interlevel coupling represented by the last term
of eq A3. This Hamiltonian may serve as a certain approxima-
tion for the more general one introduced in eq 1. If one follows
this line, one can identifyHµ and the nonadiabatic coupling of
eq 1 withHµ and the interlevel couplinggj(µ,µ′), respectively.
In particular, one can study in an easy way how the extended
states change with an increase of the number of bridge units.
The whole derivation seems to be consistent and has been used
in the literature (see, e.g., ref 23). Nevertheless, it is based on
an expansion of vibrational coordinates around equilibrium

positions that refer to the diabatic and not the adiabatic states.
Therefore, the equilibrium positionsQj

(µ) obtained via the
introduction of extended states might be incorrect.

For an application in the next appendix we give the electron-
vibrational representation of the DBA-Hamiltonian, eq 1 (or of
its approximate version, eq A3). This representation is based
on the vibrational eigenstates|ømR〉 and|øµR〉 of the Hamiltonian
Hm(Q) andHµ(Q), respectively. The related eigenenergies are
denoted asEmRm for the D and A site, andεµRµ for the bridge
states. Accordingly, one can introduce a zero-order partH0 of
the DBA-Hamiltonian, eq 1, a partVtr which is responsible for
transitions into and out of the bridge state, and a partVrel which
is responsible for intrabridge relaxation processes. Therefore,
we write

The first part simply reads

The transfer part has the following form

For the relaxational part we obtain

The electron-vibrational matrix elements introduced in the two
foregoing expressions directly follow as the vibrational matrix
elements ofTµm andθµµ′, respectively.

To derive kinetic equations for the electronic level populations
we use the density matrix approach together with an introduction
of a coupling of the given electron-vibrational DBA system to
an additional thermal bath. The respective coupling induces
vibrational relaxation within the electron-vibrational level of
the D and A as well within the bridge states and is written (s )
D, A, µ counts the whole set)

Appendix B: Electron-Vibrational Density Matrix
Equations and Coarse Graining Approximation

The aim of the following appendix is to briefly explain how
to derive the set of kinetic equations (eq 3) for the overall donor,
acceptor, andµth bridge populationsPD(t) ) ∑RDFDRD DRD(t),
PA(t) ) ∑RAFARA ARA(t), andPµ(t) ) ∑RµFµRµ µRµ(t), respectively
(more details can be found in refs 26 and 27 where the same
approach has been applied to the case of nonadiabatic ET). As
indicated in the given expressions for the populations, they
should be defined via diagonal elements of the DBA electron-
vibrational density matrix (remembers, s′ ) D,A,µ)

(for notational details see the second part of the foregoing
appendix). The respective equations of motion are obtained from
the GME for the reduced density operatorF(t) of an open

HB
(el) ) ∑

n,n′
[Enδn,n′ + Vnn′(δn′,n+1 + δn′,n-1)]|n〉〈n′| ≡

∑
µ

εµ|µ〉〈µ| (A1)

HB ) ∑
µ,µ′

{δµ,µ′(εµ + Hvib) + ∑
j

pωjgj(µ,µ′)Qj}|µ〉〈µ′| (A2)

HB ) ∑
µ,µ′

{δµ,µ′Hµ + (1 - δµ,µ′)∑
j

pωjgj(µ,µ′)Qj}|µ〉〈µ′|
(A3)

HDBA ) H0 + Vtr + Vrel (A4)

H0 ) ∑
m)D,A

∑
Rm

EmRm
|ømRm

〉|m〉〈m|〈ømRm
| +

∑
µ

∑
Rµ

εµRµ
|øµRµ

〉|µ〉〈µ|〈øµRµ
| (A5)

Vtr ) ∑
m)D,A

∑
Rm

∑
µ

∑
Rµ

(TmRm µRµ|ømRm
〉|m〉〈m|〈øµRµ| + hc)

(A6)

Vrel ) ∑
µ,µ′

∑
Rµ,âµ′

θµRµ µ′âµ′
|øµRµ

〉|µ〉〈µ′|〈øµ′âµ′
| (A7)

VSB ) ∑
s

∑
Rs,âs

(1 - δRs,âs
)ΦRsâs

(s) |øsRs
〉|s〉〈s|〈øsâs

| (A8)

FsRs s′Rs′
(t) ) 〈sRs|F(t)|s′Rs′〉 (B1)
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quantum system interacting with a heat bath. The derivation of
the GME has been well documented in various textbooks (see,
e.g., refs 8, 13, 32) and reads in the present notation

This type of equation is sufficient since non-Markovian
contributions are of no interest for the time scale of distant ET.
The quantityτsR

-1 defines the inverse lifetime of the state|sR〉
and reads

The rates

characterize the relaxation between the vibrational states|sR〉
and|sR′〉, which belong to the same electronic level and which
are separated by the transition energyEsR - EsR′ ) pωRR′

(s) . The
quantitiesΦRR′

(s) , eq A8, contain the bath degrees of freedom
and, thus, define the coupling of DBA vibrational states to the
heat bath. In eq B4, the bracket〈...〉 denotes the thermal average
with respect to the equilibrium state of the thermal (heat) bath
(the respective Hamiltonian is denoted asHT). If s ) D,A then
τD(A)R defines the characteristic time of relaxation within the
diabatic level,τrel

(D,A), while ats ) µ, τµR specifies a relaxation
time τrel

(µ) within the µth adiabatic level of the bridge. In line
with the basic inequality of eq 2, the ET proceeds on the
background of fast intraterm relaxation. As a result, a quasi-
equilibrium distribution within the D and A centers, as well as
within each adiabatic bridge termµ, is generated in the course
of the distant D-A ET reaction. Noting the definition of the
density matrix elements, eq B1, one can state that att . τrel

(D,A),
τrel

(µ), all off-diagonal matrix elements related to a given site
D(A) or a given adiabatic bridge termµ vanish while the
diagonal matrix elements, i.e., the partial site populationsFsR
sR(t), describe a thermal equilibrium (Boltzmann) distribution
versus the states|øsR〉. Accordingly we can set

where thePs(t) denotes the above-mentioned integral popula-
tions. Furthermore, we introduced the Boltzmann distribution
for the vibrational states of electronic levels

Equation B5 reflects the main assumption of the chosen coarse-
grained description based on the strong inequality of eq 2.
According to the fast intersite relaxation, the site populations
FD(A)R D(A)R(t) and the populations of any extended bridge state
FµRµ µRµ(t) vary only via an alteration of the integral site
populationPD(A)(t) and Pµ(t), respectively. If one inserts the

factorized distribution (eq B5) into eq B2, it results in the
following equations for the integral populations (details of the
derivation can be found in ref 26)

The equations for the off-diagonal elementsFsR s′â(t), (s * s′)
follow from the GME (eq B2) according to

where we changed from the transition frequencies and inverse
lifetimes to transition energies∆EsR s′â ≡ pωsR s′â and the level
broadeningΓsR s′â ≡ (p/2)(τsR

-1 + τs′â
-1). The characteristic times

for the change of the off-diagonal elements (s * s′), τ(D(A)µ,
and τµµ′, largely exceed the characteristic times of intralevel
relaxation processes,τrel

(D,A) andτrel
(µ). Therefore, we can neglect

in eq B8 the time derivative ofFsR s′â(t) in comparison to the
first term on the right-hand side. It follows

Equations B7 and B9, along with relation B5, offer the basis
for a coarse-grained description of bridge-mediated ET if strong
electronic intrabridge coupling is present. The small interlevel
coupling matrix elementsTsR s′â (at s * s′) are responsible for
interstate transitions and thus just these small couplings define
the specificity of the procedure to derive the closed set of
equations for the integral populationsPs(t). The equations are
obtained in two steps. First one has to iterate eq B9 to get density
matrix elements that are diagonal with respect to the indexs.
And second one uses an expression similar to eq B5 to replace
a density matrix element such asFsR s′â(t) by the integral
populationPs(t) and the thermal distributionW(EsR). It results
an iteration procedure characterized by small parameters such
as |TsR s′â|2/(∆EsRs′â

2 + ΓsRs′â
2 ); details can be found in ref 26.

The perturbation expansion leads to the set of Pauli-like kinetic
equations (eq 3) with the interlevel rate constants defined by
eqs 4-8. A similar form can be derived for the transfer rates
κµ µ′, which describe the transitions between the adiabatic terms
µ and µ′ of the bridge. It is only necessary to define the
corresponding coupling matrix elementsTµR µ′â ) 〈µR|θ|µ′â〉
via the operator of nonadiabaticityθ, eq A7 (see also, e.g., refs
8 and 40).
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(50) Voityuk, A. A.; Rösch, N.; Bixon, M.; Jortner, J.J. Phys. Chem.

B 2000, 104, 9740.
(51) Isied, S. S.; Ogawa, M. Y.; Wishart, J. F.Chem. ReV. 1992, 92,

381.
(52) Okada, A.; Kakitani, T.; Inoue, J.J. Phys. Chem.1995, 99, 2946.

3102 J. Phys. Chem. B, Vol. 106, No. 12, 2002 Petrov et al.


