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Femtosecond laser-pulse-induced spatial localization of excitation energy in the FMO complex is suggested
theoretically. Based on the Frenkel exciton model for the bacteriochlorophyll (BChl)Qy-excitations, the laser-
pulse-driven exciton wave packet motion into a single, spatially localizedQy state is described in detail. First,
the manner in which excitation energy relaxation and dephasing, as well as the length and overall intensity
of the control pulse, determine the control yield is discussed. In a next step, two-exciton states decaying via
exciton-exciton annihilation are included, and a preliminary attempt is undertaken to account for structural
and energetic disorder. Although the latter effects may decrease the efficiency of excitation energy localization
drastically, it is demonstrated that, even under realistic conditions, tailored laser pulses may deposit energy
in a single BChl of the FMO complex.

I. Introduction

It is of ongoing interest to study femtosecond laser pulse
control of molecular dynamics. Because an experimental
realization could be demonstrated for a variety of systems, the
entire field moved away from a pure theoretical speculation to
a feasible experimental approach (for a recent overview, see
refs 1-4). Laser pulse control has been suggested in the
theoretical works of Tannor, Kosloff, and Rice5 and Brumer
and Shapiro.6 The theory was put into the universal frame of
the so-called Optimal Control Theory (OCT) by Rabitz.7,8

However, until the use of complex pulse shaping systems, the
approaches to achieve an experimental demonstration were less
successful. Currently, the combination of a liquid-crystal or opto-
acoustic femtosecond pulse shaper with a feedback control of
the outcome represents a powerful tool for addressing various
control tasks.4 Although originally concentrated on gas-phase
systems, examples have been also reported for the pulse control
of polyatomic molecules, as well as molecules in the condensed
phase9,10 and even biological systems.11

In the standard scheme of laser pulse control, one tries to
form a certain vibrational wave packet, which should move into
a predefined target state. Typically, this might be a nonbonding
electronic state that corresponds to the removal of a certain part
of the molecule. In the present paper, however, we will discuss
a somewhat different type of control task: the formation of an
electronic (excitonic) wave packet in a chromophore complex
and the laser-pulse-guided spatial localization of the respective
excitation energy within one chromophore. Some preliminary
discussions of this suggestion have been already given in the
work of Mancal and co-workers.12,13

The basic idea discussed here is similar to the attempt to
localize vibrational excitation energy in a particular bond (cf,
e.g., refs 1 and 2). Such a local vibrational excitation does not
represent an eigenstate of the respective molecular system but
is given as a certain superposition of eigenstates. Through

application of an external laser pulse, it becomes possible to
prepare such a superposition state (wave packet). The short
duration of the pulse (often definitely<100 fs) and the related
spectral broadening allows one to excite a coherent superposition
of states and move the related wave packet in the target state at
the required time. In the present paper, we will answer the
question whether excitation energy localization is reliable when
translated to electronic (excitonic) wave packets.

To realize such a control task, one requires systems where
the interchromophore coupling overcomes vibrational relaxation,
at least within a certain time interval. Just for such systems, we
can expect wave packet formation and its coherent driving by
the externally applied field. Furthermore, optical addressability
of any exciton level is the precondition for the formation of a
flexible wave packet. This requires systems with a well-balanced
distribution of the entire oscillator strength across all exciton
levels. If it is only possible to exclusively excite a single-exciton
level (because of symmetry reasons), the entire concept will
fail. We also refer to the unfavorable influence of disorder.
Probably, the compromise that the control laser must make
among molecules with different spatial and energetic structure
would become too large to solve the control task.

There are different chromophore complex candidates that
fulfill this demand. Because of its well-defined structure, we
choose a biological example: the FMO complex (cf. Figure
1). It represents a pigment protein complex of the green sulfur
bacteria photosynthetic apparatus (cf., e.g., van Amerongen et
al.15 and the recent measurements of the Small group16,17). The
FMO complex in its trimeric form covers 21 bacteriochloro-
phyll-a (BChl) molecules; thus, a monomer with 7 BChl is of
a modest extent and is well-suited for the present discussion.
Incidentally, the need for a distribution of oscillator strength
across all exciton levels favors the FMO complex with its
spatially distributed BChl against high-symmetric arrangements
of chromophores, as in the light-harvesting complexes of purple
bacteria (LH1 and LH2) or in linear dye aggregates.

Of course, when considering chromophore complexes under
the action of an intensive optical field, higher exciton states
(multiexciton states) must be taken into consideration (or at least
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the possibility to populate the two-exciton manifold must be
considered). Now, the formation of a (single-)exciton wave
packet and the subsequent trial of spatial localization are
accompanied by optical transitions into two-exciton states. One
expects the formation of a single-exciton wave packet, as well
as a two-exciton wave packet, but possibly it all moves (via
stimulated recombination from the two-exciton state to the
single-exciton state) into a single excited chromophore state.
We also will account for this mechanism in achieving control
in the following. As it is known from different studies on laser
pulse control, excitation energy relaxation and dephasing
represent an additional obstacle. (See, for example, ref 13.) In
the present case, dissipation enters via exciton-vibrational
coupling. If it is not too strong, it can be described via a density
matrix that has been reduced to the electronic (excitonic) degrees
of freedom of the system. Such an approach has been developed
in, e.g., refs 19-21 (together with exciton exciton annihilation)
and will be used here.

Before giving an overview on the applied density matrix
theory, we start with a brief foundation of the multiexciton (MX)
model for the FMO complex (details can be found in Appendix
A). Section III then explains how to compute the laser pulse
that achieves spatial excitation energy localization. The results
of our simulations are discussed in Section IV, and some
conclusions are drawn in Section V.

II. Multiexciton Dynamics in the FMO Complex

To study laser-pulse-driven excitation energy dynamics
in the FMO complex, it is most appropriate to describe
the electronic excited-state levels according to the MX
scheme.19-21 Within such an approach, a common description
of the Coulombic interchromophore coupling, and of the various
dissipation channels, is achieved. The feasibility of this MX
theory has been demonstrated at different places (see, e.g., refs
22 and 23). The MX scheme starts with the electronic ground
state of the complex|0〉 and is followed by the (single) exciton
states|R1〉. In the present case, they correspond to a single, but
probably delocalized,Qy-excitation. If a single exciton state has
been excited via single-photon absorption, the absorption of an
additional photon may lead to the formation of one of the two-
exciton states|â2〉. These states result from the presence of two
Qy-excitations at different BChl or of a higher excitation at a

single BChl. The two-exciton states are followed by three-
exciton states|γ3〉 and so on. MX energy relaxation and
dephasing is induced by a coupling to intra-BChl as well as
protein vibrations. The overall laser-pulse-driven dissipative MX
dynamics will be taken into consideration in a description known
as the quantum master equation or the multilevel Redfield theory
and is based on the (reduced) MX density matrix.

This all has been explained in detail in ref 19 and is shortly
reviewed in Appendix A. The specification to the monomeric
FMO complex is straightforward. Here, we will follow mainly
refs 19 and 22, as well as our own recent extensions20,24on the
inclusion of exciton-exciton annihilation (EEA). Although less
is known on the importance of EEA in the FMO complex, in
any case, it represents an important de-excitation channel when
considering two-exciton states and should be taken into con-
sideration.

II.A. Single- and Two-Exciton States of the FMO Com-
plex. In specifying the MX approach to the FMO complex, we
introduce a three-level model for each of the seven BChl (a
schematic view of the FMO complex is given in Figure 1, along
with the numbering scheme used to count the seven BChl). The
model includes the ground state (æg), the Qy excited state
(denoted asæe), and a higher excited state (æf). The æf state
must be considered to be a representative of the multitude of
higher excited electron-vibrational BChl states. Its introduction
is motivated by the need to have BChl levels that are almost
degenerated with the energy of a simultaneous presence of two
Qy-excitations at different BChl and allow for intra-BChl
excited-state absorption. Consequently,æf is defined by the
demand to be energetically similar positioned aboveæe, asæe

is positioned above the ground state. The respective energies
are denoted asεma, with m labeling the spatial position (site) in
the FMO complex (cf. Figure 1), and we introduceda ) g, e,
f. These site energies differ one from another because of the
different protein environment. However, in any case, we set
εmf - εme ) εme - εmg.

Besides their energy-level structure, every BChl must be
characterized by transition-dipole moments. We assume that the
magnitude of theQy-transition dipole moments (dm(eg)) should
be the same for all BChl, i.e., we have|dm(eg)| ) |dn(eg)| )
6.4 D. Of course, their spatial orientations differ. For the
transition into the higher-excited BChl state, we setdm(fe) )
dm(eg) for all m, i.e., for every BChl, the magnitude as well as
the spatial orientation of the transition-dipole moments into the
higher state is identical with those into theQy-state (cf. ref 22).
Such a choice is mainly motivated by the fact that the statesæf

represent a multitude of higher excited BChl electron-vibrational
states. Moreover, this assumption implies that the dipole-dipole
interaction matrixJ, which couples the transitions between the
levelsεmg andεme at BChl m with the transitions between the
levelsεne andεng at BChln is identical with that leading at site
n to the transition fromεne to εnf.

Having these data available, one can compute MX energies
and states. Because all the following considerations are only
concentrated on the single-exciton and two-exciton manifolds
of the monomeric FMO complex, we will denote the single
exciton quantum numbersR1 by R, and theR2 numbers for two-
exciton states byR̃. The single exciton states are simply obtained
as

where |m e〉 describes the state of the FMO complex with a
single Qy-excitation at BChlm. R runs from 1 toNBChl ) 7

Figure 1. Depiction of the arrangement of the seven BChls in the
FMO complex, using the structural data from ref 18 (identifier 4BCL
in the Protein Data Bank, rotated for better view). Atoms in the line of
the respectiveQy-dipole moments are marked (plotted with rasmol).

|R〉 ) ∑
m

CR(m)|m e〉 (1)
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(NBChl denotes the number of BChl in the complex). The
counting of the levels starts with the excitonic energypΩR of
lowest energy and ends at the highest-lying level. The two-
exciton states follow as

which includes the superposition of states|m e, n e〉 with two
Qy-excitations at different BChl and of the states|m f〉 with a
single excitation in the higher-excited BChl state. The present
description comprisesNBChl(NBChl - 1)/2 + NBChl two-exciton
states; thus,R̃ runs from 1 to 28, again starting with the lowest-
lying value of the two-exciton energiespΩ̃R̃. Respective MX
transition-dipole matrix elements are not given here but can be
found in Appendix A.

There are numerous attempts to determine the (single) exciton
levels of the FMO complex. We use the site energies, dipole-
dipole couplings, and overall strengths of the spectral densities
(see below), according to the recent detailed analysis of
Wendling et al.23 Table 1 specifies the BChl site energies that
have been used. The resulting squares of the single-exciton
expansion coefficients are shown in Figure 2, indicating how
different exciton states contribute to a localized excitation at
BChl m. In Table 2, one may find the respective single-exciton
energiespΩR and dipole momentsdR. The delocalization
numbers of the exciton states (inverse participation ratio,NR )
1/∑m|CR(m)|4) are also given in Table 2. All the mentioned data
emphasize the fact that the energetically lowest exciton level is
mainly concentrated on the single BChlm ) 3. The other
exciton levels are somewhat more delocalized, at least at two
different BChl. In particular, there is a considerable alteration
of transition-dipole moments when changing from those of the
single chromophore to those of the exciton states (see eq A3 in

Appendix A). Therefore, we conclude that it is more appropriate
to use a description with exciton states instead of an approach
exclusively based on localizedQy-excitations. In regard to the
parameters of the two-exciton states, we proceed as explained
above (see also our earlier analysis given in ref 22).

II.B. MX Density Matrix Theory. Using the MX states,
which, in the general case, read|RN〉 with N labeling the
respective manifold (remember|R1〉 ) |R〉, |R2〉 ) |R̃〉), we may
introduce the MX density matrix as

Here, F̂(t) is the reduced MX density operator, which, in the
present case, should obey the quantum master equation (cf.
Appendix A). MX excitation energy dissipation and dephasing
are originated by a coupling to intrachromophore vibrations as
well as more delocalized interchromophore vibrations covering
a portion of or the entire protein. The latter type of vibrations
enters the quantum master equation via transition processes
among MX states of the same manifold, accompanied by the
emission or absorption of a single vibrational quantum.

The MX vibrational coupling are characterized by the MX
spectral densities (see eq A7 of Appendix A). They can be
related to spectral densities that describe the coupling to
localized BChl excitations, as well as the interchromophore
coupling.19 We provide the existence of site-local vibrations,
which only modulate the first excited stateæe of the chromo-
phores and do not influence the intersite electronic coupling.
Because the lifetime of theæf state is strongly restricted by the
internal conversion process (withτIC ) 35 fs) to theæe state,
there was no need to introduce an additional coupling to
vibrational modes (finally, such an additional coupling would
have no essential effect on the two-exciton dephasing). The used
model with site-local vibrations results in a single spectral
densityJe(ω).25 The resulting single-exciton lifetimes are listed
in Table 3. As expected, they decrease drastically as the

Figure 2. Exciton expansion coefficients|CR(n)|2 of the used FMO
exciton model.

TABLE 1: Energies of the BChlsa

energy,εn

n (cm-1) (nm)

1 12 350 809.7
2 12 465 802.2
3 12 160 822.4
4 12 350 809.7
5 12 600 793.7
6 12 480 801.3
7 12 460 802.6

a See ref 23.

|R̃〉 ) ∑
m,n

C̃R̃(m, n)|m e, n e〉 + ∑
m

C̃R̃(m)|m f〉 (2)

TABLE 2: Square of Single-Exciton Dipole Moments (dr),
Their x-Component,a and the Respective Excitonic Energies,
Together with Their Delocalization Number (Inverse
Participation Ratio, Nr)b

excitonic energy,pΩR

R |dx|2 |d|2 (cm-1) (nm) NR

1 0.64 0.66 12139 823.8 1.24
2 0.16 2.13 12290 813.7 1.78
3 0.01 0.95 12322 811.5 2.35
4 1.21 1.39 12426 804.7 2.02
5 0.61 1.21 12485 801.0 2.14
6 0.09 0.16 12535 797.8 2.25
7 0.07 0.50 12667 789.4 1.80

a In units of the square of a singleQy dipole moment of 40 D2 (see
ref 23). b Thex-direction is defined by the direction of the electric field
strength.

TABLE 3: Lifetime of the Different Excitonic States (τr)a

τa (ps)

R 4 K 77 K 265 K

1 ∞ 193 8.5
2 82 33 3.5
3 7.4 5.8 1.8
4 8.8 6.6 2.0
5 4.0 3.3 1.4
6 2.0 1.9 1.1
7 1.8 1.8 1.2

a τR ) 1/∑â k(R f â).

F(RM, âN; t) ) 〈RM|F̂(t)|âN〉 (3)
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temperature increases. Moreover, the lifetimes decrease from
the lower part to the upper part of the exciton level scheme,
because the number of final states increases, in particular at
low temperatures. In any case, all values that exclusively lie
above 1 ps indicate that dissipation should influence the control
task only moderately, provided that it has been performed with
a pulse of subpicosecond duration.

Intrachromophore vibrations also may participate in the
intramanifold MX scattering. However, they are also involved
in the internal conversion process, because it is a part of EEA.
Because our description is based on (delocalized or partially
delocalized) MX states, EEA seems to be a nonradiative
transition from a higher exciton manifold to a lower exciton
manifold. For example, if the two-exciton state component
C̃R̃(m) related to a double excitation of a single chromophore
at sitem (cf. eq 2) is nonzero, an internal conversion to the
stateæe of chromophoremwill appear. The single-chromophore
excitation may be the part of the single-exciton state|â〉 with
expansion coefficientsCâ(m). If the internal conversion is
assumed to be fast, compared to all other processes of exciton
motion, EEA can be taken into consideration in the quantum
master equation via the ratesk(EEA)(R̃ f â). The rates are
proportional to the internal conversion rate 1/τIC but also include
MX wave function overlap expressions|C̃R̃(m)|2|Câ(m)|2,
which may strongly reduce the value of 1/τIC (see ref 26 and
Appendix A.2).

III. Determination of the Optimal Pulse

This section shortly reviews the method of Optimal Control
Theory (OCT).1,2,21 It turns out to be an adequate tool for
computing the laser pulse that drives the system in the required
manner. We will call this pulse, which represents a solution of
the OCT, theoptimal pulse.

III.A. Prologue. Before applying the apparatus of OCT, let
us try to answer, in a more direct way, the question whether a
spatial localization of excitation energy is possible. To do this,
we invert eq 1

and obtain a localized state via the superposition of all exciton
states. If it would be possible to prepare such a superposition
state by an optical transition, the entire excitation would seem
to be localized at themth chromophore (the target site,mtar).

Provided that there are weak excitation conditions, i.e., a
description which is of first order in regard to the field strength,
the excited superposition state in the single exciton manifold
reads

The time-dependent expansion coefficients have the following
form:

In the second part of this expression, we assumed that the
actual timet is larger thantf, the time at whichE vanishes.

The expansion coefficients then are determined by the Fourier-
transformed field pulse taken at the exciton frequenciesΩR.
To let |Ψ(1)(t)〉 (eq 5) be localized in the state|mtar e〉 (the target
state) at timetf (at the end of the pulse), we must identify
(cf. eq 4)

Here, the amplitudeAR(t) must be renormalized byN )
∑â|Aâ(t)|2, because the weak excitation condition allowsN to
become much less than 1, whereas the exciton expansion
coefficients are normalized to 1.

If the chromophore complexes are placed in a regular spatial
arrangement, the orientation of the excitonic dipole moments,
with respect to the polarization of the radiation field, determine
the mutual coupling strength. For the computations, where we
assumed such a regular arrangement of all FMO complexes,
the field is polarized in thex-direction. Hence,AR from eq 6
becomes proportional to thex-component ofdR (cf. Table 2;
the different values indicate that it might be unfavorable to excite
exciton levels 3, 6, and 7).

Noting eqs 6 and 7, we may determine the Fourier compo-
nents of the field, which would drive the exciton wave function
into the localized state. Needless to say, the computation of a
time-dependent field by a discrete set of Fourier components
(seven in the present case of the FMO complex) remains
incomplete. Nevertheless, it seems reasonable to take the
following ansatz:

Here, e is the polarization unit vector of the field pulse and
we used the notationdR ) edR. The function f(t) is an
envelope that guarantees that the pulse vanishes fort < t0 and
t > tf . It has been taken as a Gaussian function with a length
of (tf - t0)/3. This choice ensures that the Fourier transform of
eq 8 fulfills eq 7. We will callẼ(t) the approximate optimal
field.

Of course, the disadvantage of the given reasoning lies in
the restriction to low field intensities and the neglect of energy
relaxation and dephasing. Nevertheless, it represents a straight-
forward way to discuss spatial energy localization and will be
used in Section IV. Going to larger field intensities, we will
apply the method of OCT, but, at the same time, it becomes
necessary to include higher exciton manifolds, at least the two-
exciton one.

III.B. Optimal Control Theory. Although it would be most
appropriate to formulate the OCT in a way where a spectro-
scopic quantity (for example, a probe pulse absorption) is
optimized,27 here, we apply the standard formulation. It assumes
a target state|Ψtar〉 which should be reached at a certain time
tf (see, for example, refs 1, 2, and 21). In the present case, we
set |Ψtar〉 ) |mtare〉, wheremtar denotes the site at which the
Qy-state of the respective BChl should be populated as much
as possible. If one introduces the target operator

the laser pulse control of molecular dynamics then can be
formulated as the task to realize that the expectation valuePtar(tf)

|me〉 ) ∑
R

CR
/(m)|R〉 (4)

|Ψ(1)(t)〉 ) ∑
R

AR(t)|R〉 (5)

AR(t) ) i
p
∫t0

t
dth exp[-iΩR(t - th)]dRE( th) f

i
p

exp(-iΩRt)dRE(ΩR) (6)

CR
/(mtar) ) 1

xN
AR(tf) (7)

Ẽ(t) ) -ipxN f(t)e∑
R

exp[-iΩR(t - tf)]
CR

/(mtar)

dR

+ c.c. (8)

Π̂tar ) |mtare〉〈mtare| (9)
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of the target operator equals one at a certain final timetf. This
expectation value reads

Here, trmx denotes the trace, with respect to the MX states, under
consideration andF̂ is the MX density operator introduced in
eq 3.

To reachPtar(tf) ) 1, the applied field pulseE(t) should drive
the MX system in the required manner. As a rule, what would
be reachable is notPtar(tf) ) 1 but Ptar(tf) equal to a value
somewhat less than 1. The laser pulse that realizes this extremum
of Ptar(tf) represents the optimal pulse. If a constraint is
introduced to guarantee a finite field strength, the optimal pulse
follows as the extremum of the following functional:

The penalty factorλΛ0 has been combined with the function
f(t) (introduced in the previous subsection), which avoids a
sudden switch on and switch off of the control field. The
quantity λ is dimensionless and will vary between 0 and 1,
whereasΛ0 is equal to 1 eV/dBChl

2 (the quantitydBChl is theQy-
transition dipole moment introduced in Section II.A). Although
the constraint in eq 11 guarantees finite pulse intensity, this
intensity must be determined after the optimal pulse has been
computed (it becomes a function of the given penalty factor).

In Appendix B, some details are given in regard to how to
determine the extremum ofJ(tf; E). Here, we only shortly
comment on the procedure. In a first step, one must compute
the functional derivate ofJ(tf; E). The demand that the derivative
equals zero results in a nonlinear functional equation of the type
E(t) ) λΛ0f(t)K(tf, t; E), whereK(tf, t; E) is the so-called control
kernel. Its value at timet can be determined by a forward
propagation ofF̂ from t0 to t and a backward propagation of an
auxiliary density operatorσ̂ from tf to t. The coupling of both
density operator propagations by the field and, thus, by the
control kernel allows the introduction of an efficient iteration
scheme to determine the optimal pulse (for details, see Appendix
B and refs 12-14).

The given formulations are intended for a complete population
of the target state. In the present case, this means that every
FMO complex in the sample has the chosen BChl in itsQy-
state. (In the experiment, such a complete excitation requires
intensities at which the neglect of higher exciton manifolds is
no longer justified.) To determine optimal pulses, which only
lead to a weak overall excitation of the sample, we set, for the
target operator,

It describes a mixture of the ground state|0〉 and the presence
of a single excited state, the target state|mtare〉. The presence
of the latter in the mixture is regulated byx (the mixing
parameter). Ifx is taken to be very small, the population of the
target state also should become small (the excitation of other
BChl is totally suppressed). In contrast, forx ) 1, we arrive
again at the target operator described in eq 9.

IV. Numerical Results

As already indicated in the previous sections, our discussion
will concentrate on laser pulse localization of excitation energy.
We will start with the case where higher manifolds than the
single-exciton one, as well as the influence of orientational and
structural disorder, are neglected.

IV.A. Influence of Dissipation. We provide a completely
ordered ensemble of FMO complexes with thex-component of
the exciton transition-dipole matrix element coupling to the
electric field strength of the linearly polarized laser pulse (cf.
Table 2). To analyze the localization of the excitation energy,
we study its dependence on the length of the control pulse (τc)
and on temperature. According to the formulation of the OCT
in the preceding section, the pulse lengthτc is given bytf - t0,
and, in this way, we may consider a dependence of the solution
of the control task on the final time. Figure 3 shows the obtained
results for some selected BChl of the FMO complex (mtar ) 3,
4, and 7), at three temperatures as well as in the dissipationless
case. It is drawn the population of theQy-state of one of the
seven BChl (the target state) versusτc. This time varies between
200 and 1200 fs, in steps of 200 fs. The given values for the
site populations are the result of 50 iterations of the forward
and backward propagations (cf. Appendix B).

The calculations presented in Figure 3 must be considered
as reference calculations for the subsequent discussion. They
try to achieve a complete population of the target state|mtare〉.
The population difference betweenPtar(tf) and 1 may be
distributed among other singly excited BChl as well as the
ground state (probability conservation in the absence of two-
exciton states read 1) P0 + ∑RPR). We will return to this point
of discussion later.

As expected, the achieved population of the target state
decreases as the temperature increases and increases as the pulse
length increases. The behavior is typical for all shown control
tasks. However, the achieved total population of the target state
is dependent on the chosen BChl at which excitation energy
should be localized. At 4 K, the excitation of BChlm ) 4 as
well asm ) 2, 5 (not shown) remains<0.6. This result can be
explained by the magnitude of the excitonic dipole matrix
elements (their component showing in the polarization of the
laser pulse). According to Table 2, exciton levels 3, 6, and 7
have the smallest values. As can be directly deduced from Figure
2, just those exciton levels dominate the excitonic wave packet
(eq 4) just form ) 2, 4, and 5. Moreover, an inspection of
Figure 3 shows that the population of BChlm) 3 stays constant
after τc has overcome a value of 400 ps. This behavior can be
explained by the dominance of BChlm ) 3 by the lowest
exciton level (cf. Figure 2). To excitem ) 3, it is sufficient to
excite the exciton levelR ) 1. The decrease of the target state
population with increasing temperature results from the fact that
excitonic energy relaxation and dephasing increases their
influence when temperature becomes greater. Such an increase
of dissipative effects acts counterproductive to the external field,
which tries to form a spatially localized wave packet att ) tf.
Of course, the details of these dissipative effects are dependent
on the concrete environment of the BChl and the strength it
couples to the surrounding BChl (cf. Section II).

The way the target state population increases as the length
of the control pulse (τc) increases is different for different BChl;
however, first of all, it does reflect the fact that an increase of
τc offers the possibility to concentrate more probability in the
target state. However, ifτc becomes too large, the excitonic
wave packet forming the localized state decays during its
formation, because of dissipative effects. This explains the final

Ptar(tf) ) trmx{F̂(tf)Π̂tar}

≡ 〈mtare|F̂(tf)|mtare〉

) ∑
R,â

CR(mtar)Câ
/(mtar)F(R, â; tf) (10)

J(tf; E) ) Ptar(tf; E) - 1
2∫t0

tf dt
E2(t)

λΛ0 f(t)
(11)

Π̂tar ) (1 - x)|0〉〈0| + x|mtare〉〈mtare| (12)
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decrease of the target population with increasingτc. In conclu-
sion, we will use a control pulse length ofτc ≈ 600 fs, which
is most adapted to the considered MX dynamics and, thus, leads
to the largest control yield.

In our further discussions, we will mainly concentrate on the
excitation energy localization at them ) 7 BChl (cf. Figure 1).
According to Figure 2, it is formed by the contributions of
different exciton levels, with level 5 dominating the super-

position state. To compare the results shown in Figure 3 with
the case of weak excitation, we introduce the renormalized
population

It measures the excitation energy localization in relation to the
total excitation into the single-exciton manifold and, conse-
quently, represents a quantity (somewhat) independent of the
actual degree of excitation.

Figure 4 comparesptar
(ren)(tf), which has been drawn versusτc,

with the reduced population achieved by a Gaussian pulse and
the ansatz for the control field, according to eq 8. First of all,
we can state that the pulse determined by the OCT leads to
the best spatial excitation energy localization lying above 0.75.
The field pulse according to eq 8 reaches this result only for
large pulse durations. The Gaussian pulse applied with a carrier
frequency ofω ) ΩR)5 never achieves a renormalized popula-
tion of >0.6. This demonstrates (in a somewhat indirect way)
the complexity of the control pulse. It is neither a single
Gaussian nor a simple combination of Gaussian pulses, such
as that in eq 8. A similar behavior can be found for the absence
of dissipation but with an overall larger control yield (not
shown). To understand the minimum of the target state
population obtained when a Gaussian-shaped pulse or the pulse
according to eq 8 is applied, Figure 5 displays the target-state
population versus time up to the actual value oftf for the
Gaussian-shaped pulse. As it becomes obvious, destructive
interferences in the excitonic wave packet decrease the target-
state population within a certain range oftf. This explains the
large depression observed in Figure 4.

Figure 6 gives a different view on the optimal-pulse-driven
population dynamics drawn in Figure 3. We chose the caseτc

) 600 fs (andT ) 4 K), because it is best adapted to an efficient
control of the MX dynamics. One may observe a total
redistribution of population from the FMO ground state|0〉 into
the target state, as well as all otherQy-states. Because Figure 6
displays the results of computations for the type of mixed target
state, defined in eq 12, first one must concentrate on the case

Figure 3. Population of single BChlQy-states (target states) after an
excitation with the respective optimal pulse (attf), drawn versus the
durationτc of the optimal pulse. Upper panel: target statesmtar ) 3;
middle panel:mtar ) 4; lower panel:mtar ) 7 (the populations formtar

) 1, 2, 5, and 6 behave similar to those ofmtar ) 7). Curves are shown
for different temperatures. Populations calculated at the absence of
dissipation are marked with a〈x〉. Up to 50 iterations have been used.
The penalty factor (λ) has been set equal to 0.25.

Figure 4. Renormalized population (eq 13) of the target statemtar )
7 versus the durationτc of the pulse after excitation with an optimal
pulse (up to 2000 iterations have been performed) (denoted by the solid
line), after excitation with a Gaussian pulse (denoted by the dotted
line), and after excitation with the approximate optimal pulse (eq 8)
(denoted by the thin solid line) (we tookT ) 4 K andλ ) 0.25 for all
curves, the Gaussian and the approximate optimal pulse lead only to a
small population of the excited states, whereas for the optimal pulse
the ground state is almost empty).

ptar
(ren)(tf) )

Ptar(tf)

∑
R

PR(tf)

≡
Ptar(tf)

1 - P0(tf)
(13)
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x ) 1. Here, more then 70% of the excited state population is
concentrated in the target state. This condition is valid for a
case of almost-complete ground-state depletion. Ifx is reduced,
the target-state population remains almost constant untilx
decreases below a value of 0.7. However, the reduced target-
state population (eq 13) remains at 0.76 over the entire range
of x (not shown).

IV.B. Influence of Two-Exciton States and Disorder.Let
us turn to the inclusion of two-exciton states (eq 2). We expect
two additional effects when compared with a description
including single-exciton states only. First, it is unavoidable to
create a wave packet in the two-exciton manifold beside that
in the single-exciton manifold. Both wave packets are driven
simultaneously by the control pulse but must be reduced to a
single-exciton wave packet att ) tf by stimulated recombination
from the two-exciton manifold. Second, the entire dynamics
includes a new relaxation channel: the EEA from the two-
exciton manifold to the single-exciton manifold, which would
strongly affect the driven (coherent) two-exciton to single-
exciton transition. In conclusion, we should obtain a reduced
control yield.

Details of the temporal-state population, together with the
optimal pulse, are shown in Figure 7. We used the same
parameters as in Figure 6 (tf ) 600 fs). The optimal pulse
consists of two sub-pulses, the later one with a tail extending
up to t ) 500 fs. It becomes obvious from a comparison of the

total single-exciton population with the target population that
the first sub-pulse mainly results in overall population of the
singly excited states different from the target state. The
population of the target state is achieved by the second sub-
pulse, which increases the amplitudes of the single-exciton states
(which is consistent with an increase of the total single-exciton
population). The respective tail between 400 and 500 fs allows
the wave packet to move into the target state. Simultaneously,
an intermediate two-exciton state population appears. Because
of EEA and stimulated recombination, however, this population
is strongly decreased att ) tf .

To compare the control yield at the presence of two-exciton
states with that at their absence, we have repeated the calcula-
tions leading to Figure 6. For the mixed target state used (eq
12), we expect a small mixing parameterx to be particular
important for a suppression of the dominance of two-exciton
states. Respective results can be found in Figure 8. Indeed, the
largest ratio between the target-state population (mtar ) 7) and
the total population of the single exciton manifoldptar

(ren)(tf) (eq
13) is obtained for a modest total excitation (x ) 0.6). The ratio
ptar

(ren)(tf) reaches 0.76 but decreases to a value of 0.59 atx ) 1.
Incidentally, this is in contrast to Figure 6, whereptar

(ren)(tf) )
0.76 for all x. Moreover, the inclusion of two-exciton states
leads to a ground-state depletion ofP0 ) 0.47 atx ) 1, and the
total two-exciton state population∑R̃ FR̃R̃(tf) remains small. Note
that Figure 8 shows the maximal two-exciton population and
not the population present attf. The latter is strongly decreased
by exciton exciton annihilation processes (cf. Figure 7).

Figure 5. Renormalized population (eq 13) of the target statemtar )
7 versus time for a Gaussian pulse of different length and for the absence
of dissipation (note that the populations have been only drawn up to
the respectivetf, and, furthermore, that we used a value ofλ ) 0.25).

Figure 6. Population of the target sitemtar ) 7 of the ground state
and of the sum over all other site populations versus the mixing
parameter introduced in eq 12 (the target state is a linear combination
of the ground state and the state, where only BChl 7 is excited). The
pulse duration was 600 fs,T ) 4 K, andλ ) 0.25 (the renormalized
target state population (eq 13) stays at the value of 0.76 over the entire
x-range).

Figure 7. Population of the target sitemtar ) 7 versus time, together
with the optimal pulse in the lower panel, the pulse duration is 600 fs,
T ) 4 K, the mixing parameter isx ) 1, andλ ) 0.25.

Figure 8. Populations including the two-exciton states versus the
mixing parameter introduced in eq 12 (the target state is a linear
combination of the ground state and the state, where only BChl 7 is
excited); the pulse duration was 600 fs,T ) 4 K, andλ ) 0.25 (the
renormalized target-state population; eq 13 decreases from 0.76 atx )
0.6 to 0.59 atx ) 1.0).
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Although the data of Figure 8 have been calculated for the
same parameters as those shown in Figure 6, except the inclusion
of two-exciton states, the results differ remarkably. While, in
Figure 6, the ground state is almost completely depopulated for
larger values of the mixing parameterx, this is not the case
when transitions into two-exciton states become possible. In
this case, according to the chosen target state, OCT tries to
reduce the two-exciton populations as much as possible but in
accepting a much smaller target-state population. The population
of the target state is further influenced by dissipation that is
associated with EEA, which also hinders coherent single-exciton
wave packet formation.

The way this population is dependent on the penalty factorλ
(cf. eq 11) has been discussed in Figure 9 (for the case of
x ) 1). As expected, an increasingλ value initiates an increase
of the overall field strength of the optimal and, thus, of the
population of the target state. Interestingly, this is accompanied
by an decrease of the site population of all other BChl as well
as a very weak increase of the two-exciton population (again,
the maximal population is shown and not that attf). All the
given results demonstrate that laser pulse localization of the
exciton energy becomes possible, even if higher exciton
manifolds are discussed.

At the end of our discussion, we will investigate the influence
of energetic and structural disorder. The presence of disorder
results in the fact that the optimal pulse is determined as a
compromise, with respect to all the driven FMO dynamics,
differing somewhat from complex to complex in the probe
volume. As a result, the optimal pulse must be obtained from
a particular disorder average (see also Appendix B.2). Because
this represents a computational, very expensive task, the reported
data are of preliminary and oriented character. Only a restricted
number of disorder configurations could be included and it
became necessary to neglect the two-exciton states. Some results
are shown in Figure 10, where the disorder-averaged population
of the target state has been drawn versus the time up totf. The
considered types of disorder include random orientation of the
single FMO complexes in space and a Gaussian distribution of
the BChl site energies (diagonal disorder). As expected, disorder
decreases the target-state population. However, this influence
does not completely alter the results. A sufficiently large
population of the target state (two times larger than all other
state populations) becomes possible, independent of the actual
number of configurations.

V. Conclusions

The present paper has reported on simulations that have been
performed to demonstrate the possibility of guiding and local-
izing excitation energy in chromophore complexes by tailored
femtosecond laser pulses. If a wave packet has been formed
via the population of exciton states, the exciting laser pulse
should drive this wave packet into such a form that it
corresponds to a spatially local excitation of a single chromo-
phore. To exemplify the idea, the FMO complex of green sulfur
bacteria has been chosen. It represents a well-characterized
pigment-protein complex with seven Bacteriochlorophyll (BChl)
molecules in its monomeric form, with the presence of (partially)
delocalized exciton states, and with a proper distribution of
oscillator strength across the exciton states (necessary for a
flexible wave packet formation).

The possibility has been tested to populate a singleQy-state
of one of the seven BChl of the FMO complex. Even under
realistic conditions, such as the inclusion of two-exciton states
and the influence of energy relaxation and dephasing, such a
spatial localization of excitation energy is possible within a time
interval of some hundreds of femtoseconds and with a sufficient
large yield. Some preliminary attempts to include structural and
energetic disorder have also been made.

Our description has been based on the standard version of
optimal control theory by assuming a target state to be reached
at a particular time. To overcome this restrictive description,
we demonstrated recently how to optimize the probe pulse
absorption in a pump-probe scheme,27 which also might
represent a successful experimental approach for the example
studied here. It would be also of interest to translate the given
simulation to larger chromophore complexes, such as the core-
antenna system PS1. Such investigations are in progress.28
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Appendix A. Multiexciton Density Matrix Theory

In the following, the main ideas of the MX density matrix
theory are shortly reviewed. For more details, we refer the reader
to refs 19 and 20.

A.1. Multiexciton States. MX states |RN〉 represent the
electroniceigenstatesof interest for the considered type of

Figure 9. Simulation of the populations including the two-exciton
states and that of the target sitemtar ) 7 in dependency on the penalty
factorλ (for a pulse duration of 600 fs andT ) 4 K, the renormalized
target state population (eq 13) increases from 0.51 atλ ) 0.03 to 0.59
at λ ) 0.25).

Figure 10. Effect of disorder (random orientations of the complexes
and Gaussian diagonal disorder of the site energies of a full width
at half maximum (fwhm) of 100 cm-1) on the renormalized popula-
tion, eq 13 of the target statemtar ) 7 versus time (optimal pulse
of 600 fs duration,T ) 4 K, a mixing parameterx ) 1, and
λ ) 0.25). Calculations have been done for 5, 10, 15, and 20
disorder realizations.
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chromophore complex. The numberN in the MX quantum
numberRN indicates the respective manifold (single-exciton
manifold, two-exciton manifold, etc.). MX states appear as
superposition states of locally excited states|{m e, n f}N〉 ac-
cording to

This notation represents a generalization of eqs 1 and 2 for the
single-exciton and two-exciton states, respectively. The states
|{m e, n f}N〉 refer to anN-fold excitation of the chromophore
complex, with the molecules at sitesm1, ..., mM in the first
excited state (æe) and the molecules at sitesn1, ..., nN in the
higher state (æf). When performing the summation in eq A1,
the numbersM andN are related toN by the conditionN )
M + 2N . Of course, the notation with an arbitraryN is of
less importance here, because the concrete computations are
restricted to the incorporation of the two-exciton manifold only.

The MX states described in eq A1 can be used to introduce
the MX representation of the entire Hamiltonian (cf. ref 20).

The first term describes free MX dynamics. The quantities
Hvib(RN, âN) are responsible for diagonal as well as off-diagonal
MX-state coupling to localized intrachromophore vibrations and
delocalized vibrations of the entire system. The third term on
the right-hand side of eq A2 characterizes the intermanifold
coupling originated by the nonadiabatic coupling between the
higher excited state (æf) and the first excited state (æe). Optical
transitions between different exciton manifolds are taken into
consideration using the last term in eq A2, whereE denotes
the electric field strength.

The transition-dipole operator of the entire complex accounts
for transitions from the BChl ground state (æg) to the state (æe),
as well as from the latter one to the higher-excited state (æf).
This results in the following transition matrix elements from
the ground-state into the single-exciton manifold (note the use
of R instead ofR1, cf. Section II):

The BChl Qy-transition matrix elementsdm(eg) have been
introduced in Section III. For the transition from the single-
exciton state|â〉 to the two-exciton state|R̃〉, we get (note the
use ofR̃ instead ofR2)

A.2. Density Matrix Equations. The response to an optical
excitation can be described by the MX density matrix (eq 3).
For the systems of interest, it suffices to calculate the MX
density matrix by means of an equation of motion, which is
often called the quantum master equation or the multilevel

Redfield equation (see, for example, refs 19 and 21). This
equation reads for the reduced MX density operatorF̂(t) as

The Liouville superoperatorL mx denotes the commutator with
the MX part ∑N,RN pΩ(RN)|RN〉〈RN| of H (see eq A2). The
commutator with the field-dependent part ofH is abbreviated
by L field. MX energy relaxation, EEA, and dephasing are taken
into consideration by the superoperatorR mx-vib + R EEA. As
is well-known, such a treatment provides a sufficient weak MX-
vibration coupling. If a version of this approach is taken where
any coupling between coherences and populations induced by
the dissipative action of the vibrational DOF have been removed
(secular approximation and Bloch model),R mx-vib andR EEA

can be taken in the so-called Lindblad form.21,24

The contributions caused by the coupling to (intermolecular)
vibrations read

The intramanifold transition ratesk(mx-vib) have been discussed
in refs 19 and 20 and can be denoted as

Here, we have introducedΩ(âN,RN) ) Ω(âN) - Ω(RN) andn
denotes the Bose-Einstein distribution.

The single-exciton spectral density and the two-exciton one,
both entering the relaxation rate (eq A7) are taken as

and as

In the case of EEA, it suffices to concentrate only on transitions
from higher to lower manifolds, because the reverse processes
are strongly unfavorable, in regard to energy. Accordingly, we
have

As shown in ref 20, the EEA rate for the transition from
the two-exciton state|R̃〉 to the single-exciton state|â〉 can be
written as

It contains the single chromophore internal conversion rate
kffe

(IC) times the overlap between the probability to have a

|RN〉 ) ∑
{me, nf}N

CRN({m e, n f}N)|{m e, n f}N〉 (A1)

H ) ∑
N

(∑
RN

pΩ(RN)|RN〉〈RN| + ∑
RN,âN

Hvib(RN,âN)|RN〉〈âN|) +

∑
N>1

∑
RN-1,âN

[Θ(RN-1, âN)|RN-1〉〈âN| + h.c.] -

E(t)∑
N

∑
RN+1,âN

(d(RN+1, âN)|RN+1〉〈âN| + h.c.) (A2)

dR ) ∑
m

dm(eg)CR
/(m) (A3)

dR̃â ) ∑
m

∑
n*m

dm(eg)CR̃
/(m, n)Câ(n) + ∑

m

dm(fe)CR̃
/(m)Câ(m)

(A4)

∂

∂t
F̂(t) ) -i(Lmx + Lfield(t))F̂(t) - (Rmx-vib + REEA)F̂(t) (A5)

Rmx-vib F̂(t) ) ∑
N

∑
RN,âN

k(mx-vib)(RN f âN) ×

{1

2
[|RN〉〈RN|, F̂(t)]+ - |âN〉〈RN|F̂(t)|RN〉〈âN|} (A6)

k(mx-vib)(RN f âN) ) 2πΩ2(âN, RN)(1 + n(Ω(âN, RN))) ×
(J(RNâN, âNRN; Ω(âN, RN)) -

J(RNâN, âNRN; -Ω(âN, RN))) (A7)

J(Râ, âR; ω) ) ∑
m

|CR(m)Câ(m)|2 × Je(ω) (A8)

J(R̃ẫ, ẫR̃; ω) ) ∑
k

∑
m*k, n*k

C̃R̃
/(k, m)C̃ẫ

/(k, m) ×

C̃ẫ
/(k, n)C̃R̃(k, n) Je(ω) (A9)

REEAF̂(t) ) ∑
N

∑
RN,âN-1

k(EEA)(RN f âN-1) ×

{1

2
[|RN〉〈RN|, F̂(t)]+ - |âN-1〉〈RN|F̂(t)|RN〉〈âN-1|} (A10)

k(EEA)(R̃ f â) ) ∑
m

|CR̃(m)|2|Câ(m)|2 kffe
(IC) (A11)
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double excitation at a certain chromophore and the probability
to have a singly excited chromophore. Because the molecular
internal conversion ratekffe

(IC) enters eq A11, any modification
of this nonadibatic transition by excitonic effects has been
neglected (cf. ref 20). However, excitonic effects enter the entire
expressionk(EEA) for the EEA rate. The probability overlap in
eq A11 indicates that EEA requires a two-exciton state|R̃〉 with
a sufficient large probability to realize the excitation of the state
æf at a certain chromophore. If the probability is also large to
have the same chromophore in a single-exciton state|â〉, then
the entire transition from|R̃〉 to |â〉 becomes large.

The approach used in, e.g., by Ryzhov et al.,29 where the
transition from two spatially separated excitations to a double
excited state has been described in perturbation theory, is also
included in the present description. This becomes obvious by
expanding|C̃R̃(mf)|2, with respect to the related dipole-dipole
coupling (for more details, see ref 19).

Appendix B. Computation of the Optimal Pulse

B.1. Absence of Disorder.The extremum of the functional
in eq 11, and, thus, the optimal pulse, is determined by the
solution of the following equation:

The so-called control kernel reads as

It contains the propagation of the MX density operatorF̂ from
the initial time up to the intermediate time and a backward
propagation ofσ̂ from tf to t. The latter propagation concerns
the auxiliary density operatorσ̂(t) with σ̂(tf) ) Π̂tar. According
to refs 12 and 13, the equation of motion forσ̂ reads

with the dissipative part

and

Both dissipative superoperators of the reverse propagation
differ from the original one, with respect to their second term
(the so-called sandwich term).

The two time-dependent density operatorsF̂ andσ̂ are coupled
via the optimal pulseE(t) enteringL field(t). To determine both
density operators, we apply the iteration procedure suggested
in ref 14. Therefore, one replacesE(t) in L field(t) by eq B1 with
the control kernel according to eq B2. The letter expression
leads to a coupling between the equations of motion forF̂ and

for σ̂ by nonlinearities replacing the field term. In the case of
the equation forF̂, this term is dependent quadratically onF̂
but also linearly onσ̂. In solving the equation, one needs an
approximation forσ̂. If the full time dependence ofF̂ is known,
one can determineσ from tf back to t0. The entire iteration
scheme must start with a guess forσ̂ or the fieldE(t) and then
converges to the dynamics driven by the optimal pulse and the
optimal pulse itself.

B.2. Inclusion of Structural and Energetic Disorder. If
structural and energetic disorder is present, the control field acts
simultaneously on molecular systems that differ slightly in
regard to their structure and their energy spectrum. Any
measured signal appears as a disorder averaging (configuration
averaging). This is also valid for the expectation value of the
target operator (eq 10), which now reads

Disorder averaging is symbolized by〈...〉config in the first part
of the equation and given explicitly in the second part as a
summation over allNr realizations (the exciton expansion
coefficients, as well as the density matrix, must be specified
for the concrete disorder configuration). The notation of eq B6
implies that the control kernel (eq B2) takes the form

It also includes the disorder averaging. Thus, the optimal pulse
is determined as a certain compromise, with respect to all dis-
order realization. In particular, both density operators (F̂ andσ̂)
must be propagated for all disorder realizations simultaneously.
This is, of course, numerically very expensive and drastically
restricts the number of concrete computations,Nr.
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p
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∂

∂t
σ̂(t) ) i(Lmol + iL field(t))σ̂(t) + (R̃mx-vib + R̃EEA)σ̂(t)
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N
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2
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Ptar(tf) ) 〈trmx{F̂(tf)Π̂tar}〉config )
1

Nr
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j
∑
R,â

CR
(j)(mtar)Câ

(j)/(mtar)F
(j)(R,â;tf) (B6)

K(tf, t; E) )
i

pNr
∑

j
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(26) Brüggemann, B.; Herek, J. L.; Sundstro¨m, V.; Pullerits, T.; May,
V. J. Phys. Chem. B2001, 105, 11391.

(27) Kaiser, A.; May, V.J. Chem. Phys., in press.
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