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Abstract

Photosynthetically active membranes of certain bacteria and higher plants contain antenna systems which
surround the reaction center to increase its absorption cross section for the incoming sun light. The
excitation energy created in the antenna pigments is transferred via an exciton mechanism to the reaction
center where charge separation takes place. Sub-picosecond laser spectroscopy makes it possible to follow
the initial dynamic events of excitation energy (exciton) motion and exciton relaxation in real time. On the
other hand, the success of structure resolution opened the door to the microscopic understanding of
spectroscopic data and to an appreciation of the structure}function relationship realized in di!erent systems.
Here, it will be demonstrated how the combination of microscopically based theoretical models and
numerical simulations pave the road from spectroscopic data to a deeper understanding of the functionality
of photosynthetic antenna systems. The density matrix technique is introduced as the theoretical tool
providing a uni"ed description of the processes which follow ultrafast laser excitation. This includes in
particular coherent exciton motion, vibrational coherences, exciton relaxation, and exciton localization. It
can be considered as a major result of recent investigations that a theoretical model of intermediate
complexity was shown to be suitable to explain a variety of experiments on di!erent photosynthetic antenna
systems. We start with introducing the structural components of antenna systems and discuss their general
function. In the second part the formulation of the appropriate theoretical model as well as the simulation of
optical spectra is reviewed in detail. Emphasis is put on the mapping of the complex protein structure and its
hierarchy of dynamic phenomena onto models of static and dynamic disorder. In particular, it is shown that
the protein spectral density plays a key role in characterizing excitation energy dissipation. The theoretical
concepts are illustrated in the third part by results of numerical simulations of linear and nonlinear optical
experiments for three types of antennae: the peripheral light-harvesting complex 2 of purple bacteria, the
Fenna}Mathew}Olson complex of green bacteria, and the light-harvesting complex of photosystem II of
green plants. � 2001 Elsevier Science B.V. All rights reserved.

PACS: 87.15.!v; 71.35.Aa; 78.47.#p

Keywords: Dissipative Frenkel-exciton dynamics; Photosynthetic antenna systems; Density matrix theory; Ultrafast
spectroscopy
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1. Introduction

The storage of solar energy in energetically rich organic compounds and the accompanying
evolution of oxygen represents the basis of life on earth. It is a challenging and exciting task to
understand the molecular details of this process called photosynthesis.
Due to the progress in experimental techniques and computer power it became possible to

develop a microscopic picture of the primary photosynthetic processes. Biochemical methods
enable one to separate parts of the photosynthetic apparatus of photosynthetic bacteria and green
plants and perform site-directedmutations. X-ray and electron di!raction studies allow to visualize
the microscopic structures. Biophysical measurements applying laser spectroscopy in the frequency
and time domain probe the microscopic dynamics. Finally, quantummechanical calculations allow
for a detailed interpretation of the experiments, and conclusions can be drawn on structure}
function relationships.
The photochemistry of photosynthesis starts with a primary charge separation in the photosyn-

thetic reaction center. For example, in the reaction center of photosynthetic bacteria a bacterio-
chlorophyll dimer (the so-called special pair) acts as the primary electron donor. Within 2 ps an
electron is transferred from the excited special pair to a bacteriopheophytin, and from there in
about 100ps to a menaquinone. Finally, the hole at the oxidized special pair is "lled by an electron
from a reduced cytochrome (with a time constant of about 10 ns), leaving the special pair in its
ground state. In this way the excitation energy of the special pair is used to transfer an electron
through the photosynthetic membrane. The resulting transmembrane potential drives biochemical
reactions leading "nally to the evolution of oxygen and the "xation of carbon.
The initial excitation can be created due to the absorption of sun light by the special pair.

However, at much higher probability excitation energy is supplied by light-harvesting antennae,
which surround the reaction center to enlarge the cross section for the capture of sun light. The
antenna system contains a number (+200) of photoactive pigment molecules, which absorb the
sun light and e$ciently transfer the excitation energy to the reaction center. More than 98% of
light-induced excitations (excitons) reach the reaction center to trigger the electron transfer [1].
The active pigments are di!erent forms of chlorophyll (Chl), bacteriochlorophyll (BChl), as well as
carotenoid molecules. Chlorophyll and bacteriochlorophyll molecules can be classi"ed as modi"ed
tetrapyrols. Due to structural di!erences the various chlorophyll species absorb at di!erent
energies and thus the absorption cross section of the reaction center will be increased not only
spatially but also spectrally.
The understanding of the details of light-harvesting requires the knowledge of the microscopic

structure of antenna complexes. The "rst pigment}protein complex (PPC) that could structurally
be resolved by X-ray crystallography was the so-called Fenna}Matthews}Olson (FMO) complex. It
is a water soluble bacteriochlorophylla protein complex from green sulphur bacteria [2]. Recently,
the light-harvesting complex of photosystem II of green plants (LHC-II) [3] and the peripheral
light-harvesting antenna of purple bacteria (LH2) [4] followed. The positions of the pigments are
known with a resolution down to 1.8As , for the FMO complex. The natural environment of the
pigments in these systems is given by proteins. They provide the sca!old that holds the pigments
supposingly in optimal positions for exciton transfer to the photosynthetic reaction center.
There are some speci"c features which distinguish PPCs from other nonbiological chromophore

complexes and dye aggregates. First, PPCs are characterized by a well-de"ned structure, i.e. the
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spatial arrangement of the chromophores (embedding of the Chl in the protein matrix). Structural
#uctuations in a sample among di!erent PPCs of the same type, i.e. static disorder is only of
intermediate strength. Nonbiological system may show a much larger spatial inhomogeneity.
Using site-directed mutagenesis a particular tool is available to introduce a local change in the
structure of the PPC. Such precise alternation of the chromophore arrangement is impossible in
most cases of nonbiological systems. Finally, one has to take notice of the outstanding aspect which
is responsible for the PPC structure. This is the evolution of life which indeed optimized these
molecular nanostructure in a particular way such that they can ful"ll their biological function.
The knowledge of the microscopic structure of some of these photosynthetic PPC stimulated

many experiments. Using femtosecond laser pulses, the excitation transfer can be visualized, for
example, by means of ultrafast pump}probe spectroscopy. However, in order to extract from the
experimental data the underlying microscopic dynamics, and in particular to uncover the relations
between structure and function of these complexes, accompanying theoretical models and detailed
simulations of the experiments are indispensable.
The description of the quantum dynamics of excitons in organic crystals and dye aggregates is

well established [5}9]. Often there is no substantial overlap between the electronic wave functions
of the di!erent pigments in photosynthetic antenna systems and the theory of Frenkel excitons can
be applied. Due to the Coulomb interaction an excited molecular state is not stationary and
a partly delocalized excited state of the antenna can be formed. From this delocalization a number
of collective optical properties of the aggregate result as it is well-known from the theory of
J-aggregates [10].
The simulation of ultrafast nonlinear optical experiments on photosynthetic antenna systems

demands for several extensions of the standard Frenkel exciton approach. This includes the
incorporation of higher excited aggregate states [11,12] allowing to account for the simultaneous
presence of two, three, or more excitations in a single PPC. The respective eigenstates are called
multi-exciton states of the aggregate. Additionally, higher excited singlet states [13] of the mono-
meric pigments have to be introduced which are coupled to the multi-exciton states and, if
combined with internal conversion processes, give rise to a microscopic description of exciton
annihilation [14,15].
Another important issue concerns the role of the proteins, which are certainly more than a rigid

sca!old for the pigments. The excitation transfer from the antenna pigments to the reaction center
comes along with a spectral relaxation with the excess energy #owing into the protein environment.
The electronic states of the pigments experience a dynamic modulation by the motion of the
protein environment. Due to low-frequency vibrations of the protein and their high density of
states, over a certain energetic range a quasi-continuum of vibrational states can be expected to
exist. This energetic range accommodates typical energy di!erences between exciton states in
antenna systems. Therefore if one pigment is excited, a dissipative exciton transfer results from the
interaction of this pigment with the quasi-continuum of vibrational states of a neighboring pigment
and its protein environment.

1.1. Aims and scope

Theoretical models and numerical simulations are at the heart of a well-funded interpretation of
experimental observations. Having this in mind, it is our primary intention to give the reader an
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Fig. 1. Overview on the steps necessary when simulating PPC dynamics and related optical spectra (from above to
below). Step A indicates the way from the PPC spatial structure to the related PPC electronic spectrum. The latter is
given by the manifolds of multi-exciton levels. In step B, the vibrational modulation of the electronic levels has been
accounted for by starting with the protein structure and its possible #uctuations and ending up with potential energy
surfaces. These potential energy surfaces are the basis to describe electronic excitation energy relaxation. Step C displays
dissipative exciton dynamics in the PPC and the interrelation between spatially localized or delocalized excitation energy
motion and relaxation in the respective energy level scheme. To achieve a correct description of the PPC dynamics the
electronic (A) and vibrational (B) states have to be modeled in a proper way. Step D shows that the excitation energy
dynamics underlies the data obtained in an ultrafast optical experiment, for example in a pump}probe scheme. Here, the
numerical simulation can be compared with experimental "ndings and probably one has to go back from D to A to
rede"ne the theoretical models and parameters involved.

overview of the theoretical apparatus developed to perform the simulations leading to linear and
nonlinear optical spectroscopy. It goes without saying that the richness of the coupled motion of
electronic and vibrational degrees of freedom (DOF) requires certain e!orts and approximations
before the internal PPC dynamics can be modelled.
In recent years, a number of reviews have been published on photosynthetic antenna systems

covering experimental [16}19] as well as theoretical [20] aspects. Here we will focus on those
concepts which are necessary to connect experimental "ndings and structural data to gain a deeper
understanding of picosecond and sub-picosecond dynamics and its relevance for the biological
function. It is important to keep in mind that all steps of the modeling have to be incorporated into
numerical simulations. Quite naturally this will restrict the complexity of the model from the
outset. Therefore, the main idea for simulating PPC dynamics and related optical spectra will be
a combination of the derivation of microscopically correct formulas with the determination of the
various parameters by comparison with experimental data.
A general overview about the steps leading from the microscopic structure to optical spectra can

be found in Fig. 1. First, one has to relate the electronic properties of single Chl as well as structural
data on the spatial arrangement of the Chl in the PPC to an electronic (or multi-excitonic) energy
level scheme (panel (A) in Fig. 1). This level scheme including the Coulomb interaction between
di!erent molecular sites will be responsible for the main spectral features. In fact, a number of
semiempirical and ab initio quantum chemical calculations exist in this respect. But due to the
complexity of such calculations and the restricted computer power one usually has to stop at the
description of electronic single excited PPC states. This is, however, insu$cient for the simulation
of nonlinear optical experiments. Furthermore, to account for static disorder one would have to
repeat time-consuming quantum chemical calculations many times, a prohibitive task. Here we will
prefer an approach which circumvents the calculation of the PPC electronic states but deduces as
much information as possible from the comparison with optical spectra.
Panel (B) in Fig. 1 displays the next step along the road from the structure to the spectra. It

concerns the vibrational modulation of the electronic structure. The theoretical description of
electron}vibrational coupling (EVC) or multi-exciton}vibrational coupling is a fundamental aspect
for exciton motion and relaxation. The task here is to relate intra-Chl vibrations as well as
vibrations of the whole protein to potential energy surfaces (PES). For the electronic ground-state
the PES is usually called energetic landscape. Already this type of PES is hardly obtainable, but
trying to compute excited state PES of the PPC with quantum chemical methods seems to be
rather hopeless. Again, it is the particular aspect of the approach reviewed here that we will
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formulate general microscopic expressions for the respective coupling constants. But we will relate
them to certain frequency-dependent functions, the spectral densities, which can be deduced from
the experiment.
Having the electronic energy level structure of the PPC and its modulation by vibrational DOF at

hand, the description of the dynamics of the electronic PPC excitations (exciton dynamics) is required.
Here, spatial redistribution of optically injected excitation energy has to be confronted with relaxation
processes in the multi-exciton manifolds, i.e. in the electronic PPC eigenstates (panel (C) of Fig. 1).
Finally, based on the model outlined so far one has to compute optical spectra measured either

in the frequency-domain or in the (usually sub-picosecond) time-domain (panel (D) in Fig. 1). It is
worth mentioning that the details we have to consider when going from spatial and electronic
structure via dissipative exciton dynamics to, for example, femtosecond pump}probe spectra
depend on the actual experimental observation. One basic conclusion resulting from this statement
would be the possibility of a restriction to a certain set of electronic energy levels and excitations.
Furthermore, the strength of the coupling to vibrational DOF as well the frequency resolution of
the experiment decides about the level the protein motion has to be accounted for.
To summarize, what will be presented below is a microscopic theory of dissipative excitation

energy transfer dynamics and its spectroscopic signatures. The appropriate theoretical tool to
describe these phenomena typical for open quantum systems is given by the density matrix theory. It
is formulated in such a manner that many microscopic parameters can be obtained by comparison
with experimental "ndings. Thus, we provide the background for a model of intermediate complex-
ity which nevertheless is capable to simulate a variety of linear and nonlinear optical experiments
on photosynthetic PPCs.
The paper is organized as follows: In Section 2, we give an introduction into the relevant

structural components of photosynthetic PPCs. Emphasis is put in Sections 3 and 4 on the
derivation of appropriate model Hamiltonians which are capable of incorporating the results of
spectroscopic and structural observations for di!erent PPCs. Since we are aiming at a description
of nonlinear optical spectroscopy care is taken to include monomeric double excitation as well as
multi-excitation states in a uni"ed manner. Concepts for treating exciton}vibrational interactions
are reviewed in Section 4. The description of sub-picosecond excitation energy transfer dynamics
including dissipation is given in Section 5. In Section 6, the relation between the observables of
linear and nonlinear optical spectroscopy is established. The theoretical methods are then applied
to describe exciton motion in the LH2 (Section 7), in the FMO complex (Section 8), and in the
LHC-II (Section 9). Final conclusions are drawn in Section 10. Some more speci"c derivations are
presented in the appendices.

2. The structural components of photosynthetic antennae

The discovery of antenna systems started with the pioneering work of two botanists, Emerson
and Arnold [21], who used #ash light measurements to estimate the e$ciency for oxygen evolution
of algae in 1932. From their results they concluded that only a small fraction ((0.05%) of the
pigments are directly involved in the photochemical reactions. In 1936 Ga!ron and Wohl [22]
postulated the existence of distinct functional units composed of 250}300 absorbing pigments
and a photochemically active reaction center. The majority ('99.5%) of chlorophylls and
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bacteriochlorophylls act as light absorbers, funneling the excitation energy to the reaction center
where it is used to drive electron transfer reactions which in turn establishes a chemical potential
gradient across the membrane. The overall quantum yield of this process exceeds 95% [23].
Whereas in antennae Chls and BChls are the primary excitation transfer pigments, in the

bacterial reaction center, for instance, a BChl dimer functions as the electron donor. These multiple
functionalities of the pigments are made possible by their local protein environment and their
aggregation state. The protein serves several purposes, it gives the PPC its rigidity, "xes the
pigments at their positions, and provides a heat sink for excess energy. In this section the relevant
building blocks of photosynthetic antennae are introduced to provide a background for the
theoretical models outlined subsequently.

2.1. The pigments: electronic structure

The most important photosynthetic active pigments are bacteriochlorophylla (BChla) and
chlorophylla (Chla). Their structures are shown in Fig. 2. They represent the photochemically
active part of the reaction centers in bacteria (BChla) and in oxygen producing algae, cyano
bacteria and green plants (Chla). Moreover, they also form a major part of the antenna systems.
However, in the latter they are accompanied by the so-called accessory pigments, i.e. phycobilines,
carotenoids, Chlb, Chlc, BChlc, BChld, BChle, and BChlg. These accessory pigments absorb light
at di!erent wavelengths so as to energetically increase the absorption cross section of the antenna
and hence of the reaction center. (Note that some species such as Rhodopseudomonas (Rps.) viridis
have antennae composed of BChl b molecules [24].) In the antenna systems, which will be
investigated below, besides BChla and Chla, Chlb and di!erent carotenoids are found. In general,
carotenoids add to the stability of the PPC, act as e!ective quencher for Chl triplet states (thus
preventing formation of dangerous singlet oxygen), and participate in light harvesting [25,26].
Recently, there has also been an active discussion of the role carotenoids play in energy transfer
between di!erent parts of photosynthetic antennae (see, e.g., Ref. [19]). In addition, it has been
demonstrated that ultrafast carotenoid band shifts can be used to probe the structure and
dynamics of PPCs [27].
The optical properties of chlorophyll molecules are determined by extended conjugated �-

electron systems (see, e.g., Ref. [28]). In the case of BChls and Chls one "nds cyclic �-systems. The
strong optical transitions in the blue (Soret band), in the red (Chl) or infrared (BChl) are due to
�P�H type transitions. According to the early work of Gouterman [29] these transitions arise
from linear combinations of one-electron promotions between the two highest occupied (HOMO
and HOMO-1) and the two lowest unoccupied (LUMO and LUMO#1) �-type molecular
orbitals (four orbital model). Usually, one denotes this set of orbitals by �

�
to �

�
in order of

increasing energy. The resulting excited electronic states are labeled Q
�
, Q

�
, B

�
, and B

�
(see also

[30]). The transitions into the Q
�
and B

�
state are mainly due to a transition from �

�
to �

�
, and

from �
�
to �

�
, respectively, whereas transitions into the Q

�
and B

�
state are primarily caused by

a transition from �
�
to �

�
, and from �

�
to �

�
, respectively. (For notational convenience we will

also introduce a labeling like S
�
, S

�
, etc. for Q

�
, Q

�
,2, respectively.)

The Q-bands (resulting from a subtractive promotion) are polarized in two orthogonal directions
(Q

�
(S

�
) and Q

�
(S

�
)) in the red and near-infrared region, whereas an additive combination de"nes

the transition to the high-energetic Soret band at 350}450nm. The �-valence electron system of
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Fig. 2. Chlorophylla (left) and bacteriochlorophylla (right). The gray areas designate the cyclic �-electron system. The
Chlbmolecule which is present in the LHC-II besides the Chla is structurally identically apart from a slight change in the
pyrol ring II: the CH

�
group is replaced by C"O}H.

chlorophylls and bacteriochlorophylls can be understood as a disturbed ideal tetrapyrol �-system.
The destabilization of the �-system arises from a successive saturation of the pyrol rings (ring IV for
Chl, and rings II and IV in the case of BChls). In this way the two one-electron promotions loose their
initial degeneracy. This causes a gain in oscillator strength of the subtractive combination at the
expense of the high-energetic (additive) transition. In fact, the Q

�
-transition of BChl is stronger than

that observed in Chl. For example, in Ref. [31] the following dipole strengths of Q
�
transitions in

chlorophyll and bacteriochlorophyll were measured, BChla: 37.6 D�, Chla: 24.65 D�, and Chlb: 16.91
D�. Moreover, the four-orbital theory of Gouterman is also capable to explain the red shift
of this transition and other details such as, for example, the oxidation potentials. In Fig. 3, the
relevant transitions between di!erent electronic states of Chla are shown. The energy of the "rst
excited singlet state is solvent-dependent. For example, the Q

�
-maximum of Chla occurs in diethyl

ether at 662nm [32], whereas in ethanol [33] and carbon tetrachloride [31] it was measured at
665nm. The S

�
(Q

�
) and the S

�
(Soret) transitions occur around 579 and 415nm, respectively [31].

TheQ
�
-transition of Chlb is shifted approximately 20nm to the blue, whereas in BChla this transition

is red-shifted to 780 nm [31]. Careful analysis of the temperature dependence of absorption and
#uorescence spectra of BChla in glass-forming solvents gave evidence for inhomogeneities which
become important in low-temperature environments [34]. The triplet states arise according to
Gouterman from single HOMOPLUMO transitions. As it is shown for Chla in Fig. 3 the energy of
the "rst triplet state ¹

�
is well below the lowest excited singlet Q

�
(S

�
) state. It should be noted that

Gouterman's model has been veri"ed by sophisticated quantum chemical calculations [28].
Information about higher excited intramolecular states is provided by nonlinear absorption

techniques. In Refs. [35,36] the energetic position of the S
�
-states and oscillator strengths of the

related transitions of Chla have been estimated. A rather broad absorption band was found
indicating the presence of many S

�
-states. A strong excited state absorption was also found for

Chlb using transient holeburning [37]. Within a few picoseconds an occupation of higher excited
S

�
-states relaxes nonradiatively (internal conversion) to the "rst excited singlet S

�
-state (cf. Fig. 3).

Therefore independent of the excitation wavelength, #uorescence in these pigments starts from the
S
�
-state and takes place on a nanosecond time scale. However, about two-thirds of the S

�
-state
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Fig. 3. Schematic view of energy levels of Chla in solution and relevant electronic transitions.

population relaxes nonradiatively via spin-#ip processes (intersystem crossing) to the ¹
�
-triplet

state which lives approximately 1ms; in vivo this state is quenched by the carotenoids.
If pigments are arranged in a photosynthetic antenna complex there are two reasons why the

energies of the pigments will be shifted: (i) the inter-pigment Coulomb interaction and (ii) the
interaction with the protein environment. The former is responsible for the dynamics in the excited
molecular state. The related energetic change is called excitonic shift. To distinguish the nonexci-
tonic shifts in pigment energies one introduces the so-called site energies. These are transition
energies of the pigments in their local protein environment assuming that the mutual Coulomb
interaction has been switched o!. Possible nonexcitonic shifts arise from interaction of the
pigments with charged or aromatic amino acid residues, from hydrogen bonding, from ligation of
the central Mg-atom of the pigments to amino acid residues, from rotation of the pigments acetyl
groups and from non-planarity of the pigments macrocycle (see the references given in [38]).
Besides the pigment energies also the oscillator strengths of optical transitions of the pigments
exhibit excitonic and nonexcitonic shifts.

2.2. The pigments: intramolecular vibrations

Resonance Raman spectroscopy has been used to investigate the vibrational spectra of the
pigments, both in solution and in their natural environment. The observed vibrational frequencies
can be related to the complex motion of the cyclic pigment skeleton, and some represent also more
localized stretching modes of individual double bonds of the pigments.
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An interesting feature of such spectra is their dependence on the coordination of the
central magnesium atom. A comparison of the localized modes measured for isolated molecules
in solution and for molecules in the protein was used to "nd those parts of the Chl and
BChl skeleton which are modi"ed by the interaction with the protein environment and hence
play a prominent role in the intermolecular bonding. Besides the central magnesium atom,
the 9-ketone and 2-acetyl carbonyl groups could be identi"ed. For example, Lutz et al.
[39] predicted the average out-of-plane angle of the acetyl groups of the BChls in a
bacterial antenna system, a prediction which has been veri"ed later by crystallographic
experiments [40].
The vibrational spectrum contains many high-frequency modes ('1000 cm��), although there

are also modes between 200 and 350 cm�� which involve the motion of the central magnesium
atom. Besides the Raman studies also high-resolution #uorescence experiments provided informa-
tion about the vibrational spectrum [41,42].

2.3. Proteins

According to the complex structure of proteins their dynamics ranges from small-
amplitude oscillations of single residues occurring on a subpicosecond and picosecond time scale to
large-amplitude low-frequency motion of larger parts of the protein. Within the landscape
theory of proteins the latter so-called conformational motion corresponds to a di!usion between
the local minima of the high-dimensional energy landscape of the protein. This so-called
spectral di!usion can be monitored by the change of the transition energy of a chromophore
coupled to the protein. Spectral di!usion in proteins has been studied in the time domain by
three-pulse photon echo [43] and in the frequency domain by hole burning experiments [44]. The
obtained time scales range from nanoseconds until days, which is a manifestation of the protein's
complexity.
From a theoretical point of view large-scale protein motion demands for a description beyond

a harmonic approximation. In the 1980s it became possible to carry out molecular dynamics
simulations focusing on deviations from the harmonic approximation for small model systems.
Especially, at higher temperatures (¹'100K) anharmonic behavior was found [45]. Molecular
dynamics simulations also demonstrated the possibility to reduce the high-dimensional con"gura-
tion space of the proteins. The concept of the important subspace has been introduced in this
respect [46]. If the vibrational motion becomes anharmonic the important subspace cannot be
obtained from a normal mode analysis, but a so-called principal component analysis can be
applied to extract the important modes from a molecular dynamics simulation. For harmonic
dynamics the principal component analysis is equivalent to a normal mode analysis of the protein
motion. It is interesting to note that the numerical results obtained for small proteins indicate that
the principal modes may be divided into two classes, (i) anharmonic modes characterized by large
#uctuation amplitudes with multi-peaked distribution functions and (ii) harmonic modes with
smaller amplitudes of #uctuations which are well approximated by a single Gaussian distribution
[46]. As far as it concerns the role of proteins in photosynthetic energy transfer, a description which
focuses on small-amplitude harmonic motions seems to be justi"ed (see also [20]).
Much excitement and stimulation in the research on photosynthetic PPCs came from the

discovery of coherent nuclear motion. It was "rst observed in the bacterial reaction center [47] at
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low temperatures and later even at room temperature [48]. Meanwhile it has also been discovered
in the light-harvesting complexes LH1 and LH2 of purple bacteria [49,50]. The oscillation
frequencies are in the range of about 100 cm��. An investigation of the pigment, i.e. BChla, in
solution did not show such pronounced oscillations [49]. Hence it can be assumed that the
coherences have their origin in the motion of the protein. Alternatively, one could also think of
a mixing of delocalized protein vibrations with low-frequency intramolecular modes of the
pigments.

3. The exciton model for photosynthetic antennae

The investigation of Frenkel excitons in organic crystals and molecular systems like dye
aggregates or polymer strands has a long tradition. In the late 1940s and early 1950s the "eld has
been pioneered by FoK rster [51] and Dexter [52]. Later Davydov [5] and Agranovich [9]
established the theoretical basis for the description of electronic excitations, EVC, and excitation
transfer dynamics. During the last decade the activities have been concentrated on the formulation
of models adequate for the description of nonlinear spectroscopy, in particular in the ultrafast
(femtosecond) domain. This required to include multiple electronic excitations and the utilization
of techniques of dissipative quantum dynamics (see e.g. [10,53]). The fundamental nonlinear
electronic excitation, the two-exciton state, which appears if two molecules of the same complex (or
aggregate) are excited simultaneously, has been suggested to be responsible for nonlinear optical
processes in dye aggregates [54}56].
Interestingly, the development in the "eld of Frenkel excitons found an immediate

application to photosynthetic research (for an earlier review see [7]). Nowadays the study of
light-harvesting antennae and PPC is a subject not only for biologists, but experimental and
theoretical physics and chemistry have entered this "eld. Accordingly, one can state that the
investigation of PPC acts back on the development of the concepts for Frenkel excitons in other
molecular systems.
This section as well as Sections 4 and 5 are aimed to establish the basis for the description of

electronic and vibrational excitations as well as their coupled dynamics in PPCs. First, we will
review di!erent approaches to the systematic description of multiple electronic excitations of
PPCs. Some recent attempts to calculate the PPC electronic states either on an ab initio or
a semiempirical level of quantum chemistry are discussed in Section 3.2. However, all these
calculations are restricted to the lowest electronic excitation (single-exciton state) and they are
unable to give quantitative hints on the strength of the exciton}vibrational coupling. Circumvent-
ing this problem we will start the description by using local Chl-states (site representation), as it is
known from the traditional theory of Frenkel excitons (see, e.g., [9,53,57]). For the topics discussed
in this review it su$ces to formulate the site representation in an electronic two-level model for
every Chl (Section 3.3) or in a three-level model (to account, in a later step, for intra-Chl excited
state absorption, Appendix A). The results derived in these sections are used in Section 3.4 to
diagonalize the electronic PPC Hamiltonian and to introduce multi-exciton states as well as their
coupling to the radiation "eld (Section 3.5). The multi-exciton states represent the electronic
eigenstates of the PPC and are of basic importance for the correct description of relaxation as
discussed in Section 5.
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3.1. The Hamiltonian of the pigment}protein complex

In order to arrive at the stationary SchroK dinger equation and the respective Hamiltonian for the
complete PPC we assume that there areN

���
Chl molecules labeled by m and positioned (center of

mass) at z
�
. The respective PPC Hamiltonian reads

H
���

"H
��
(r,R)#¹

���
#<

���}���
(R) . (1)

H
��
comprises all electronic contributions of the various Chls. The complete set of electronic

coordinates is denoted by r. The subset of the electronic coordinates belonging to Chl m will be
labeled by r

�
. All electronic contributions from the protein can be neglected for the present

purpose. Throughout triplet excitation will not be considered which enables us to neglect the
electron's spin.
Additionally, the electronic Hamiltonian H

��
depends parametrically on the complete set, R, of

nuclear DOF. The nuclear kinetic energy is given by ¹
���

and the inter-nuclear interaction has
been denoted by <

���}���
. In most cases a restriction to valence electrons is su$cient, i.e., `nucleia

means nuclei plus core electrons. The whole set of nuclear DOF can be separated into intramolecu-
lar coordinates R

	�
��
and intermolecular coordinates R

	�
��
. The former can be further subdivided

into single-Chl sets R		�
��

�

. The intermolecular coordinates characterizing the relative positions of
the various Chls in the PPC; they have to be understood as a part of the protein coordinates
R

��

�	�
. A similar separation follows for the nuclear kinetic energy operator. The coupling

<
���}���

(R) splits up into a pair-wise combination of di!erent types of nuclear DOF:

<
���}���

(R)"�
�

(<
���}���

(R		�
��

�

)#<
���}���

(R		�
��

�

,R
��

�	�

))#<
���}���

(R
��

�	�

) . (2)

The contribution <
�������

(R		�
��

�

) describes the coupling among the intra-Chl nuclear DOF in the
mth chromophore. The interaction of these DOF with the protein coordinates are accounted for
via the potential <

���}���
(R		�
��


�
,R

��

�	�
). Both contribution are additive with respect to the

Chl-index m. An additional contribution is given by the pure protein part <
���}���

(R
��

�	�

).
Next, let us specify the electronic Hamiltonian in more detail. It can be written as

H
��

"�
�

H	��

�

#

1
2

�
���
���

< 	��}��

��

, (3)

where H	��

�

denotes the single-Chl contribution and <	�����

��

the mutual Chl}Chl Coulomb interac-
tion. Let us discuss the single Chl contribution: The di!erent types of electronic Chl excitations and
their classi"cation have been explained in Section 2.1. For the following we label the electronic
states (S

�
, S

�
, etc., compare Fig. 3) by a. They are de"ned via the following stationary SchroK dinger

equation:

H	��

�
(R)�

��
(R)"�

��
(R)�

��
(R) . (4)

The solution of Eq. (4) gives the site energies �
��
. They are di!erent from the Chl energies in the gas

phase since H	��

�
(R) includes the in#uence of the whole protein environment, but not of the

other Chl molecules. The single-Chl electronic Hamiltonian can be further split up into
H	��


�
"¹

��
#<

��}��
(r

�
)#<

��}���
(r

�
,R). The kinetic energy operator includes the contribution
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of all electrons from Chl m. <
��}��

(r
�
) denotes the internal electron}electron Coulomb inter-

action; it only depends on the coordinate set r
�
. Electron}nuclei interaction is denoted by

<
��}���

comprising the coupling to all nuclear DOF of the PPC <
��}���

(r
�
,R)"

<
��}���

(r
�
,R		�
��


�
)#�

���
<

��}���
(r

�
,R		�
��


�
)#<

��}���
(r

�
,R

��

�	�
). The "rst contribution describes

the coupling to the nuclear DOF of the same Chl whereas the second sum includes the coupling to
all other Chl of the PPC. The last term accounts for the coupling to protein vibrations. Since our
approach does not take into account the electronic structure of the protein the quantity
<

��}���
(r

�
,R

��

�	�
) has to be understood as an e!ective coupling also determined by the electrons of

the various protein parts.

3.2. Electronic states of the pigment}protein complex

In order to treat the interacting pigments of a PPC we start from the solutions of Eq. (4) which
give the energies �

��
and electronic wave functions�

��
of a single Chl. Since the approach accounts

for the in#uence of the surrounding protein, the obtained energies are called site energies and may
di!er for the Chls in the PPC. Then, the �

��
can be used to construct the electronic wave function

for all Chls in the PPC. The details of this procedure depend on the actual geometry of the PPC. If
the Chl molecules are close to each other ((10As , [58]) wave function overlap and charge transfer
states have to be incorporated [59}61]. Otherwise, only the pure Coulomb interaction of electrons
belonging to di!erent pigments has to be considered (see, e.g., [62]).
To classify the electronic states with respect to the various intramolecular electronic excitations

we introduce a Hartree-type product ansatz (not antisymmetrized)

���
�
(�r

�
�;R)"

��
�

�
�
�

�
��
(r

�
;R) . (5)

The multi-index A,�a�"(a
�
,2, a

����
) de"nes the electronic con"guration of the PPC based on

the zeroth-order states �
��
. Next, an antisymmetrization of ���

�
is introduced:

�
�
(�r

�
�;R)"

1

�N
�
!

�
����

(!1)�P[���
�
(�r

�
�;R)] . (6)

Here, P generates a permutation of electron coordinates of di!erent molecules in the PPC, and
p counts the number of permutations. Expanding the SchroK dinger equation for the PPC electronic
state ��� with respect to the basis (6) as ���"�

�
C(A)��

�
� one obtains �

	
(	�

�
�H

��
��

	
�!

E	�
�
��

	
�)"0. Since the single-Chl functions are assumed to be known the main di$culty here is

to calculate matrix elements of the Coulomb interaction operator. For two Chls labeled 1 and 2,
the matrix elements describe the direct contribution J

��
and the exchange contributions K

��
and

we have

	�
����

�<	��}��

��

��

�
�

�"J
��
(a

�
, a

�
, b

�
, b

�
)!K

��
(a

�
, a

�
, b

�
, b

�
) . (7)

Using the concept of transition densities [62] 

��


(r
�
)"�H

��
(r

�
)�

�

(r

�
) the direct Coulomb

interaction can be written as

J
��
(a

�
, a

�
, b

�
, b

�
)"�dr� dr� 
���
�

(r
�
)<	��}��


��


���
�

(r
�
) . (8)
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If the spatial extension of the transition density is comparable to the inter-Chl distance or larger,
one has to use Eq. (8) for J

��
. This is the case for the LH2 complex of purple bacteria where the

inter-Chl distance is less than 10 As . For other types of PPCs a multipole expansion is possible with
the dipole}dipole coupling as the leading term (n

��
"(z

�
!z

�
)/�z

�
!z

�
�, z

�
and z

�
denote the

center of mass coordinates of both Chl):

J
��
(a

�
, a

�
, b

�
, b

�
)"

(d	�

��
�

d	�

��
�

)!3(d	�

��
�

n
��
)(d	�


��
�
n
��
)

�z
�
!z

�
��

. (9)

This expression includes dipole operator matrix elements

d	�

�


"	�
��
��(

�
��

�

� (10)

with the Chl (electronic) dipole operator given as

�(
�

"�
r
�

er
�
. (11)

The exchange part K
��
(a

�
, a

�
, b

�
, a

�
) is mainly determined by the spatial overlap between

molecular orbitals, which belong to Chl 1 and to Chl 2. Such a wave function overlap decreases
exponentially with increasing intermolecular distance. Usually, for distances larger than
about 1 nanometer one can neglect the exchange contributions to the interaction energy.
In principle, for a system like the LH2 neither the use of J

��
according to Eq. (9) nor the

neglect of exchange contributions is rigorously justi"ed. However, quite often the approximate
coupling expression, Eq. (9), is taken as an ewective interaction with e!ective transition dipole
moments and reduced by the dielectric constant accounting for the screening e!ect due to the
protein environment [63}65].
The determination of the PPC electronic state becomes extremely involved if one steps from

the Chl states to the total PPC electronic wave function ���"�
�
C(A)��

�
�. Recently, this

problem has been approached using di!erent levels of sophistication. Here the focus has
been mainly on the LH2 of purple bacteria whose structure is well-de"ned. There are a number
of calculations of e!ective Hamiltonians using a point-dipole [65}69] or a point-monopole [70]
description. Based on a semiempirical QCFF/PI (quantum mechanical consistent-force-"eld/�-
electron) approach absorption and circular dichroism spectra for Rps. acidophila have been
calculated in Ref. [59]. A semiempirical INDO/S con"guration interaction calculation on the
single-excitation level has been presented for Rhodospirillum (Rs.) molischianum in Ref. [60].
While in this work the protein environment has been modeled by a dielectric constant, there are
attempts to include parts of the protein explicitly. Linnanto et al. [71] reported results of
a con"guration interaction exciton method (based on the semiempirical ZINDO/S level of theory)
including histidine residues. They estimated the e!ective Coulomb interaction matrix elements by
comparing a dimer supermolecule calculation with the respective monomer result. As another
application of semiempirical methods the structure of the whole photosynthetic unit of Rhodobac-
ter (Rb.) spheroides has been proposed based on the assumed homology with known structures of
other bacteria [65].
There are also a number of ab initio calculations (CIS level) for supermolecule-type substruc-

tures of the PPC. Particularly, the results gave valuable insight into the nature of the Coulomb
interaction which is not necessarily well-described within the dipole approximation (see above)
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[62]. These type of calculations also included parts of the protein (Mg ligands and H-bonding
residues [61]) or focused on the role of carotenoids [72].
All calculations reported so far have been restricted to the case of a single excitation only.

Further, in view of the complex structure of the PPCs there appears to be no easy way to elucidate
the e!ect of nuclear motions, or even to obtain a PES. However, these two extensions are of
primary importance for the description of nonlinear optical spectroscopy.
Here we proceed with the PPC wave function ansatz, Eq. (5) (or Eq. (6)) assuming that the Chl

wave functions are known. Concentrating on the Hartree ansatz (5) we will use the notation

��
�
�,����

�
� . (12)

As a consequence of the neglect of intermolecular wave function overlap, the states ��
�
� form

a complete basis. The ansatz Eq. (12) enables us to introduce the electronic PPC unit operator as

1
���

"�
�

��
�
�	�

�
� . (13)

The expansion of the Hamiltonian Eq. (3) follows as

H
��

,1
���
H

��
1
���

" �
��	

	�
�
�H

��
��

	
���

�
�	�

	
� . (14)

The single-Chl contributions toH
��
result in single-molecule matrix elements of the following type

	�
��
�H	��


�
��

��
�,�

��
. Two-state terms follow from the interaction contribution where the wave

functions are arranged in a way such that exchange contributions do not appear. Although we have
restricted ourselves to a two-center integral, four di!erent electronic quantum numbers have to be
considered. According to the two types of matrix elements the expansion can be written as

H
��

"��
��

�
��
��

��
�	�

��
�#

1
2
�
��

�
�
��

J
��
(a, b, c, d)��

��
�	�

��
����

�

�	�

��
��1��� . (15)

Clearly, the electronic PPC unit operator can be neglected, but it is important to keep in mind that
the remaining Hamiltonian is exclusively de"ned in this electronic N

���
-PPC state space. The

quantity J
��

abbreviates the inter-pigment matrix element of <	��}��

��

involving di!erent types of
transitions.
For further considerations we will restrict the complete electronic spectrum of the various Chl

to the (singlet) ground-state, i.e. a"S
�
,g, the "rst excited singlet state with a"S

�
,e,

and a higher excited singlet state a"S
�
,f (n'1). The latter is "xed by the condition

�


!�

�
+�

�
!�



and has been introduced to account for intra-Chl excited state absorption

[13,67]. The present state-space reduction allows to classify the electronic PPC con"gurations with
respect to the number of (elementary) excitations with energy approximately equal to the S

�
}S

�
transition. For the following it will be instructive to carry out this classi"cation within an electronic
two-level model "rst, i.e. to neglect the S

�
-state. The steps necessary for including this state are

sketched in Appendix A.
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3.3. The chlorophyll two-level model and the site representation

In the two-level model for the various Chls of the PPC we consider the electronic ground-state
�

��
and a single excited state �

�

per Chl molecule. To specify the inter-Chl electronic Coulomb

interaction, Eq. (9) we neglect diagonal dipole operator matrix elements (d	�

��
, d	�





"0) and restrict

ourselves to o!-diagonalmatrix elements d	�


�

(of the dipole operator in the dipole}dipole coupling).
Furthermore, contributions proportional to, e.g. ��

�

�	�

��
����

�

�	�

��
� are neglected. This

approximation which discards the simultaneous excitation (or de-excitation) of both Chl is known
as the Heitler}London approximation (for a recent discussion see [10]). For the dipole}dipole
coupling it gives (JK

��
denotes the operator of the Coulomb coupling)

1
2

�
���

JK
��

"�
���

J
��
��

�

�	�

��
����

��
�	�

�

� (16)

with

J
��

"

(d	�


�

d	�
H

�

)!3(d	�


�

n
��
)(d	�
H


�
n

��
)

�z
�

!z
�
��

. (17)

The complete electronic Hamiltonian is obtained as

H
��

"�
�

��
��
��

��
�	�

��
�#�

�

��

�

�	�

�

��# �

���

J
��
��

�

�	�

��
����

��
�	�

�

� . (18)

There exists an alternative notation for the Hamiltonian using second quantization operators. This
notation does not introduce any additional assumptions or extensions of the model but sometimes
provides a clearer description. To this end one introduces excitation (creation) operators

B�
�

"��
�

�	�

��
� (19)

and de-excitation (annihilation) operators

B
�

"��
��
�	�

�

� . (20)

The operators result in an excitation or de-excitation, respectively, of the mth Chl and have to be
understood as quantities acting in the complete PPC electronic state space. The operators are of
the Pauli type obeying the commutation relations

[B�
�
,B

�
]
�

"�
��

#(1!�
��
)2B�

�
B

�
(21)

and

[B�
�
,B�

�
]
�

"(1!�
��
)2B�

�
B�

�
. (22)

The electronic Hamiltonian can be written as

H
��

"�
�

(�
��
B

�
B�

�
#�

�

B�

�
B

�
)# �

���
���

J
��
B�

�
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�
. (23)
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Using relation (21) a more common notation can be derived (see e.g. [57,73,74]). For this reason, we
introduce the PPC electronic ground state energy:

E
�
"�

�

�
��

. (24)

In the present description, it gives the exact electronic ground state energy since the inter-pigment
Coulomb interaction has been approximated by the coupling of transition dipoles, Eq. (17).
Furthermore, we de"ne the single-Chl excitation energy

�
�
(eg)"�

�

!�

��
(25)

and get

H
��

"E
�
1
���

#�
���

(�
��
�
�
(eg)#(1!�

��
)J

��
)B�

�
B

�
. (26)

The main building block of this Hamiltonian is aN
���

�N
���

matrix with the excitation energies of
the various Chl on its diagonal and the Coulomb couplings on its o!-diagonals. As it is the case for
expression (18), the derived Hamiltonian is valid for any excited PPC state based on the Chl
two-level model.
It is advisable to introduce an ordering of the excited electronic PPC states which is related to

the optical experiments used to study PPC properties. In a linear absorption experiment the energy
of a single photon is deposited into the PPC leading to an excitation of a single Chl molecule into
a particular excited state (or more general, leading to a superposition of single Chl states, i.e. to
a PPC eigenstate). The lowest excited electronic states are of primary importance in this respect.
Since the intensity of the sunlight is weak, this single excited PPC state is the only one of interest
under physiological conditions. But applying nonlinear spectroscopic techniques some higher
excited electronic states of the PPC can be populated. We mention the two-exciton and the
three-exciton state with two or three excited chromophores, respectively, present in the PPC.
Higher intra-chromophore excitations have to be considered, too. All these states will be called
multi-excitation states of the PPC.
In the following, we will classify the excited electronic states of the PPC starting with the ground

state and introducing step by step higher excited states. Multiple electronic excitations of PPCs
have been proposed in [54}56]. A "rst experimental veri"cation in pseudo-isocyanine dye aggreg-
ates in solution could be given in [11]. In the earlier literature on the theory of Frenkel-excitons
[5,8,9] an exclusive concentration on single-excited states prevailed. This is surprising since
multiple exciton systems either as free moving Wannier}Mott excitons or as bound excitons are
investigated in semiconductor physics since the early seventies.
The ordering of the states is achieved if the total wave function is classi"ed with respect to the

numberN of excited Chl molecules. The related state contains the subset �m�
�
of excited Chls and

the subset �n�
����
}�

of N
���
}N Chls in the ground state. The (zeroth-order) state vector can be

written as ��m�
�
�,�m

�
,m

�
,2,m

����
�. The ground state �0� with zero excitations is the product

state of all electronic ground state molecular wave functions

�0�"�
�

��
��
� . (27)

155T. Renger et al. / Physics Reports 343 (2001) 137}254



The "rst excited state of the PPC is characterized by the presence of a single molecular excitation
(from the electronic ground state S

�
to the "rst excited singlet state S

�
). It reads

�m�"��
�

� �

���

��
��
� . (28)

Here, every Chl is in its electronic ground state except molecule m, which has been excited to state
e,S

�
. Two excited Chls are described by

�m, n�"��
�

���

�

� �

�����

��
��
� . (29)

For most nonlinear optical experiments the inclusion of these three types of states is su$cient.
Nevertheless, it is of general interest to formulate the approach independent of the actual number
of excited Chls. The general type of state vector in the case of N excitations reads

��m�
�
�"

��

�
�
��

��
�

�

�������

�
�
��

��
��
�"�

��

�
�
��

B�
� ��0� , (30)

where in the last part the excitation operators, Eq. (19) have been used.
Introducing the N-excitation subspace projector

PK
�

" �
���

�

��m�
�
�	�m�

�
� , (31)

the classi"cation scheme for the possible electronic con"gurations of the PPC can be formally
understood as a rearrangement of particular terms in the unit operator

1
���

"

����

�
�
�

PK
�
. (32)

The summation in the projector has to be carried out over all possible states with N excitations.
The expansion of the unit operator results in the expansion of the electronic PPC Hamiltonian

H
��

"�
�

H	�

��
PK

�
, (33)

where H	�

��

exclusively acts in the N-excitation subspace. The number N represents a good
quantum number and will be used in all forthcoming considerations to classify the PPC spectrum
and related transition processes.
To obtain H	�


��
we have to determine the action of H

��
, Eq. (23) on ��k�

�
�. It results in

H	�

��

" �
����
� �

������

�
��

# �
������

�
�


# �
������

�
������

J
��
B�

�
B

����k���	�k�� � . (34)

For an alternative notation we split o! the energy of the PPC electronic ground state E
�
, Eq. (24)

and write

H	�

��

"E
�
#H	�


��
(35)
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with

H	�

��

" �
����
� �

������

�
�
(eg)# �

������

�
������

J
��
B�

�
B

����k���	�k�� � . (36)

Here, �
�
(eg), Eq. (25) is the electronic excitation energy of the mth chromophore.

It is instructive to give explicit expressions for the N-excitation Hamiltonian for the lowest
excited PPC-states. The Hamiltonian in the presence of a single electronic excitation reads

H	�

��

,H	�

��
PK

�
"�

�

�
�
(eg)B�

�
B

�
# �

���
���

J
��
B�

�
B

�

"�
�

�
�
(eg)�m�	m�# �

���
���

J
��
�m�	n� . (37)

Both notations are common in the literature dealing with single-excitation properties of dye
aggregates and chromophore complexes. For the presence of two electronic excitations the
respective Hamiltonian reads

H	�

��
PK
�
" �

���
��� (eg)#�

�
(eg)# �

���� �

(J
��
B�

�
B

�
#J

��
B�

�
B

�
)��k, l�	k, l�

" �
���

(�
�
(eg)#�

�
(eg))�k, l�	k, l�# �

���

�
�����

(J
��
�m, l�	k, l �#J

��
�k,m�	k, l�) . (38)

All formulas given so far for the two-level model of the single Chl can be easily extended to the
three-level case and are summarized in Appendix A.
If it is possible to restrict the considerations to a linear arrangement of Chl molecules with

a nearest-neighbor Coulomb coupling an alternative description of the various excited electronic
states can be given [74,75]. It is based on the Jordan}Wigner transformation applied to the
open-chain version of HamiltonianH

��
, Eq. (23). It results in a Hamiltonian formulated in terms of

Fermi operators instead of the Pauli operators B�
�
and B

�
. If diagonalized the multiple electronic

excitations reduce to a system of noninteracting fermions. Unfortunately, this elegant way to
describe the electronic excitations is restricted to a chain of chromophores and therefore of less
importance for PPCs.

3.4. Multi-exciton states and multi-exciton expansion

The determination of the eigenstates of the electronic PPC Hamiltonian H
��
results in the

so-called multi-exciton states �

�
�. They describe the delocalization (or partial delocalization) of

simultaneously excited states at di!erent Chls. To indicate that the multi-exciton state belongs to
the N-excitation manifold the multi-exciton quantum number 
 will be given the subscript N. To
solve the stationary SchroK dinger equation for the multi-exciton state one introduces a superposi-
tion of state vectors ��m�

�
� according to

�

�
�" �

����

C��
(�n�

�
)��n�

�
� . (39)
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The summation includes all possible con"gurations in the PPC which contain excitations of
N di!erent molecules. The expansion coe$cients C de"ne the N-exciton wave function (in the
site-representation) and are labeled by the N-exciton quantum number 


�
. Next, we formulate the

eigenvalue equation for the multi-exciton state with reference to the ground state energy E
�
,

Eq. (24):

H	�

��
�


�
�"E��

�

�
� . (40)

Inserting Hamiltonian (36) and multiplying with the state vector ��m�
�
� from the left we obtain for

the expansion coe$cients

�E��
! �

�����
�

�
�
(eg)�C��

(�m�
�
)" �

�����
�

�
�����

�

J
��
C��

(�m�
�����

) . (41)

The label lPk at the expansion coe$cient on the right-hand side of Eq. (41) indicates a particular
interchange of the site indices l and k. The notation has been chosen to highlight that the excitation
at molecule l is a part of the multi-excitation con"guration �m�

�
; lPk indicates that this excitation

has been transferred to a site k which does not belong to the con"guration �m�
�
.

As a special case of Eq. (41) we obtain the eigenvalue equation for the one-exciton expansion
coe$cients as (


�
covers N

���
di!erent values):

(E�� !�
�
(eg))C�� (m)" �

���

J
��
C�� (n) . (42)

Correspondingly, the respective two-exciton equation reads (note mOn, here 

�

covers
N

���
(N

���
!1)/2 di!erent values)

(E�� !�
�
(eg)!�

�
(eg))C�� (m, n)" �

�����

(J
��
C��

(k, n)#J
��
C�� (m, k)) . (43)

The solution of the multi-exciton equation (41) enables us to introduce a new notation of the PPC
unit operator Eq. (13). By expanding the projector PK

�
with respect to the multi-exciton states of

manifold N we may write

PK
�

"�
�
�


�
�	


�
� . (44)

Using the same expansion for the N-excitation Hamiltonian, Eq. (36) it becomes diagonal

H	�

��

"�
�
E��

�

�
�	


�
� . (45)

3.5. Coupling to the radiation xeld

To simulate optical experiments on PPCs it is su$cient to take the coupling to the radiation "eld
in the electric dipole approximation resulting in the following expression to be added to the PPC
Hamiltonian, Eq. (1):

H
�
(t)"!E(r, t)�(

���
. (46)
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The dipole operator of the total PPC reads

�(
���

"�
�

�(
�
, (47)

where the single-Chl contribution (electronic part) has been given in Eq. (11). The electric "eld
strength E can be taken at an arbitrary point inside the PPC since the dimension of the latter is
much smaller than the wavelength of the light "eld in the visible region.
Expanding the dipole operator, Eq. (11), with respect to the electronic states and concentrating

on the Chl two-level model results in

�(
���

"�
�

(d	�


�
B�

�
#h.c.) . (48)

The multi-excitation expansion of the PPC dipole operator, Eq. (48) follows as

�(
���

"�
�

�
������

�
����

(d	�


�
�m, �k�

�
�	�k�

�
�#h.c.) . (49)

The dipole operator is responsible for transitions between neighboring N-excitation manifolds.
Therefore, we can write

�(
���

"

������
�

�
�

�(
�����

#h.c. , (50)

where transitions between the manifold of N and N#1 electronic PPC excitations are explicitly
indicated. The transition operator to the "rst excited manifold reads

�(
���

"�
�

d	�


�
B�

�
�0�	0�,�

�

d	�


�
�m�	0� (51)

and for the transition from the "rst to the second manifold we obtain

�(
���

" �
���

�O�

d	�


�
B�

�
�n�	n�, �

���
�O�

d	�


�
�m, n�	n� . (52)

Finally, we give the multi-exciton representation which is

�(
���

"

������
�

�
�

�


���

,�
�

d(

���

,�
�
)�


���
�	�

�
�#h.c. , (53)

where the multi-exciton representation of the transition dipole operator reads

d(

���

, �
�
)" �

������

d	�


�

�
����

CH����
(m, �n�

�
)C��

(�n�
�
) . (54)

In particular, we get for the transition into the single-exciton manifold

d(

�
, 0)"�

�

CH�� (m)d	�


�

. (55)
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The expression for the transition from the single- to the two-exciton manifold reads

d(

�
, �

�
)"�

���

CH�� (m, n)d	�


�
C��

(n) . (56)

3.6. Nonadiabatic couplings

Nonadiabatic transitions are important for the description of the so-called exciton annihilation
(see Section 5.3). The process incorporates the coupling of two Chls being close together and both
excited in the S

�
-state (state �



). Due to the mutual Coulomb interaction the excitation energy of

one of the Chls can be used to transfer the other Chl molecule into a higher excited singlet state.
A fast internal conversion back to the S

�
-state results in a "nal state of a single excited Chl, i.e. one

excited state (exciton) has been annihilated.
The internal conversion process can be related to nonadiabatic couplings which are obtained as

the residual interactions among the eigenstates of the electronic Hamiltonian (see, for example
[53]). They directly follow from the Born}Oppenheimer ansatz for the complete electron}vibra-
tional wave function. Of main interest are intra-Chl nonadiabatic couplings which are due to the
di!erent single-Chl electronic states. We start with an expansion of the complete PPC Hamil-
tonian, Eq. (1) with respect to the electronic states �

�
and include the nonadiabatic coupling. It

follows that

H
���

" �
��	

(�
�	

�¹
���

#E	�

�
(R)#<

���}���
(R)�#�

�	
(R)#=

�	
(R))��

�
(R)�	�

	
(R)� , (57)

where the nonadiabatic coupling is introduced via electronic matrix elements of the nuclear kinetic
energy part �

�	
"	�

�
(R)�¹

���
��

	
(R)�#�

���
1/M 	�

�
(R)�PK ��

	
(R)�PK (the summation is over all

nuclear momentum operators). The quantity =
�	
(R) is the electronic matrix element of

1/2�
���
<	��}��


��
.

With this notation of the PPCHamiltonian we can change to the site-representation, Section 3.3
or to the multi-exciton representation, Section 3.4. The EVC can be introduced in analogy to the
procedure which will be given in the next section.
For a proper description of exciton annihilation and the step involving the internal conversion

process it su$ces to concentrate on intra-Chl processes. But it is necessary to use the three-level
Chl model introduced in Appendix A. Specifying the general type of nonadiabatic coupling
operator to the three-level Chl model we obtain

H
��

,�
��	

�
�	

��
�
�	�

	
�"�

�

(�
����


D�
�

#h.c.) (58)

with D�
�

"��
��

�	�
�

�. The expression combines all nonadiabatic couplings at the various Chls

resulting in transitions between the higher excited state ��
�
� and the "rst excited state ��



�. For

simplicity it will be assumed in the following that the operator of the nonadiabatic coupling,
�

����

is independent of the nuclear DOF. The additional consideration of H

��
results in the fact

that the number N of excited Chl in the PPC (introduced in Section 3.3) is no longer a good
quantum number, transitions among di!erent multi-exciton manifolds become possible.
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4. Exciton}vibrational interaction

Having discussed the electronic problem for frozen con"gurations, R, of the Chl nuclei as well as
the protein environment, a description which incorporates the nuclear dynamics will be given next.
The related EVC is caused by a modulation of the electronic pigment energies as well as the
inter-pigment Coulomb interactions and can be accounted for in the framework of potential energy
surfaces.
Before discussing any details of handling the set R"(�R		�
��


�
�,R

��

�	�
) of PPC nuclear DOF

(i.e. intra-Chl and protein contributions, respectively, compare Section 3.1) we brie#y comment on
some general aspects of the introduction of PPC vibrational DOF. To this end we will concentrate
on the electronic two-level model for the chromophores. (Respective formulas for the three-level
model are collected in Appendix A.) For the following derivations we make use of Eq. (33).
Neglecting nonadiabatic couplings the nuclear kinetic energy commutes with the projectors PK

�
,

Eq. (31), and we can write the complete PPC Hamiltonian (electron}vibrational Hamiltonian) as

H
���

"�
�

H	�

���
PK

�
. (59)

From the N-excitation PPC Hamiltonian, Eq. (36), it follows that

H	�

���

"¹
���

#E
�
#H	�


��
#<

���}���
. (60)

After some rearrangement we arrive at PES de"ned for the multiple electronic excitation states of
the PPC. The ground state PES reads

;
�
(R)"E

�
(R)#<

���}���
(R) (61)

and the related ground state vibrational Hamiltonian is given by

H	�

���

"¹
���

#;
�
(R) . (62)

For the excited state contributions we get

H	�

���

" �
����
�[¹���

#;(�k�
�
;R)]# �

������

�
������

J
��
B�

�
B

����k���	�k�� � . (63)

with the PES

;(�k�
�
;R)";

�
(R)# �

������

�
�
(eg;R) . (64)

Although the PES are de"ned with respect to the state vectors in the site representation, they are of
a very general type and de"ne the basis for more speci"c expressions.
It is also possible to diagonalize H	�


���
, Eq. (63) for a given nuclear con"guration to get

H	�

���

"�
��

(¹
���

#;(

�
;R))�


�
;R�	


�
;R� . (65)

The ;(

�
;R) are the PES related to the multi-exciton level with quantum number 


�
. It is

important to notice that besides the PES also the multi-exciton state-vectors depend on the actual
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nuclear con"guration. This type of multi-exciton state is often called an adiabatic (multi)-exciton
state (see, for example, [76]).
Up to now we did not specify whether the R are quantum mechanical operators or classical

time-dependent coordinates. In general we expect that all high-frequency intra-Chl vibrations
(part of the sets R		�
��


�
) have to be described within quantum mechanics (Section 4.5). But for the

low-frequency motions of the proteins (coordinates R
��

�	�

) a classical description may be possible.
This is also true for the low-frequency intra-Chl vibrations. For simplicity in the following, we will
not point out this explicitly but refer to protein motions only.
The various strategies with respect to the description of PPC nuclear DOFs are compiled in

Fig. 4. (Note that this scheme is applicable to other problems of condensed phase dynamics as well.)
Within a classical description of the PPC nuclear DOF, molecular dynamics simulations of all
coordinates represents a powerful tool (see Section 4.1). It provides information about the
#uctuations of the electronic quantities, the PES ;(�m�

�
;R) together with the inter-pigment

couplings J
��
(R), or of the multi-exciton spectrum E(


�
;R). Alternatively to the direct determina-

tion of these #uctuations one can introduce certain stochastic processes characterizing the #uctu-
ation of, e.g., ;(�m�

�
;R) (see Section 4.2).

A consequent (nonequilibrium) quantum statistical description of the whole set of coordinates
R is possible if one can map them on the set of collective coordinates �Q��. Collective coordinates
which will be introduced in Section 4.3 replace the Cartesian nuclear coordinates to represent their
motion by means of a set of decoupled harmonic oscillators. Such a treatment leads to the widely
applied Brownian oscillator model [57]. The resulting type of interaction is usually called
`exciton}phonon couplinga. The term `exciton}phonon couplinga has its origin in the theory of
excitons in organic solids (see, for example, Refs. [5,9]). There, the motion of the periodic lattice can
be described by normal mode vibrations called phonons after quantization. In other words, the
term phonon has a very special meaning which is not applicable to protein vibrations and therefore
it will not be used in the following.
The description based on harmonic normal mode protein vibrations represents a frequently

used model to deal with dissipative exciton motion in PPCs [63,76}82]. It leads to the introduction
of a spectral density J(�) (or more precisely of a set of these functions, see Section 5.1.4) which
carries the complete information on the EVC. The quantity J(�) is usually understood as the
coupling-weighted density of states of the reservoir vibrations (protein vibrations in the present
case), i.e. J(�)"�(�)N(�). Here, N(�) is the vibrational density of states and �(�) describes the
respective coupling. Below, we will derive explicit microscopic expressions for the various parameters
describing the EVC. The crucial point here will be the use of locally de"ned spectral densities which,
however, incorporate the possibility of correlated vibrational motions at di!erent sites.
The normal mode analysis of the PPC vibrations assumes a restriction to small-amplitude

harmonic protein motions. If the vibrational motion of the proteins is characterized by large
amplitudes, anharmonic couplings among the normal modes have to be taken into account. Up to
now there is no direct experimental evidence for vibrational energy re-distribution in photosyn-
thetic antenna systems. Vibrational anharmonicities are, however, of interest for the determination
of the so-called pure dephasing rates [83}86]. In Section 4.4, we shortly discuss the separation of all
nuclear DOF into a small subset of active co-ordinates R

��
	��
and a remaining set of passive

coordinates R
����	��

. The former are understood as those DOF which are directly coupled to the
motion as well as the creation and destruction of excitons. The set R

����	��
forms a new type of
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Fig. 4. Scheme for treating the coupled dynamics of electronic and nuclear DOF. The basis of the description is given by
either the PES of localized PPC electronic excitations (and the vibrational modulation of the inter-Chl couplings) or the
dependence of the multi-exciton energy levels on the various nuclear coordinates. If these quantities are available one can
decide whether to carry out a classical or a quantum mechanical simulation. In the "rst case, it is possible to do MD
simulations or to choose a more approximate description via simple stochastic models for nuclear vibrations and related
#uctuations of PPC electronic energy levels. In the case of a quantum description one achieves a correct simulation of
nuclear dynamics whenever all coordinates can be mapped to normal mode oscillators. Otherwise, a separation into
a small set of active coordinates and a set of passive coordinates forming a heat bath would be advisable.

environment. Under certain conditions the correct quantum dynamics of the active coordinates
can be described including any type of anharmonicity.

4.1. Molecular dynamics simulation

Molecular dynamics simulation represents a broadly applied technique to obtain insight into the
structure and dynamics of molecules in solution, supramolecular complexes and the internal
behavior of a large variety of macromolecules such as proteins. The approach is based on
a description in terms of atoms or groups of atoms interacting via parameterized force "elds and
following Newton's equations of motion. In the case of biological macromolecules molecular
dynamics simulations are of outstanding importance to get insight into their conformational
changes and functionality, for instance. However, the complexity of these systems restricts the
time-range which is accessible by present-day computer power to the sub-nanosecond region [46].
Classical dynamics simulation requires as an input interaction potentials among the various

atoms or atomic groups as well as certain initial conditions [46,87,88]. The more di$cult task,
however, then consists in the combination of the classical simulations with Frenkel exciton motion.
It touches the basic problem of how to incorporate into the description of classical nuclear
dynamics on a single PES a nonadiabatic electronic quantum transition to a di!erent PES. An
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approach widely used for small molecular systems in this respect is the so-called surface hopping
method (see [53] and references therein). However, nothing has been done along these lines in the
context of light-harvesting PPCs. On the other hand, within relaxation theory the in#uence of the
environment can be described by means of time correlation functions, e.g. of the excitation energy
gap (cf. Section 5). This type of correlation function is readily obtained from molecular dynamics
simulations as has been demonstrated for the case of electron transfer in the photosynthetic
reaction center in Refs. [89,90]. On the other hand, it would be also helpful to have data on the
classical dynamics of PPCs in their ground state. Based on this knowledge one could try to
construct the density of states N(�) or even the spectral density J(�) determining multi-exciton
relaxation (see the introductory part of this section).

4.2. Stochastic models

If one is not interested in details of the coupling of the electronic excitations to PPC vibrations it
is possible to replace the vibrational modulation of the chromophore electronic states (and of the
Coulomb-interaction) by a stochastic process. Such a treatment has a long tradition in the "eld of
Frenkel exciton theory and is well-known as the Haken}Strobl}Reinekermodel [91,92]. Up to now
the stochastic description of the EVC has been restricted to the single-excited electronic state
[8,63,93,95]. For the case of photosynthetic antenna systems it assumes the following type of PPC
Hamiltonian (compare Eq. (37) and Ref. [95]):

H	�

���

"E
�
#�

���

[�
��
(�

�
(eg)#��

�
(eg)(t))#(1!�

��
)(J

��
#�J

��
(t))]�m�	n� . (66)

The ��
�
(eg)(t) and �J

��
(t) represent certain stochastic processes. They have to be de"ned via

a hierarchy of related correlation functions. In the case of a Gaussian process it is su$cient to "x
the lowest-order correlation functions

C	�

��
(t!tM )"	��

�
(eg; t)��

�
(eg; tM )�

�

��
(67)

and

C	�

�����

(t!tM )"	�J
��
(t)�J

��
(tM )�

�

��
(68)

as well as the cross-correlation function

C	���

����

(t!tM )"	��
�
(eg, t)�J

��
(tM )�

�

��
, (69)

where 	2�
�

��

denotes the averaging with respect to the stochastic process. A typical choice for
the correlation functions would be [63]

C	�

��
(t!tM )"�

��
	��

�
(eg; t)��

�
(eg; tM )�

�

��
, (70)
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�����
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��
)[�

��
�
��
	�J

��
(t)�J

��
(tM )�

�

��
#�

��
�
��
	�J

��
(t)�J

��
(tM )�

�

��
] (71)

andC	���

����

(t!tM )"0. The time-dependence of the correlation function has to be assumed separately
and gives the concrete type of process, e.g., the Gaussian process (see, for example, [8]).
An alternative to the Gaussian process is given by the dichotomic process. Here the #uctuating

quantity �(t) (provided it has been properly normalized) jumps randomly between 1 and !1
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[93}96] and we have 	�(t)��
�

��

"exp(!�t). Despite the rather simple structure of the correlation
function it is a major advantage of the dichotomous noise that "nite correlation times can be
considered.

4.3. Analysis based on PPC normal mode vibrations

The introduction of PPC normal mode vibrations gives a common description of all those
vibrational DOF of the PPC which carry out small-amplitude oscillations. All other types of
motions related to, e.g., large conformational changes are neglected (or considered as static
disorder provided they are slow enough). Nevertheless, for the actual status of the experiments this
model allows for an excellent simulation of exciton dissipation on a sub-picosecond time scale.
The description is based on microscopically de"ned coupling expressions, but enables one to
condense them into certain frequency-dependent functions, the spectral densities. This circum-
stance makes the approach of particular interest for the present state of describing PPC. Since
computations of the microscopic expressions for the EVC do not exist, it is a widely used
alternative to make a reasonable ansatz for the spectral densities and to compare the results with
measured data.
A correct description of (multi-) exciton relaxation relies on the use of the electronic (excitonic)

eigenstates (see Section 5). Below, we will discuss an adequate formulation of the multi-exciton
vibrational interaction Hamiltonian. It is based, however, on an assumption about the coupling of
the local Chl-excitations as well as their mutual Coulomb-interaction to the PPC normal mode
vibrations. Appendix B is devoted to a detailed description of this coupling. Here, we will use the
respective expressions to derive the multi-exciton vibrational coupling. We use the transformation
Eq. (39) for the two-level Chl model (or Eq. (A.13) for the three-level Chl model) and obtain the
representation of the complete PPC Hamiltonian in terms of delocalized exciton states. Splitting
o! the PPC ground state energy E

�
one can write (instead of Eq. (B.23))

H	�

���

"E
�
#H	�


��
(R

�
)#H	�


�����	�
#H

�	�
. (72)

The pure excitonic part H	�

��
(R

�
) has been given in Eq. (36); it is speci"ed here to the nuclear

con"guration R
�
corresponding to the minimum of the PPC ground state PES (see Appendix B).

The Hamiltonian H
�	�
, Eq. (B.7), which is responsible for the free motion of the reservoir DOF is

that of a set of uncoupled harmonic oscillators. The multi-exciton vibrational coupling reads

H	�

�����	�

" �
�� � ��

�
�

���g� (
�
, �

�
)Q� �
�

�	�
�
� . (73)

Here, the Q� denote dimensionless normal mode coordinates (cf. Eq. (B.4)). The multi-
exciton}vibrational coupling constants are obtained by introducing the exciton representation of
Eq. (B.24) as has been done in Appendix B:

g�(
�
,�

�
)" �

����
�CH��

(�k�
�
)g�(�k��)C��

(�k�
�
)

# �
������
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������

CH��
(�k; nPm�

�
)g� � (m, n)C��

(�k�
�
)� . (74)

165T. Renger et al. / Physics Reports 343 (2001) 137}254



The g�(�k�� ) have been de"ned in Eq. (B.18) and are related to the vibrational modulation of the
electronic Chl excitations. The g� �(m, n), Eq. (B.22) follow from the modulation of the mutual Chl
Coulomb coupling. The symbol �k; nPm�

�
indicates that in the set �k�

�
the particular Chl index

n has been replaced by m. For completeness we present the EVC constant for the single- and
two-exciton manifold. For the former we get

g�(
� , ��
)"�

�
�CH�� (k)g� (k)# �

���

CH�� (m)g� �(m, k)�C��
(k) . (75)

The two-exciton}vibrational coupling constant reads

g�(
� , ��
)" �

�������
�CH�� (k, l)g�(k, l)# �

�����

[CH��
(k,m)g� �(m, l)#CH�� (m, l)g� � (k,m)]�C��

(k, l) .

(76)

Finally, using all the preceding speci"cations of the contributions to H	�

���

, Eq. (72), we obtain the
exciton representation of theN-exciton part of the PPCHamiltonian. Although very complex in its
de"nition it has the simple form

H	�
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�� ���
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#H
�	�
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���g� (
�
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�
)Q���
�

�	�
�
� . (77)

The vibrational HamiltonianH
�	�

has been included in the multi-exciton expansion demonstrating
that in the present model all relaxation processes will take place in a given manifold of the
N-exciton state.
Next, we present a notation of the EVC which is appropriate for the description of the exciton

motion in terms of dissipative quantum dynamics (Section 5). We consider the electronic (excitonic)
DOF as those forming the active system S whereas the vibrational DOF de"ne the reservoir R.
According to this separation we identify the multi-exciton vibrational coupling with the system}
reservoir coupling of dissipative quantum dynamics [53]

�
�

H	�

���}�	�

PK
�

,H
���

"�
�

KK
�
�K

�
. (78)

The separation of H
�}�

has to be understood in such a manner that the operators KK
�
(�K

�
) act

exclusively in the state space of the system (the reservoir) DOF. According to Eq. (73) we can
deduce the system parts of H

�}�
as (note that it is not hermitian)

KK
�
"�


�
�	�

�
� , (79)

i.e. u,(

�
, �

�
). For the reservoir part we obtain

�K
�
"��

�
��g�(
�

,�
�
)Q� . (80)

In passing we note that if one incorporates a nonlinear coupling to the vibrational DOF the
reservoir part of the systems}reservoir coupling becomes

�K
�
"��

�
�� (g� (
�

, �
�
)Q�#g	�
� (


�
, �

�
)Q�� ) . (81)
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Since in the second-order contribution&g	�
� (

�
,�

�
) it is di$cult to discriminate between diagonal

and o!-diagonal contributions with respect to the mode index � we will restrict ourselves to the
diagonal terms.

4.3.1. Excitonic potential energy surfaces
An intuitive notation of H	�


���
, Eq. (77), leading to a certain type of PES is obtained if one splits

up the coupling constants g� (
�
,�

�
) into its diagonal and o!-diagonal elements. The diagonal

elements can be used to de"ne PES. To this end, we take the potential energy part �����Q��/4 of
H

�	�
and combine it with the term JQ� of Eq. (77) to de"ne the (shifted) excitonic PES (see the

scheme in Fig. 5):

;(

�
,Q)"E��

!�
�

���g�� (
�
, 


�
)#�

�

���
4

(Q�#2g� (
�
, 


�
))� . (82)

Then, the multi-exciton representation of the PPC Hamiltonian is obtained as

H	�

���

"�
�

�
�� ���

���� ���
�¹

�	�
#;(


�
,Q)�# (1!��� � ��

)�
�

���g� (
�
, �

�
)Q���
�

�	�
�
� . (83)

Next, we clarify the type of the states which are of zeroth-order with respect to the o!-diagonal
elements of the EVC matrix. Neglecting the second contribution in the PPC Hamiltonian one
easily obtains the eigenstates as

��	�
��
�"�


�
��

�
exp(g� (
�

, 

�
)C�!h.c.)�N�� . (84)

The expression describes the shift of every normal mode oscillator upon the excitation of the
multi-exciton state �


�
�. The amount of this shift is determined by g� (
�

, 

�
). It is related to the

nonshifted normal mode oscillator states �N�� withN� excited vibrational quanta. For the case of
the single-exciton states we give a notation in terms of local Chl excitations,

��	�
��
�"�

�

C�� (m)�m��
�
exp(g� (
� , 
�)C�!h.c.)�N�� . (85)

This type of exciton}vibrational state is usually called Davydov ansatz since it has been
widely used (in a time-dependent version) by Davydov to describe soliton motion in molecular
chains [97]. It is well known that this type of state if understood as an ansatz for a variational
determination of the respective energy (with C(m) and g� to be determined) does not give
the best result for the ground state energy of the so-called excitonic polaron. Of a more general
type would be an ansatz where the g� in the exponent of the shift operator depend on the molecule
index m. Then, the state incorporates a superposition of vibrational displacements which depends
on the di!erent sites (for a recent application to exciton localization in the LH2 see [76,98]). In
contrast, the ansatz in Eq. (85) only contains displacements of vibrational coordinates which are
valid for all sites m. Nevertheless, the excitonic PES introduced so far correspond to a certain
approximative description of the excitonic polaron. And, a natural generalization to multi-
excitonic polarons can be directly deduced from Eq. (84). Including the o!-diagonal multi-
exciton}vibrational coupling within an approximate treatment one can expect an improvement of
the Davydov-type state.
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Fig. 5. Comparison of multi-exciton levels (left) and excitonic PES (right). Every multi-exciton level of a particular
manifold is represented by an excitonic PES. (The horizontal arrows indicate the residual coupling among the PES via
the part of the EVC being o!-diagonal with respect to the multi-exciton quantum numbers.)

4.4. Active and passive vibrational coordinates

In the preceding section we chose a description based on normal mode coordinates �Q��
comprising all types of PPC vibrations. However, experimental evidence has been obtained for
vibrational coherences [99] indicating that there might exist a reduced set of vibrational DOF
which couples strongly to the electronic PPC excitations. In the context of dissipative quantum
dynamics [53] this type of vibrational coordinates is usually called active coordinates. They will be
incorporated into the active system and we will label this subset by s"�s

�
�. The remaining set of

passive coordinates is denoted as Z"�Z��. Along theses passive coordinates the vertical excita-
tion energy from the ground state to a (multiple) excited states does not change signi"cantly. Using
the representation with respect to the multiple excited PPC states the respective PES ;(�k�

�
;R),

Eq. (64), splits up as ;(�k�
�
; s)#;(Z). Independent of the excited electronic state the coordinates

Z belong to a single PES which de"ne the reservoir Hamiltonian H
�
. But there may exist an

electronic state-dependent coupling between active and passive coordinates leading in the present
case the system}reservoir interaction of the form

H
�}�

"�
�

H	�

�}�

, (86)

with

H	�

�}�

" �
����

=����
(s,Z)��k�

�
�	�k�

�
� , (87)
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where=����
(s,Z) is the respective coupling matrix element. Calculations for the coupled dissipative

quantum dynamics of the electronic DOF and a set of active coordinates s comprising not more
than two coordinates have been carried out in Refs. [12,14,100,101]. Since wave packet dynamics
related to the active coordinates are incorporated, the description is well suited to simulate
vibrational coherences observed in ultrafast optical spectroscopy.

4.5. High-frequency intramolecular chlorophyll vibrations

In Section 2.2, we referred to experimental data on intra-Chl vibrations. Here we focus on the
high-frequency vibrations for which the vibrational quanta are so large that a separate treatment is
advisable. This is also suggested by the fact that distinct vibrational progressions are observed in
the experiments. This can be accounted for by combining the high-frequency modes with the
electronic spectrum of the Chl molecules. The related stationary SchroK dinger equation reads
(see Eqs. (4) and (2))

(H	��

�
(R)#¹

���
#<

���}���
(R		�
��


�
))�

��
(R)�

���(R		�
��

�

)

"(�
��

#��
���)���

(R)�
���(R		�
��


�
) . (88)

As stated earlier the electronic energies �
��

are de"ned such that they already contain all types of
vibrational zero-point energies. Eventually, nonadiabatic couplings have to be considered, which
will be discussed in the following section. Eq. (88) is based on the assumption that there is no
considerable coupling of a single set R		�
��


�
of intramolecular coordinates to other types of nuclear

DOF. We can use the eigenstates of the stationary SchroK dinger equation to expand the PPC
Hamiltonian with respect to these electron}vibrational states. All formulas given so far remain
valid with the exception that one has to replace the electronic quantum numbers a (b,2) by the
electron}vibrational quantum numbers a�. Furthermore, any electronic matrix element A

����

has

to be multiplied by the Franck}Condon factor 	�
��� ���
��.

In the energy level scheme used so far the ground state level �
�
, the "rst excited level �



, and the

higher excited level �
�
are supplemented by high-frequency vibrational quanta ��

��� . Thus the
new energy spectrum ensures, for instance, that there exist a transition from �



into the vibrational

manifold of the level �
�
which is nearly equal in energy to the transition from level �

�
to �



. In

particular, this leads to a near degeneracy of the excitation into the higher excited state �
��

with
two excitations into �

�

and �

�

. This possibility was the assumption for the multi-exciton

representation for the three-level Chl model given in Appendix A.

5. Dissipative exciton dynamics

At the center of optical experiments on light-harvesting PPCs are the electronic transitions and
the related exciton dynamics as it is induced by the interaction with the external laser "eld.
Nevertheless, EVC as discussed in the previous section is of great importance for the detailed
understanding of optical line shapes. Also it is fundamental for the energy funneling towards the
reaction center which comes along with energy dissipation into the protein environment. Hence,
any theoretical simulation has to be aimed at computing electronic expectation values related to
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the measured quantities. The vibrational DOF which couple weakly to the electronic (multi-
excitonic) DOF can be considered to form a thermal reservoir. If the coupling is stronger, for
example, for some selected modes (see Section 4.4), a description is necessary which incorporates
the nonequilibrium dynamics of these modes.
In the following, we will present di!erent approaches to the description of dissipative exciton

dynamics. First, we shortly recall the well-established treatment of an open quantum system by
means of the quantummaster equation (QME) [53,102,103]. It assumes an unequivocal separation
of the whole system into a small subsystem of active DOF and an environment. Such a separation
is obvious in the case of weak or intermediate EVC strength where all vibrational DOF can be
understood as forming a thermal environment (cf. Section 4.3). Here the standard QME can be
used to study exciton transport and relaxation. In order to treat cases where the coupling
of excitons to vibrational DOF becomes so strong that a perturbational treatment is impossible, we
present an approach known as Liouville space pathway technique. It establishes generalized
master equations (GME) and corresponds to a perturbation theory, for example with respect to
inter-Chl Coulomb coupling. An alternative which goes back to the QME description is achieved if
one can split o! from the whole set of vibrational DOF a small subset of active coordinates
coupling strongly to the exciton motion (cf. Section 4.4). Those active coordinates are put together
with the electronic DOS to form the enlarged active system. This treatment is advisable, for
example, if one wants to describe coherent vibrational motions which are observed, e.g., at very low
temperatures [99].
It is important to note that all approaches discussed in the following have their background in

the theory of open quantum systems [53]. The basics of this theory with the density matrix in its
center were established at the end of the 1950s. But during the late 1970s and early 1980s a number
of contributions to the transport properties of excitons in molecular systems have been given (see,
e.g., [8,9,104}107]). The new aspects which have been worked out, in particular during the study of
PPCs in the last decade, are the following. (i) In order to simulate the results from ultrafast
spectroscopic measurements it is of great importance to generate the time-dependence of the density
matrix in the course of numerical calculations. (ii) Since it is of interest to have a realistic
description of exciton relaxation, improved models of EVC had to be used. (iii) In contrast to the
pure single-exciton theories, the modern approach is based on a multi-exciton formulation to allow
for simulation of nonlinear optical spectroscopy.

5.1. The reduced density operator approach

5.1.1. The quantum master equation
In typical experiments the interaction with the external electromagnetic "elds basically in#uences

the electronic DOF of the PPCs. Therefore, the observables to be calculated in numerical simulations
are matrix elements de"ned via electronic wave functions. As a consequence it is suitable to introduce
a quantity which carries the statistical information reduced to the electronic DOF only. This is
achieved if one utilizes the well-established concept of the reduced statistical operator (RSO). If=K (t)
denotes the statistical operator of the complete exciton}vibrational system of the PPC, the RSO is
obtained by taking its trace with respect to the subsystem of vibrational DOF:


( (t)"tr
�	�

�=K (t)� . (89)
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According to this de"nition the RSO describes the time-dependence of the electronic DOF under
the in#uence of the vibrational DOF leading to energy dissipation and wave function dephasing.
This statement is general and does not require weak EVC. And indeed, it is well known that an
exact equation } the Nakajima}Zwanzig equation } can be derived which determines the RSO
[108]. Unfortunately, any speci"c computation is restricted to a low-order version of this equation
such as, for example, the second Born approximation. Therefore, any practical use of the QME has
to be based on a weak EVC in the present case.
According to general relaxation theory the following separation of the complete PPC Hamil-

tonian is performed:

H
���

"H
�
#H

�}�
#H

�
. (90)

First, we have an active system with Hamiltonian the H
�
. For the present application it contains

the electronic DOF of the PPC, which can be supplemented by a small set of vibrational DOF as
discussed in Section 4.4. The reservoir Hamiltonian is denoted H

�
and governs the motion of

the nuclear DOF of the PPC. The coupling of the latter to the active system is contained in the
interaction part,H

�}�
. (Various speci"cations of these operators will be given below.) The necessary

combination of perturbation theory with respect to H
�}�

and the reduction procedure to the state
space of the active DOF is achieved by introducing a projection superoperatorP [108] which acts
on some operator AK of the total system according to

PAK "RK
��
tr

�
�AK � . (91)

Here RK
��

is the equilibrium statistical operator of the reservoir and tr
�
denotes the trace with

respect to the reservoir DOF. If applied to the complete statistical operator =K (or any other
operator acting in the product state space of the system and reservoir states) the projectorP leads
to a factorization of=K into a part which is exclusively de"ned in the system state space, i.e. in the
present case to the RSO 
( . The other part is "xed by RK

��
and acts in the reservoir state space.

According to this property of P it enables us to derive exact equations of motion for 
( where the
reservoir enters via its equilibrium properties.
To derive equations of motion for 
( which contain the e!ect of H

�}�
up to second order we note

that the Liouville}von Neumann equation for the complete statistical operator=K written in the
interaction representation (with the interaction part H

�}�
and related Liouville superoperator

L
�}�

) reads

R
Rt=K 	�
(t)"!iL	�


�}�
(t)=K 	�
(t) . (92)

Here, =K 	�
(t)";�
�
(t!t

�
)=K (t);

�
(t!t

�
) with the interaction-free time evolution operator

;
�
(t!t

�
)"exp�!i(H

�
#H

�
)(t!t

�
)� and the interaction operator H	�


�}�
(t)";�

�
(t!t

�
)

�H
�}�
;

�
(t!t

�
). Next we introduce the orthogonal complement, Q, with P#Q"1, which

projects onto the irrelevant part of the statistical operator. The equation of motion for both parts
are easily found to be

R
RtP=K 	�
"!iPL	�


�}�
(t)(P#Q)=K 	�
(t) (93)
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and

R
RtQ=K 	�
"!iQL	�


�}�
(t)(P#Q)=K 	�
(t) . (94)

Solving Eq. (94) and inserting the result into the equation forP=K 	�
, a closed equation for the RSO
is obtained (Nakajima}Zwanzig equation). We retain the second-order approximation with respect
to H

�}�
and neglect initial correlations by setting Q=K 	�
(t

�
)"0. It results the QME in its

non-Markovian version. Although it would be necessary to investigate systematically the import-
ance of non-Markovian e!ects with respect to the EVC in PPCs we will take here as a reference
case the Markov-approximation. We will return to the issue of non-Markovian dynamics in
Section 9.2.4. Fortunately, the condensed-phase environment provided by the intramolecular
chlorophyll vibrations or the motions of the protein sca!old are characterized by correlation
functions which can be reasonable approximated as decaying rather rapidly on the time scale given
by the dissipative dynamics of the relevant system. Concerning the LHA's three-pulse photon echo
experiments on LH2 [109] as well as numerical simulation for the reaction center Warshel and
Parson [110] suggest correlation times to be typically below 100 fs in photosynthetic systems
which shows that the Markov approximation is of reasonable quality.
For the following considerations, the factorization ansatz for the system}reservoir interaction

Hamiltonian (see Eqs. (78))

H
�}�

"�
�

K
�
�

�
(95)

will provide su$cient #exibility. Here, K
�
and �

�
are operators in the system and reservoir space,

respectively. Accordingly the non-Markovian QME for exciton dynamics reads

R
Rt
("!

i
�
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�
,
( ]!R[
( ](t) . (96)

The dissipative part becomes

R[
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���
�

����

�

d� (C
��
(�)[K

�
,;

�
(�)K

�

( (t!�);�

�
(�)]

!C
��
(!�)[K

�
,;

�
(�)
( (t!�)K

�
;�

�
(�)]) . (97)

Here the reservoir correlation function

C
��
(t)"

1
��
tr

�
�RK

��
�	�


�
(t)�	�


�
(0)� (98)

has been introduced. It is de"ned by the reservoir part �
�
of the system reservoir coupling, Eq. (95),

in the interaction representation. (If existing, the factorized part (tr
�
�RK

��
�	�


�
(0)�/�)� of the correla-

tion function has to be subtracted [53]). The correlation function can be related to a special type of
dissipation}#uctuation theorem. It states how energy dissipation in the reservoir is determined by
reservoir equilibrium #uctuations (see, for example [53]). Therefore, it is not surprising that C

��
(t)

mainly determines the dissipative part of the QME.
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If the Markov approximation is made (for 
( taken in the interaction representation with respect
to H

�}�
) the dissipative part is governed by the time-local relaxation superoperator

R
(t)"�
�

[K
�
,�

�

( (t)!
( (t)��

�
] , (99)

which contains the operator

�
�
"�

�
�

�

�

dt C
��
(t)K	�


�
(!t) . (100)

In the following, we will use the more compact notation for the QME:

R
Rt
("!iL

���

( , (101)

where the e!ective Liouville superoperator reads

L
���

"L
�
!iR (102)

andL
�
abbreviates the commutator withH

�
/�. Eq. (101) together with Eq. (99) is a central result of

general relaxation theory (see, e.g. [53]) which has to be speci"ed to the case of LHA's next.

5.1.2. The spectral density
Before changing to the multi-exciton representation of the QME we shortly comment on the

correlation function, Eq. (98) and its relation to the so-called spectral density. In fact, there appears
a fundamental speci"cation for the reservoir DOF if the QME, Eq. (96) or Eq. (101), is used. The
particular treatment of the coupling between the active system and the environment results in an
equilibrium description of the reservoir (neglecting any coupling to the active system). The
reservoir state is characterized by the equilibrium statistical operator RK

��
, and C

��
(t) is the

correlation function of the reservoir operators �	�

�
(t) in thermal equilibrium. The diagonal part

C
��
(0) (at zero time) gives the expectation value of ��

�
. Under certain speci"cations for �

�
(see

below), C
��
(0) can be related to the mean-square deviation of the reservoir coordinates from its

equilibrium position (at "nite temperature or at ¹"0).
Besides the discussed quantum statistical description of the reservoir correlation function

a simulation in terms of classical distribution functions is also possible as mentioned in Section 4.1.
What has been not speci"ed by the approach is the concrete type of PES governing the motion of
the reservoir DOF. If the motion is mainly anharmonic (large-amplitude motion) and di!erent
DOF are strongly coupled the correct quantum statistical description and in particular the study of
the low-temperature region would become di$cult. However, if the reservoir DOF carry out
a small-amplitude motion one can introduce a normal mode representation (compare Section 4.3
and Appendix B).
We will discuss here the resulting general structure of the correlation function assuming the

existence of a single-coupling expression �"�����g�Q� similar to Eq. (80) (the Q� are dimension-
less normal mode coordinates). The mapping of the reservoir dynamics on the equilibrium state of
a large set of decoupled harmonic oscillators makes it easy to compute the correlation function.
Incorporating a Fourier transform we get for the frequency-dependent correlation function (n(�) is
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the Bose}Einstein distribution)

C(�)"2���(1#n(�))(J(�)!J(!�)) , (103)

where we introduced the spectral density

J(�)"�
�
g���(�!�� ) . (104)

Via a simple frequency integration J(�) can be related to the quantity

S"�d�J(�)"�
�
g�� (105)

which is known as the Huang}Rhys factor. The spectral density can be understood as the coupling
constant weighted density of states of the normal mode oscillators. The latter quantity is given as

N(�)"�
�
�(�!��) . (106)

If it is possible to replace g�� by �(�� ), i.e. the mode index dependence is exclusively given via the
normal mode frequencies �� , the spectral density indeed is obtained as N(�) weighted by the
coupling constant distribution �(�).
The above given expressions demonstrate how one pro"ts from the mapping of the reservoir

DOF on harmonic oscillators. If their number is large enough one can consider the spectral density
as a continuous function of the frequency. Hence, the large set of DOF has been replaced by
a single function for which di!erent analytical models exist (see below). Alternatively,J(�) can be
obtained from "tting of experimental data [77,111], or from classical molecular dynamics simula-
tions which has been done, for instance, for the reaction center [90].
This is the basic concept we will follow below to characterize the dissipative in#uence of the

protein environment on the exciton motion in PPC. It will be explained in detail how spectral
densities have to be de"ned and how they are combined with excitonic wave function expansion
coe$cients to describe relaxation among the (delocalized) multi-exciton states.

5.1.3. Multi-exciton representation
As discussed in the foregoing sections the actual de"nition of the reduced density operator and

the understanding of the QME has to be based on a certain partitioning into active system and
reservoir. In the present section we follow an approach where the whole set of vibrational DOF
forms the reservoir and the active system is exclusively de"ned by the electronic (multi-exciton)
DOF, i.e. we set (compare Eq. (45))

H
�
"�

�

H	�

��
PK

�
,�

�

�
��

E

�
�


�
�	


�
� . (107)

The reservoir Hamiltonian is de"ned via the vibrational Hamiltonian, Eq. (B.7),

H
�
"H

�	�
(108)
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and the system reservoir Hamiltonian follows from the coupling Hamiltonian H	�

��}�	�

, Eq. (B.24),
between the exciton manifolds and the vibrational DOF (compare also Eq. (78)):

H
�}�

"�
�

H	�

��}�	�

PK
�
. (109)

To change from the operator equations to those which can be solved at least numerically we
introduce the RSO in the representation of multi-exciton states, Eq. (39),


(

�
, �

�
; t)"	


�
�
( (t)��

�
� . (110)

The equation of motion for the multi-exciton density matrix is directly obtained after taking the
respective matrix elements of Eq. (101). It reads

R
Rt
(
�
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�
; t)"!i�(
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�
)
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�
; t)!	


�
�R
( (t)��

�
� . (111)

The "rst term on the right-hand side includes the transition frequencies�(

�
, �

�
) between di!erent

multi-exciton states with energies E��
and E��

. The dissipative contribution R
( has to be
calculated according to Eq. (99). We use Eq. (79) and obtain for the interaction representation of
the system part of H

�}�
(u has to be identi"ed with the pair of multi-exciton quantum numbers



�
and �

�
)

KK 	�

�
(!t)"e�	�	�� ��� 
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� . (112)

The operator �
�
of Eq. (100) follows as
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Here, we introduced the half-sided Fourier transform of the correlation function

CI
��
(�)"�

�

�

dt e	��C
��
(t)"!�

d��
2�i

C
��
(�� )

�!�� #i�
. (114)

According to Eq. (99), expressions (112) and (113) allow to construct all contributions to the
dissipative part of the QME in the multi-exciton representation. We do not give the complete
expression here, but use an approximation based on the introduction of energy relaxation and
dephasing rates. The approximation neglects fast oscillating contributions and is frequently known
as the secular approximation [53,103]. Neglecting the so-called environment-induced coherence
transfer one ends up with the Bloch model [112] which leads in the present case to the following
type of equations:
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The energy relaxation rates are given by

k(
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)) . (116)
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Here, we identify CI with half of the complete Fourier transform of the correlation function, C/2.
This approximation corresponds to the neglect of a renormalization of the transition frequencies
due to the system-reservoir coupling [53].
Since the model for the EVC used so far does not include transitions among di!erent exciton

manifolds the rates are diagonal with respect to N. Further, the dephasing rates read
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where the zero-frequency part describes pure dephasing.
Eqs. (116) and (117) relate energy dissipation and dephasing to reservoir correlation functions.

Therefore, we will consider this quantity in more detail. For the sake of simplicity, we will
concentrate on the linear contribution of the coupling to the vibrational DOF, Eq. (81) (nonlineari-
ties in the EVC and the resulting type of correlation function are discussed in Appendix C). The
correlation function related to a linear multi-exciton}vibrational coupling can be expressed via
a spectral density in accordance with Eq. (103) as
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The spectral density reads
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which is the generalization of Eq. (104). Finally, we note that the temperature enters the theory only
via the Bose}Einstein distribution function. Since the correlation functions have to be taken at
certain transition frequencies in the energy relaxation rates, Eq. (116) and dephasing rates, Eq. (117)
the Bose}Einstein distribution takes a well-de"ned value. Of course one may let, for example, the
site-energies of the Chl molecules become temperature-dependent. But that would be a heuristic
way not incorporated in our microscopic theory.

5.1.4. Protein spectral densities
As demonstrated in the preceding section dissipative multi-exciton dynamics can be formulated

such that its details are mainly governed by di!erent spectral densities. In the following we will
analyze the spectral density, Eq. (119). Since this quantity is given in the multi-exciton representa-
tion we have to step back to the site representation to reveal molecular spectral densities.
First, we use Eq. (74) which relates the exciton representation of the multi-exciton vibrational

coupling constants to the coupling constants in the site representation. Since the microscopic
origin of the coupling is two-fold (modulation of the Chl energy levels and modulation of the
mutual Coulomb interaction) we get four di!erent types of spectral densities in the site repre-
sentation
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All contributions in these expressions are connected with multi-exciton state expansion coe$cients
(see Eq. (39)). This already indicates that the expression relates the multi-exciton spectral density to
locally de"ned spectral densities. And it shows that the transition from these locally de"ned
spectral densities, once we have them at hand, to the multi-exciton representation can be done
exactly since the determination of the C��

(�m�
�
) is rather straightforward.

The four di!erent contributions in Eq. (120) are originated by the two types of multi-exciton
vibrational coupling constants. The "rst type g� (�k��) results from vibrational modulation of the
Chl energies and the second type g� � (nm) follows from the modulation of the inter-Chl Coulomb
interaction. In their order of appearance the four terms in Eq. (120) are given by the follow-
ing combinations of coupling constants g� (�k��)g�(�l��), g� (�k��)g� � (nm), g� � (nm)g� (�l�� ), and
g� �(nm)g� � (n� m� ). These combinations de"ne new spectral densities.
The spectral density in the "rst term of Eq. (120) reads

J(�k�
�
, �l�

�
;�)"�

�
g� (�k��)g� (�l��)�(�!��) . (121)

The spectral densities in the second, third, and fourth term of Eq. (120) are de"ned in a similar
manner. But instead of the coupling constant combination g� (�k��)g� (�l��) they contain
g�(�k��)g� � (nm), g� � (nm)g�(�l��) and g� �(nm)g� � (n� m� ), respectively.
Since the coupling constants of type g� (�k�� ) are additive with respect to the di!erent site

contributions (compare Eq. (B.18)) three types of elementary spectral densities exist. They follow
from the three possible combinations of the coupling constants g� (m) and g� �(m, n). For example,
we have

J(�k�
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J
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with the elementary type of spectral density

J
��
(�)"�

�
g�(m)g� (n)�(�!�� ) . (123)

To discuss the respective expressions in more detail we "rst introduce the correlation function of
the Cartesian nuclear coordinates (Chl plus protein coordinates)

C
��M
(t)"	�R

�
(t)�R

�M
� . (124)
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Here, the �R
�
is the deviation of the nuclear coordinate R

�
from its equilibrium value R	�


�
(on the

PPC ground state PES). The brackets denote the thermal average (with respect to the PPC
electronic ground state). According to the normal mode transformation, Eq. (B.2) of Appendix
B the thermal average leads to a Bose}Einstein distribution for the mean normal mode occupation
numbers. At ¹"0 one gets the Fourier transform relation

C
��M
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A
��

�M
�

A
�M �

�M
�M
�(�!�� ) . (125)

It has to be understood as the Cartesian coordinate correlation function averaged with respect
to the coordinate's zero-point motion. (The A

�� are the coe$cients of the normal mode trans-
formation, and the M

�
denote nuclear masses.) C

��M
will be used to present the di!erent types of

elementary spectral densities. We have from Eq. (123)
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The second type of spectral density J
����

(�) follows after replacing g�(n) by g� � (k, l). This results in
a replacement of R�

�
(eg;R)/RR

�M
by RJ

��
(R)/RR

�M
. The third type of spectral density J

�����
(�) is

obtained if g� (m) in Eq. (126) is replaced by g� � (m, n).
Since simulations for the correlation functions C

��M
are not available for antenna complexes and

all derivatives entering the spectral densities are unknown, one has to choose some qualitative
arguments to get explicit expressions for the various J. Therefore, let us take a closer look at
J

��
(�), Eq. (126). This expression correlates sites m and n via their coupling to the various normal

modes of the PPC. If there would be only a coupling to local modes around z
�
as well as z

�
,

J
��

becomes diagonal with respect to the site indices. On the contrary, if the coupling of the
normal modes is uniform, i.e. site-independent we expect that J

��
becomes site-independent, too.

These two limiting cases suggest that there would be a certain dependence of J
��

on the mutual
distance Z

��
"�z

�
!z

�
�. To be speci"c, let us further analyze expression (126). It de"nes the

spectral density via the various C
��M
(�;¹"0) summed up and weighted with derivatives (of the

excitation energies of Chl m and Chl n). We take two reasonable assumptions. First, we provide
that C

��M
(�;¹"0) can be replaced by a uniform autocorrelation function C(�;¹"0) and a func-

tion f (R
�
!R

�M
) depending on the distance between the two considered atoms. And second, it is

assumed that the derivatives R�
�
(eg;R)/RR

�M
have to be taken for a subsetR

�
of nuclear coordinates

(coordinates which belong to atoms around Chlm). If we "nally assume that the derivatives weakly
depend on the site index we obtain
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The various functions f (R
�
!R

�M
) related to sites m and n have been approximated by a single

function depending on the distance Z
��

between both sites. In the second part of this equation the
unique spectral densityJ(�) valid for all sites has been introduced. Since di!erent Chl in the PPC
may experience a di!erent protein environment it might be necessary to relax the assumption of
a single local spectral density. But as long as there is no evidence for this di!erence the single
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spectral density together with the distance function should be a good approximation. With respect
to the latter quantity we make the ansatz

f (Z
��
)"exp(!Z

��
/Z

�
��
) . (128)

The quantity Z
�
��

de"nes a certain distance beyond which any correlation of di!erent sites via
protein vibrations vanishes. Using this ansatz we can interpolate between the case of localized and
uniform vibrations. Since the distance function is characterized by a single parameter (correlation
radius) it becomes possible to determine this quantity via a "t of experimental spectra [84,85]. In
the same manner the shape of the unique spectral density can be determined. Therefore, one starts
with a reasonable ansatz like

J(�)"J
�
��e����� (129)

and "xes the free parameters J
�
, p, and �

�
by a comparison with experimental data (for more

details see also Section 8). This form is typical for condensed-phase environments whose density of
states is characterized by an upper limit for possible frequencies. In principal, one expects a more
structured spectral density than given by Eq. (129). However, in many experiments any "ne-
structure cannot be uncovered, in particular if inhomogeneous line-broadening is present. So it
often su$ces to only "x the power by which the spectral density grows at small frequencies and the
range where it vanishes.
In the case of the elementary spectral density J

����
we can repeat this reasoning to get
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However, an additional assumption with respect to the m and n dependence of the derivatives of
J

��
would be necessary. The same problem appears when considering the last type of elementary

spectral density. Up to now computations have only been carried out using relation (127) [84,85].
But it is important to note that the given analysis enables us to relate the general type of spectral
density, Eq. (120), to linear combinations of three types of elementary spectral densities. These
quantities can be classi"ed with respect to their dependence on the site index. Further, knowing the
multi-exciton expansion coe$cientsC��

we can evaluate any type of multi-exciton spectral density.

5.1.5. Single-exciton relaxation rates
The considerations in the foregoing sections gave a general frame to introduce multi-exciton

correlation functions and spectral densities. To have more speci"c formulas at hand for further use
in the following sections, we will specify the rate expressions, Eq. (116), and dephasing rates,
Eq. (117), to the case of the single-exciton manifold. Pure dephasing contributions will be neglected
and so we can concentrate on the determination of the single-exciton version k(


�
, �

�
) of the energy

relaxation rate, Eq. (116). This quantity is related to the protein spectral density via Eq. (118) which,
in the following, should be exclusively determined by the EVC induced by the introduction of the
single-excitation PES, i.e. the coupling is proportional to g�(m). According to this assumption,
Eq. (120) is reduced to the "rst part proportional to the elementary spectral density J

��
(�),
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Eq. (123). Applying the concept of the correlation radius of protein vibrations introduced in the
preceding section the computation of the single-exciton energy relaxation rate is reduced to the
determination of a single spectral density J(�) as given in Eq. (129). In summary, the energy
relaxation rate (connecting exciton levels separated by the transition energy ��(


�
, �

�
)) follows as
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From this expression the dephasing rates are simply obtained as
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with single exciton-level dephasing rates �(

�
) needed, for example in Section 6.4.2 to characterize

homogeneous line broading of an optical transition from the PPC ground-state into a single-
exciton level.

5.1.6. Site representation
To derive the site (multi-excitation) representation let us consider the situation where every Chl

is described within a three-level model (see Appendix A). In this case one has to compute the
density matrix in the site representation (multi-excitation density matrix)
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( (t)��me�
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; �nf �

�
� , (133)

which is de"ned with respect to the multi-excitation states. The advantage of this quantity is that it
enables us, for example, to get the spatial distribution of the PPC electronic excitations since it
contains the states ��ke�

�
�lf �

�
� and ��me�

�
; �nf �

�
�. From the diagonal elements of the RDM the

probability distribution of excited electronic states within the whole PPC is available. In principle,
one can calculate the RDM using the site-representation of the QME, Eq. (101). But for a correct
description of the electronic excitation energy dissipation one has to change to the electronic
eigenstates of the PPC [20,53]. Using these states (the multi-exciton states) one can calculate the
dissipative part, Eq. (99), of the QME. Therefore, it is more advisable to compute the RDM in the
multi-exciton representation from the very beginning and to change if necessary to a site repres-
entation using the inverse relation of Eq. (39). In this manner, for example, the single-excitation
distribution is obtained as
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But coherences between di!erent sites are also important which becomes obvious if one calculates
the single-excitation RDM for the equilibrium distribution of the electronic PPC excitation over
the single exciton states which is given by
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. (135)
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Although the single-exciton manifold is in a mixed state spatial coherences are present. However,
one has to note that this result is only valid for the case of weak EVC [76].
If details of the EVC are of less importance a description of PPC dynamics using the RDM in the

multi-excitation (site) representation can be carried out. In the next section, a related equation of
motion approach is shortly reviewed which allows to reduce the number of equations as compared
to the number one is faced with in the RDM theory.

5.2. Exciton}vibrational coupling beyond perturbation theory

Since the perturbative treatment of all vibrational DOF o!ers a numerically feasible way to
model exciton dynamics [63] it has found widespread application to simulate related optical
spectra as will be documented in detail in Sections 7}9.
However, in order to investigate the possibility of e!ects like polaron formation or vibrational

coherences one has to go beyond the weak coupling limit. Access to this area is provided by models
including one or two e!ective vibrational modes in an exact manner [12,14,100,101]. A procedure
based on the wave packet dynamics of certain collective nuclear coordinates representing a set of
spectral densities has been proposed in [113]. In the limit of strong static disorder the nonlinear
optical response of aggregates described by excitonic PES (see Section 4.3.1) has been given without
[79] and with perturbative inclusion [81] of interlevel relaxation. This approach allows for
a Brownian oscillator-type modeling of the nuclear DOF [57], assigning them to (in principle
arbitrary) spectral densities. An alternative to the e!ective mode approach is given by a method
resulting in the derivation of GMEs for the electronic level populations [78,114,115]. Here, the
non-Markovian e!ect typical for generalized rate equations may become essential since the theory
incorporates state populations (diagonal density matrix elements) only.
Since the mentioned techniques did not "nd such a broad application as the theory accounting

for the vibrational DOF perturbatively we only shortly comment on these approaches without
going into the theoretical details.

5.2.1. Ewective mode models
To account for vibrational coherences one can use a combined description of electronic

(excitonic) and vibrational DOF. Obviously, such an approach requires a restriction to e!ective
mode models with one or two vibrational DOF. Otherwise, the dissipative propagation of the
electronic and vibrational DOF becomes numerically intractable. An exact description of ex-
citon}vibrational dynamics in a model of a Chl-dimer (appropriate to a Chla}Chlb pair of the
LHCII PPC) with a single e!ective mode per monomer was given in [12,14,100,101]. The e!ect of
the remaining nuclear DOF is incorporated via relaxation and dephasing rates for the ex-
citon}vibrational states using the QME (101).
The treatment has been inspired by the description of ultrafast photoinduced electron transfer in

donor}acceptor complexes using an electron}vibrational representation of the density matrix
[53,116}118]. To compute, for example, the di!erential absorption measured in a pump}probe
experiment [14,101] one expands the density matrix in the product of the two electron}vibrational
states ��

��
���

��M
�. Here, the site index runs over 1 and 2 and the electronic level index covers

besides the ground state index g the "rst excited state e and a higher excited state f. The vibrational
quantum numberM labels the vibrational levels of the respective mode. The central idea of such an
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e!ective description is to chose the characteristics of the e!ective modes (frequency, coupling to
electronic levels, vibrational life time and dephasing) by "tting the calculations to measured spectra
which show clearly resolved vibrational coherences. If such a characteristic beating structures are
absent in the measured spectra the approach is still of great usefulness. It enables one to model
polaron e!ects and to consider the possible retardation of the EVC (non-Markovian e!ects)
[14,101]. Both e!ects can be accounted for since the coupling of electronic excitations to some
e!ective modes has been treated in an exact manner (cf. Section 9).

5.2.2. The FoK rster limit
To derive the QME in Section 5.1.1 a perturbation theory with respect to the EVC has been

carried out. If this coupling becomes strong an alternative treatment would be the perturbative
expansion with respect to the inter-Chl Coulomb interaction J

��
, Eq. (15). A microscopic founda-

tion of the EVC expression, Eq. (B.24), could be given in Section B. There it was possible to
construct harmonic oscillator PES for the various local PPC excitations. This part of the general
EVC can be accounted for exactly. But the remaining o!-diagonal coupling part (see the second
part in Eq. (15)) requires a perturbative treatment similar to that usually done for J

��
. It has been

demonstrated in [78] that the lowest-order contribution with respect to J
��

and the restriction to
the single-exciton manifold results in the well-known FoK rster-rate of exciton transfer [51].
The general approach beyond a perturbation theory with respect to the EVC can be derived via

a so-called Liouville space approach (for an introduction see [53]). It results in a rate equation for
state populations including retardation e!ects (Generalized Master Equation)

R
RtP�

(t)"�
	
�

�

��

dtM M
�	
(t!tM )P

	
(tM ) . (136)

Here, A and B abbreviate a multi-excitation state, e.g. the state ��me�
�
, �nf �

�
� based on the

three-level Chl model. The respective state population has been denoted by P
�
(t). It is possible to

derive a formal exact expression for the memory kernelM
�	
(t) [53,78,114,115] which is obtained as

a power expansion with respect to the Coulomb inter-Chl coupling.
One can easily change to an ordinary rate equation if the memory e!ect has been neglected in

Eq. (136). As an illustration we show how to obtain the standard rate expression for the transfer of
a single excitation between two Chl m"1 (excitation energy donor) and m"2 (acceptor) with the
perturbation J

��
. From the lowest-order two-state version of the exact memory kernel we obtain

the transition rate as

k
���

"!i tr�PK
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�
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�
RK

�
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�
� . (137)

Here, `tra abbreviates the trace with respect to all electron}vibrational DOF and incorporates the
projection operators P

�
���
"�m�	m� which project on the two electronic states involved. The

Liouville superoperator describing the e!ect of the Coulomb coupling J
��

reads

L
�2"

1
�
(J

��
��

�
�	�

�
�#h.c.,2)

�
. (138)

Finally, RK
�
is the equilibrium statistical operator of the vibrational DOF if the excitation is at site

m"1. The time evolution from initial state m"1 (projector PK
�
at the right part of the trace) to the
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"nal state m"2 (projector PK
�
at the left part of the trace) is contained in the superoperatorG

�
(�).

This Green's superoperator follows from a half-sided Fourier transformation of the time-evolution
superoperator. It is de"ned as U

�
(t)2";

�
(t)2;�

�
(t), where the ordinary time-evolution oper-

ator ;
�
is given by the zeroth-order Hamiltonian without the Coulomb coupling, i.e. they are

de"ned by the single-Chl vibrational Hamiltonian H
�
���

"¹
���

#;(m;R) (compare Eqs. (64)
and (63)). Utilizing the de"nition of the Green's operator and introducing the explicit form of
L

�
one obtains the transfer rate as

k
���

"!

1
���

�

�

dt tr
�	�

�	�
�
�[(J

��
��

�
�	�

�
�#h.c.),

;
�
(t)[J

��
��

�
�	�

�
�#h.c.,RK

�
PK

�
]
�
;�

�
(t)]

�
��

�
�� . (139)

This expression has been derived in separating the trace into the electronic part
�

�
���
	�

�
�2��

�
� and the vibrational part tr

�	�
�2�. Furthermore, the action of PK

�
has already

been accounted for. Performing the commutation operations we "nally get
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The FoK rster rate can be recovered after introducing two sets of independent electron}vibrational
states belonging either to Chl 1 or 2. We introduce the vibrational quantum numbers belonging to
the electronic ground-state �

��
and the excited electronic state �

�

as M

�
and N

�
, respectively,

and obtain
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As it is well-known the rate can be written as [53]

k
���

&�d� e� (�)a� (�) , (142)

where e
�
(�) and a

�
(�) describe the normalized emission rate of Chl 1 and absorption rate of Chl 2,

respectively. This notation is a consequence of the separation of the vibrational DOF into two
independent subsets whose spectral overlap determines the strength of the (incoherent) excitation
energy transfer.
Higher-order contributions may enter the approach in two di!erent ways. On the one-hand side,

one can go beyond the second-order rate expression derived before. Such an extension includes
higher orders in the electronic coupling between Chl 1 and Chl 2. Alternatively, the descriptionmay
involve a third Chl. This three-site system of a donor Chl, a single intermediate Chl (bridge unit),
and an acceptor Chl (m"D,B,A, respectively) results in a transfer rate proportional to �J

�	
���J

	�
��

(the direct coupling J
��

has been assumed to be negligible small). Depending on the rate of
vibrational relaxation in the intermediate state B, this higher-order transfer is called superexchange
or sequential transfer. In the latter case, the fast relaxation in the intermediate state destroys any
electronic coherence between state D and A. The situation is opposite in the superexchange
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transfer. Here, the electronic state cover all three states D, B and A. Such a situation has been
discussed in Ref. [78] concentrating on the single-exciton transfer.
In the three-site system the lowest-order contribution to the rate connecting the donor and

acceptor is of the fourth order with respect to J. Its nonfactorized part reads (all parts are de"ned in
similarity to Eq. (137), for a detailed derivation see, e.g. [53])
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�
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�
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�
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�
� . (143)

The expression under the trace can be understood as the frequency-domain form of the multiple
action of the inter-Chl coupling J (via L

�
) and the subsequent action of time-evolution operators

(via G
�
(�)). Therefore, provided that the di!erent Green's superoperators are transformed into the

time-domain, one arrives at the multi-time correlation function expression for the transfer rate. It is
similar to the third-order response function which will be introduced in Section 6.5.1 in connection
with the description of third-order nonlinear optical processes. Since the present description was
formulated in the multiple-excitation representation one has to choose the respective PES, for
example, of the type;(�k�

�
;Q), Eq. (B.17). Then, the rate, Eq. (143) can be exclusively expressed by

correlation functions introduced in Eq. (120) with site-local spectral densities J
�
(�). In [78] the

rate expression, Eq. (143) has been computed using a spectral density which describes overdamped
motion of the vibrational DOF. Some parameter ranges could be identi"ed where the frequency-
dependent rate becomes negative. This behavior indicates that the rate equation neglecting
memory e!ects is no longer valid.

5.2.3. Multi-exciton}vibrational relaxation
An alternative to the perturbation theory discussed in the preceding section is obtained using the

separation of the multi-exciton}vibrational Hamiltonian given in Eq. (83). Here, excitonic PES
have been introduced leaving a residual EVC which is o!-diagonal with respect to the multi-
exciton quantum numbers [79,81] (see also scheme 5). The latter can be handled within a perturba-
tion theory either as in [79] ending up with a QME for conditional probabilities, or leading to the
generalized rate equation of the present approach.
According to the general notation of Eq. (136) we directly obtain the rate equation for the

multi-exciton level population P(

�
; t) after identifying the indices A and B with the multi-exciton

quantum numbers. The transition rate in the lowest-order of the o!-diagonal multi-exciton}
vibrational coupling, Eq. (83), follows from Eq. (137) as

k�����
"!i tr�PK ��

L

�
G

�
(�"0)L


�
RK ��

PK ��
� . (144)

The Liouville superoperatorL

�
is de"ned via a commutator with the o!-diagonal contributions

to the multi-exciton vibrational coupling, Eq. (83). The expression is valid for the N-excitation
manifold and already incorporates the fact that the relaxation proceeds without inter-manifold
transitions. A projection on the initial and "nal multi-exciton state is described by PK ��

and PK ��
,

respectively. Furthermore, RK ��
denotes the equilibrium statistical operator related to the initial-

state excitonic PES ;(

�
,Q), and G

�
(�"0) gives the half-sided Fourier-transformed time-

evolution superoperator (de"ned via the excitonic PES).
Although the rate expression, Eq. (144), describes exciton}vibrational relaxation in any exciton

manifold we will concentrate on the single-exciton case in the following (the index N"1 is
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suppressed for simplicity). Consequently, the relaxation rate is obtained as

k���"�
���M

����M g� (
�)g�M (�
)�dt tr�	��RK �;�� (t)Q�;�(t)Q�M � . (145)

Besides the o!-diagonal EVC constants g� (
�) the expression contains the statistical operator
RK � and the time-evolution operators;�� (t), and;�(t) de"ned via the vibrational Hamiltonians for
the various exciton states (including excitonic PES). Since in the present model all excitonic PES
have the same parabolic shape and are displaced with respect to the coordinates Q� the rate
expression can be calculated exactly. One obtains

k���"�dt e	��� �K�� (t) (146)

with

K�� (t)"�
�

�

d���e�	��(1#n(�))(J(
,�,�, 
;�)!J(
,�,�, 
;!�))

#�	�
H�� (!t)�	�
�� (t) exp(�	�
�� (t)) . (147)

The spectral densityJ has already been introduced in Eq. (120). The "rst term corresponds to the
correlation function of the vibrational coordinates. The remaining terms are obtained as

�	�
�� (t)"�
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d��(1#e�	��(1#n(�)))(J(
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, 
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and

�	�
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�
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d� (1#e�	��)(1#n(�))

([J(
, 
, 
, 
;�)!2J(
, 
,�,�;�)#J(�,�, �,�;�)]![�Q!�]) . (149)

Eq. (146) gives a closed expression for the description of exciton}vibrational relaxation in the
single-exciton manifold.

5.3. Exciton annihilation

Exciton annihilation has to be incorporated into the description of the PPC dynamics whenever
higher pump intensities are applied. The annihilation process consists of two steps. First, the
mutual Coulomb interaction between two excitons leads to an excitation of one molecule into
a higher excited state and the other molecule gets de-excited. In the second step, the highly excited
state relaxes back to the original state via internal conversion. As a result a single exciton has been
annihilated and heat is released into the local environment.
The investigation of exciton annihilation has a long history in particular in the context of

molecular crystals. The appropriate theoretical frame has been provided in [119] and later in
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[120,121] where the following kinetic equation could be derived:

Rn(r; t)
Rt "!�

���	
[n(r; t)]� . (150)

Here, n(r; t) denotes the spatial density of excitons, and the expression �
���	

is the bimolecular
annihilation rate. Moreover, Ref. [119] contains a quantum statistical formulation of exciton
hopping based on multi-exciton density matrices. This approach reveals that the quadratic
dependence on the exciton density in Eq. (150) results from a certain type of mean-"eld approxima-
tion (the exact treatment will lead to linear rate equations, see below). Similar conclusions have
been reached in Ref. [120] where also a Generalized Master Equation description of exciton
annihilation incorporating spatial coherences on the lattice was given. The latter e!ect was shown
to in#uence quantum yields and #uorescence intensity.
Exciton annihilation has also been studied in dye aggregates [122}125] and PPCs. In photosyn-

thesis research, it was appreciated early that measuring #uorescence decay and quantum yields
versus pulse intensity can provide valuable information on exciton migration in a so-called
domain, that is, a connected assembly of photosynthetic units each consisting of light harvesting
antennae as well as reaction centers. A phenomenological Master Equation describing the kinetics
of the number of excitations in a domain under annihilation and unimolecular loss conditions was
given in [126]. From an analytical solution of the Master Equation by means of the generating
function approach it was shown that the #uorescence yield versus intensity curve contains
information on the number of connected units in the domain. This approach was later extended in
[127] to include the di!erent states (open/closed) of the reaction center. The early work on exciton
annihilation in PPC has been summarized in [128]. More recent studies on energy migration and
trapping include the modeling of structural and spectrally inhomogeneous situations [129] and the
extension of the approach given in [119] to higher excited intramolecular electronic states, to
trapping, and to the excitation process [130].
In the experiment, it has been demonstrated that singlet}singlet and singlet}triplet annihilation

can be discriminated upon changing the pulse repetition rate (see, e.g., [131]). Combined with
phenomenological theories this allowed to study, for instance, the connectivity of chloroplasts
[132], or energy migration in photosynthetic bacteria; the latter revealing a percolation-like nature
of the dynamics [131]. Further, pump}probe spectroscopy has been used to elucidate the e!ect of
local heating due to exciton annihilation in the FMO complex [133], to study the interplay
between exciton relaxation and annihilation in the strongly coupled peripheral antennae of Rps.
acidophila [134], and to investigate spectral redistribution in the LHC-II of green plants [135].
In the recent paper [15], the anharmonic oscillator model for PPC electronic excitations

(compare Appendix D) has been used to model exciton annihilation. Here, we will discuss this
process in the same spirit as exciton hopping and relaxation has been discussed in the foregoing
sections. To this end we take in the present section the PPC Hamiltonian, Eq. (83), which includes
excitonic PES and o!-diagonal exciton vibrational coupling. The latter as well as the internal
conversion caused by the nonadiabatic coupling, Eq. (58), can be subject to a perturbational
treatment. Applying the Liouville space approach one can derive rate equations (or GMEs)
for the multi-exciton state populations. This general concept enables one, for example, to describe
the transition from the two-exciton manifold to the single-exciton manifold induced by the
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nonadiabatic coupling between the S
�
-state of a single Chl and a higher excited singlet state.

Having calculated the respective transition rate one can make contact with the standard descrip-
tion of the exciton annihilation process. This is achieved by including perturbationally the
transition from the state �me, ne� of the set of double-excited PPC states to the state �mf� with
a double excitation at a single Chl.
The general rate expression describing transitions among neighboring exciton manifolds and

being of the lowest order with respect to intra-Chl nonadiabatic electronic level coupling reads
(compare the notation used in the two foregoing sections)

k�����
"!i tr�PK ��

L
��
G

�
(�"0)L

��
RK ��

PK ��
� . (151)

The trace incorporates the transition from the initial state �

�
� of the M-excitation exciton

manifold (characterized here be the respective projector PK ��
on this state and the thermal

equilibrium statistical operator of the vibrational DOF) to the "nal state ��
�
� (projector PK ��

). The
transition is realized by the action of the nonadiabatic coupling, Eq. (58), represented here by the
Liouville superoperator L

��2
"(H

��
,2)

�
/�, and by the action of the time-evolution operator

contained in the half-sided Fourier transformed superoperator G
�
(�"0).

In the following, we will concentrate on the decay of a two-exciton state �

�
� into a single-exciton

state ��
�
�. We expect a rate equation of the type

R
RtP(
� , t)"!�

��

k�����
P(


�
, t) (152)

to exist. The annihilation rate is obtained from the general expression (151) as

k�����
"

1
��� dt tr�	��RK ��;��� (t)<K ����

;��
(t)<K �����

� , (153)

where we introduced the multi-exciton representation of the nonadiabatic coupling, Eq. (58). It
results in

<K �� ���
"�

�

�(mf,me)	

�
�D�

�
��

�
�

"�
�

�(mf,me)CH�� (me)C��
(mf ) . (154)

The single- and two-exciton expansion coe$cients can be found in Eqs. (42) and (43).
To obtain the rate k

�
��
��

which is of second order in the coupling matrix J

��
( fg, ee) we "rst

consider the trace in Eq. (153) obtained after carrying out the expansion Eq. (154). One gets
tr

�	�
�RK ��
;���

(t)�
����
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(t)�H

����

�. To describe the internal conversion process at themth Chl one

has to identify 
 with mf and � with me. The transition from state �me, ne� to state �mf� is included
via an expansion of C��

(me) with respect to J
��
( fg, ee). To this end one calculates the "rst-order

correction to C�� (me), if 
 (in zeroth-order) has been identi"ed with (me, ne). This gives
J

��
( fg, ee)/(�

�
( fg)!�
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(eg)) and we obtain the exciton annihilation rate as
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The rate of the internal conversion process at Chlm can be written as

k	��

�

"

��
����


��
�� � dt tr�	��RK ��

;�
��
(t);

�

(t)� . (156)

For simplicity, we have considered the nonadiabatic coupling as being constant. The time-
evolution operators are de"ned via the vibrational Hamiltonian of the two involved electronic
states of Chlm. The respective vibrational DOF are of the intramolecular type and act as accepting
modes for the nonradiative transition. Here in particular the high-frequency vibrations will play an
important role.
The relevance of the derived result for the exciton annihilation rate, Eq. (155), derives from the

fact that it becomes directly proportional to the correct internal conversion rate expression.
According to the general PPC model introduced in the foregoing sections one can include from the
very beginning the correct nonadiabatic coupling as well as the respective accepting modes for
the internal conversion process. And, the method shows how to derive higher-order corrections to
the rate expression Eq. (155). In particular, it seems appropriate to carry out the calculations within
in the multi-exciton representation thus avoiding the incorporation of any perturbational descrip-
tion of the Coulomb coupling J

��
.

6. Optical properties of excitons in pigment}protein complexes

6.1. General

Various spectroscopic techniques have been employed to investigate the properties of PPC in
light-harvesting antennae in the time and frequency domain (for reviews see [17,19]). From the
theoretical point of view the methods of macroscopic electrodynamics of dielectrics have to be
used. Within this approach the basic quantity is the macroscopic polarization vector

P(r, t)"
1

�<(r)
�

������	r


	�(
���

(t)� , (157)

which emerges from a spatial averaging procedure and which enters Maxwell's equations as
a source term. Here, �(

���
is the dipole moment operator, Eq. (47), describing one of those PPCs

located in the volume element �< around the spatial point r. The time-dependent expectation
value of the dipole operator is given by the statistical operator for the particular PPC according to
	�(

���
(t)�"tr�=K (t)�(

���
�. If inhomogeneous broadening (static disorder) can be neglected the

formula for the polarization can be simpli"ed by introducing the volume density n
���

of PPCs
and one obtains P(r, t)"n

���
	�(

���
(r, t)�. The only di!erence among the various PPCs de"ning

	�(
���

(r, t)� is the amplitude and phase of the externally applied radiation "eld. This induces the
spatial r-dependence of the dipole operator expectation value.
The statistical operator=K "=K (t;E) is de"ned including the external "elds. It can be straightfor-

wardly calculated using a perturbation expansion with respect to the external "eld E [57,136]. This
leads to multiple time integrals over nonlinear response functions which can be used, for example,
to develop an intuitive doorway-window picture of pump}probe spectroscopy [80,137].

T. Renger et al. / Physics Reports 343 (2001) 137}254188



In general, one has to account for propagation e!ects of the external "eld inside the sample when
calculating optical signals. This would require a self-consistent solution of the Liouville equation
for the statistical operator and Maxwell's equation with P(r, t) as the source term. Usually, this
ambitious programmust not be executed if it is possible to assume an optically thin sample.Within
the context of LHAs the perturbation expansion of the statistical operator is complicated by the
structure of the PPC Hamiltonian which contains two types of perturbations itself: the Coulomb
interaction between di!erent Chl and the EVC. Depending on the situation this problem can be
tackled by di!erent types of perturbation expansions as discussed in Section 6.2, In order to keep
the matter simple we will consider the case of linear absorption spectroscopy "rst. In Section 6.5,
we then discuss some points concerning the nonlinear spectroscopy of LHAs.
For most of the experiments on PPCs a third-order expansion of the polarization with respect to

the electric "eld strength de"nes the appropriate theoretical framework. The various spectroscopic
techniques which can be described by means of a third-order response function are explained in
detail in Ref. [57]. If the electron}vibrational levels involved in the optical transitions can be
characterized by harmonic PES, the third-order response function can be calculated exactly.
Alternatively, one can derive equations of motion for exciton creation and annihilation operators
which are closed within a certain order and can be solved by standard numerical methods [138]. If
only linear spectroscopic techniques are concerned one can stay with the "rst-order contribution
resulting in the linear susceptibility �	�
.
Ultrafast nonlinear spectroscopy has proven to be a powerful method for investigating the

energy transfer dynamics of LHAs in real time [17,19]. In the weak "eld limit it is customary to
classify the various techniques according to the wave vector dependence, the frequencies, and the
timings of the various "elds [57]. The external "eld for an N-pulse setup can be written as

E(r, t)"
�
�

�
�

e
�
E

�
(t) exp�i(k

�
r!�

�
t)�#c.c. (158)

This type of "eld corresponds to a multi-wave mixing experiment. Here e
�
denotes the unit vector

of the polarization of the pth pulse and E
�
(t) is the pulse envelope. Since we will work in the limit of

an optically thin probe we can neglect the r-dependence of the "eld at the end. In order to classify
the polarization created by the di!erent pulses one can start with an expansion of the "eld-
dependent statistical operator with respect to the various partial waves forming the complete
external "eld pulse, Eq. (158). In the general case, this results in an in"nite-order expansion with
respect to every partial wave [139]
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�
�
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2

�
�

��
��

exp�i
�
�

�
�

n
�
(k

�
r!�

�
t)�=K 	���

�
(t; �E
�
�) . (159)

This expression can be understood as the result of an expansion of the evolution operators for
propagating =K in time with respect to all partial waves (pulses) forming the total "eld. In
particular, the expansion coe$cients depend on the whole set �E

�
�. Seeming at "rst glance too

di$cult for any concrete calculation we will demonstrate below that, if applied in the framework
of the QME, this expansion o!ers a nice alternative to the application of third (or "fth)-order
response functions (see also the similar expansion used in [140]). For a compact notation we
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introduce sum-wave vectors

k(n)"�
�

n
�
k
�

(160)

and sum-frequencies

�(n)"�
�

n
�
�

�
, (161)

where n abbreviates the set �n
�
� (and similar for E). It follows that

=K (t;E)"�
�

exp�i(k(n)r!�(n)t)�=K 	�
(t;E) . (162)

The expansion of the statistical operator translates into a similar expansion of the polarization
vector

P(r, t)"�
�

e(n)P	�
(t) exp�i(k(n)r!�(n)t)� . (163)

The signal measured in a multi-wave mixing experiment can be obtained from the rate of change in
energy a probe pulse experiences in the sample (heterodyne detection, [57])

S(t)"!� d�r
RE(r, t)
Rt P(r, t) . (164)

If the expansion relation, Eq. (158) for the radiation "eld and Eq. (163) for the polarization are
inserted one gets within the slowly varying amplitude approximation
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�
Re�d�r exp!i[(k

�
!k(n))r!(�

�
!�(n))t](e

�
e(n))EH

�
(t)P	�
(t) . (165)

The polarization wave traveling along a particular direction speci"ed by k
 
can be calculated from

the respective expansion coe$cient in Eq. (159). In a pump}probe setup, for example, the detection
is along the direction of the probe pulse, k

 
"k

�
, and one needs to calculate=K ���(t). In a general

four-wave mixing experiment the determination of the polarization along k
 
"k

�
#k

�
!k

�
, the

coe$cient=K ������(t) is required [138].
The signal related to the energy loss Eq. (165) can be measured in the time-integrated mode

&�dt S(t). Alternatively, the transmitted probe-pulse can be dispersed in a monochromator
and one obtains a signal &Im�EH�P��. Here the Fourier components read EH�"1/2��
�dt exp�i(�

�
!�)t�EH

�
(t) and P�"1/2���dt exp�i(�!�

�
)t�P

�
(t). In this way, the Fourier spec-

trum of ultrafast pulses can be used to obtain additional spectral information on ultrafast
processes. However, it is clear from the energy}time uncertainty relation that the spectrometer will
stretch the probe-pulse and also the polarization wave in time, thus giving rise to additional
interference e!ects. The smaller the detection bandwidth the longer the time interval for which
these interferences occur. This explains, for example, the oscillations found for negative delay times
in pseudo-two-color pump}probe experiments [141]. In the case of homodyne detection the
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intensity of the "eld emitted by the induced polarization is directly measured, and the signal is
given by S(t)"�d�r �P(r, t)��.

6.2. Application of the reduced density operator formalism

Expansion Equation (162) for the statistical operator in terms of the partial waves of the light
"eld can of course be applied to the reduced density operator. In this case it leads to the expansion
coe$cients 
( 	�
(t;E). While this generates in principle an in"nite hierarchy of equations of motion
for the time-dependent expansion coe$cients 
( 	�
(t) in practice, up to a certain order in the "eld and
for a particular experimental setup, only a few coe$cients need to be calculated [64]. If one is
interested in a nonperturbative treatment of the "eld}matter interaction, the hierarchy of equations
has to extended until some convergence criteria are ful"lled. For the special case of pump}probe
experiments it has been shown in [101] that the set of equations can be closed when using the
rotating wave approximation.
Let us "rst show how the QME for the RSOmodi"es if the partial-wave expansion is introduced.

Using Eq. (101), one obtains

�
R
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(t)"!iL

���
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(E
�
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,
( 	2������2
(t)]

#EH
�
(t)[e

�
�(
���

, 
( 	2������2
(t)]) . (166)

The "eld-independent part of the QME has been comprised in L
���

(see Eq. (102)). For the
following it is important that the energy gap between neighboring excitonic manifolds,E����

!E��
,

is approximately the same for all manifolds and in the range of the frequencies of the external light
"elds. We further assume that the rotating wave approximation can be applied and that the system
can be excited between neighboring levels only.
To see how the in"nite set of equations of motion (166) can be truncated let us discuss

a pump}probe con"guration where a weak probe pulse (p"pr) is used to study the e!ect of
a strong pump pulse (p"pu). It is advantageous for the following discussion to change to the
multi-exciton representation of Eq. (166). In the absence of the external "eld and without the
partial-wave expansion the multi-exciton representation of the QME has been given in Eqs. (111)
and (115) where the dissipative part has been speci"ed. A detailed inspection of the dissipative
contribution to the QME as given in Section 5.1.3 shows that they do not couple di!erent
exciton-manifolds (obviously, the inclusion of internal conversion processes would change this
conclusion). Therefore, we can concentrate on the free multi-exciton part and the coupling to the
light pulses. For the former we get from Eqs. (111) and (166) (for clarity, multi-exciton quantum
numbers, for example 


�
, are replaced by the manifold indices M, N, and so on)

R
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"!� �

�
�����

n
�
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�
!�(M,N)�
	��� ���� 
(M,N; t) . (167)

Note that these relations account for the fact that the frequencies of the external "elds
have to match the transition energies of the system. For the "eld-dependent part of the QME
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expansion we get
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Finally, we mention two properties of the RDM expansion coe$cients which are important for the
numerical solution of the QME. From the hermiticity of the density matrix it follows that
(
	��� ���� 
(M,N; t))H"
	���� ����� 
(N,M; t), and for all times t the relation n

��
#n

��
"M!N among

the indices of 
	��� ���� 
(M,N; t) holds. To prove the latter statement we assume that at time t"t
�
no

external "eld has acted on the system, hence the system is in its ground state characterized by the
density matrix 
(M,N; t

�
)"
	��� ���� 
(M,N; t

�
)"�

���
�
���

�
��� ����

�
��� ��

. Next, one looks at the ex-
pansion coe$cients of the density matrix which are generated after an in"nitesimal time step dt due
to the action of the external "eld. From Eq. (168) it follows that only those coe$cients are
generated for which the above mentioned relation is ful"lled. The conservation of this relation for
any time follows by successively repeating this procedure.
The relation n

��
#n

��
"M!N allows to close the set of equations for the expansion coe$-

cients of the RDM. The index n
��

can be expressed by the other indices and for n
��
one needs to

take into account the range n
��

"�!1, 0, 1� since the weak probe "eld acts only in "rst order with
respect to H

�
, Eq. (46). In comparison to the number of equations of motion for the complete

density matrix, the number of equations of motion for the expansion coe$cients is three times
larger. However since in the latter equations only the envelopes of the external "elds enter it can be
solved with a much higher time step.
The RDM expansion can be circumvented if the RDM is propagated with di!erent phases of the

external "eld as it was proposed in Ref. [142]. In this manner it is possible to obtain the wave
vector dependence of the polarization in a nonperturbative scheme. The propagation of the RDM,
however, includes the total "elds and not only the envelopes. Furthermore, the RDM has to be
propagated for at least three di!erent phases to extract the desired part of the polarization wave.
Therefore, this approach could hardly manage the numerical e!ort involved in the investigation of
the PPC dynamics discussed below.

6.3. Linearization with respect to a weak-xeld part

For further use we specify the approach to the case that via a linear expansion a certain
weak-"eld part of the total "eld E

�
(low-intensity pulse) is eliminated. The remaining strong part

E
�
will be considered exactly. To carry out the linearization with respect to E

�
we use the formal

solution of the QME for the reduced density operator in the presence of the total "eld:


( (t)"U(t, t
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)
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) . (169)
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Here,U denotes the complete time-evolution superoperator. In the second part of this equation we
have split up this superoperator into a part where the strong "eld appears alone and into the
S-superoperator. The latter quantity is exclusively de"ned via the coupling of the weak-"eld part to
system. The Liouville-superoperator describing this coupling reads

L
�
(t)�"

1
�
[!�

���
E

�
, �]

�
. (170)

The respective linearization of the density operator follows as


( (t)+U(t, t
�
;E

�
)
( (t

�
)!i�

�

��

dtM U(t, tM ;E
�
)L

�
(tM )U(tM , t

�
;E

�
)
( (t

�
) . (171)

The polarization induced by the weak-"eld part is given by

P
�

"!in
����

�

��

dtM tr
��
��

���
U(t, tM ;E

�
)L

�
(tM )U(tM , t

�
;E

�
)
( (t

�
)� . (172)

Obviously, this relation reduces to the linear response case if the strong-"eld part is removed. We
will use this version in the next section to discuss linear optical properties of PPCs.

6.4. Linear absorption

6.4.1. Correlation function description
The linear susceptibility is obtained applying "rst-order perturbation theory with respect to

matter light-"eld coupling H
�
(t) as the second-rank tensor

�	�

��M
(t!t�)"n

���

i
�
�(t!t�)tr�=K

��
[�(

�
(t),�(

�M
(t�)]� . (173)

The PPC dipole operator has been introduced in Eq. (47), where �(
�
denotes the jth Cartesian vector

component. The statistical operator=K
��
describes an isolated PPC. In equilibrium it will project

onto the electronic ground state only, i.e.=K
��

"RK
��
�0�	0�, where RK

��
is the equilibrium statistical

operator for the vibrational DOF. Furthermore, we tacitly assumed that inhomogeneous broaden-
ing can be neglected. The frequency-domain absorption coe$cient is derived using 
(�)"
4�� Im�

�
�	�

��
(�)/c (c is the speed of light in the medium). One obtains


(�)"
4��n

���
�c

Re �
�

�

dt e	�� C	�

�}�

(t) . (174)

The absorption spectrum is completely de"ned by the (second-order) dipole}dipole correlation
function

C	�

�}�

(t)"tr�=K
��
[�( (t),�( (0)]� . (175)

Note that this expression is a scalar since the dipole operators are multiplied according to a scalar
product. The trace in the correlation function can be subdivided into a trace tr

�	�
over the

vibrational DOF and a trace with respect to the electronic states. For the present purpose the
time-evolution operator can be restricted to a part referring to the electronic ground and to a part

193T. Renger et al. / Physics Reports 343 (2001) 137}254



related to the single-excitation manifold, i.e. ;(t)+;
�
(t)PK

�
#;

�
(t)PK

�
. Here, ;

�
and ;

�
are

de"ned via H	�

���

and H	�

���

, respectively. Therefore, we may write

C	�

�}�

(t)"tr
�	�

�RK
��
;�

�
(t)�	0��( ;

�
(t)P

�
�( �0��!c.c. (176)

The structure of Eq. (176) follows from the assumption that the dipole operators do not contain
diagonal contributions with respect to the electronic states.
It is well-known (see, e.g. [57]) that the linear absorption spectrum of a chromophore complex

can be calculated analytically if one neglects either the dipole}dipole interaction J
��

or the
electron}vibrational coupling. To include both types of coupling requires to use approximation
schemes (see e.g. [143,144]). For this purpose, we concentrate on the resonant contributions
to Eq. (176) and split up H	�


���
into a perturbation <K and an unperturbed part H

�
. Then, one

can introduce a subdivision of the time-evolution operator according to ;
�
(t),

exp(!iH	�

���
t/�)";	�


�
(t)S(t, 0). Here, ;	�


�
(t) is the time-evolution operator de"ned by H

�
, and

the S-operator reads

S(t, 0)"¹ exp�!
i
��

�

�

d�<K 	�
(�)� (177)

with <K 	�
(�)";	�
�
�

(�)<K ;	�

�
(�). After "xing the partitioning ofH	�


���
the relations given above o!er

a convenient way to carry out a (low-order) perturbation expansion. Accordingly, the
dipole}dipole correlation function reads (note that Eq. (48) de"nes the transition dipole operators)

C	�

�}�

(t)"tr
�	�

�RK
��
;�

�
(t)�(

���
;	�


�
(t)S(t, 0)P

�
�(
���

� . (178)

For the case where the EVC is much weaker than J
��

one has to carry out a perturbation
expansion in J

��
setting <K "�

��
J

��
�m�	n� and using the site-representation for the electronic

states

C	�

�}�

(t)"�
��

dH
�
(eg)d

�
(eg)tr

�	�
�RK

��
;�

�
(t);

�
(t)	m�S(t, 0)�n�� . (179)

The zeroth-order contribution in J
��

results in the trace-expression tr
�	�

�RK
��
;�

���
(t);

��

(t)� giving

the absorption as the sum of monomeric correlation functions which are known from molecular
spectroscopy. Within the displaced oscillator model adopted for the EVC the trace can be
calculated analytically yielding exp(!i�


�
t!G

�
(0)#G

�
(t)), with the so-called lineshape function

G
�
(t)"�

�

�

d�(e�	��(1#n(�))#e	��n(�))J
�
(�) . (180)

The single-molecule spectral density J
�
(�) is the diagonal part of the spectral density introduced

in Eq. (126).
In the context of PPC it is more instructive, however, to consider the possibility of a perturbation

theory with respect to the EVC. In Section 4.3.1, we have seen that in the exciton eigenstate
representation one can de"ne excitonic PES. Transitions between di!erent PES then correspond to
energy relaxation in the one-exciton band. Suppose that this relaxation can be treated pertur-
batively, the expansion allows to compute corrections to an absorption coe$cient which is
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determined exclusively by the single-exciton PES. To this end, one has to change from the
site-representation to the representation with respect to the single exciton states �


�
�. In a "rst step,

we switch from the excitonic PES to the single-exciton energies E�� . Then, the perturbation
operator is given by the complete EVC <K (�)"���� �� ���g� (
� ,��

)Q�(�)�
��	�� � (cf. Eq. (73)).
Expanding the S-operator (177) in powers of <K introduces vibrational satellites to the pure
excitonic absorption spectrum which is given by 
(�)"4���n

���
/�c���� �d(
� , 0)���(�!E�� /�).

The transition dipole matrix elements are given in Eq. (55).
In a next step, one generalizes this description by replacing the pure electronic energies E��

by
excitonic PES ;�� such that the diagonal EVC has been accounted for exactly. Only the
o!-diagonal part g�(
� ,��

), 
O�, needs to be considered as a perturbation <K . We introduce
;�� (t)"exp�!i(¹

�	�
#;(


�
))t/�� de"ned with the single-exciton Hamiltonian, Eq. (45), and

obtain the correlation function as

C	�

�}�

(t)"�
��

dH(

�
, 0)d(�

�
, 0)tr

�	�
�RK

��
;�

�
(t);�� (t)	
� �S(t, 0)����� . (181)

If one neglects the S-operator the trace-expression becomes diagonal with respect to the exciton
quantum number and the single-exciton PES contribution reads tr

�	�
�RK

��
;�

�
(t);�� (t)�"

exp(!G�� (0)#G�� (t)) with the lineshape function similar to Eq. (180), but with the spectral density
J��

(�) instead of J
�
(�). The newly introduced spectral density J��

(�) can be obtained from the
general type, Eq. (119), after specifying this expression to the single-exciton case and to a single-
exciton quantum number (


�
"�

�
"�

�
"�

�
).

Calculating the absorption spectrum in zeroth-order, all excitonic levels contribute independent-
ly from the other levels. But in contrast to the approximation of the rigid PPC the absorption lines
are broadened due to the inclusion of the vibrational DOF. In Ref. [76] it has been argued that the
neglect of relaxation processes (described by the o!-diagonal part of g� (
� ,��

)) is justi"ed whenever
static disorder tends to localize the excitations. For localized excitations according to Mott
the spatial overlap between wave function overlap having comparable energies vanishes, i.e., the
relaxation rates between energetically close states will be rather small.

6.4.2. Reduced density matrix description
In the case of weak or intermediate EVC the perturbation theory introduced at the end of the

foregoing section is appropriate to compute the PPC frequency domain absorption spectrum. We
give here an alternative formulation which makes use of the exciton RDM [85,86]. In doing so
there is no need to formulate the perturbation theory with respect to the EVC since this has been
already done when deriving the QME. We start with expression (172) to come into contact with
linear absorption for the absence of the strong "eld E

�
. The derived expression for the linear

susceptibility can be translated into the dipole}dipole correlation function

C	�

�}�

(t)"tr
��
��(

���
U(t)[�(

���
, �0�	0�]

�
� . (182)

It contains the (dissipative) propagation of the commutator between the electronic equilibrium
statistical operator �0�	0� and the PPC dipole operator. The propagation has to be carried out
according to the QME as indicated by the time-propagation superoperator U(t).
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In order to write Eq. (182) in the representation of the single-exciton states we set (in analogy to
retarded Green's functions, �(t) denotes the unit-step function)

G�� (t)"�(t)	

�
�U(t)[�(

���
, �0�	0�]

�
�0� . (183)

The absorption follows according to Eq. (174) as


(�)"
4��n

���
�c

Re�
��
(dH(


�
, 0)G�� (�)#d(


�
, 0)GH��

(!�)) . (184)

From the non-Markovian QME (97) we obtain an equation of motion for G�� (t) which reads (note
that t

�
"0 and that the integration goes to in"nity according to the introduction of the unit step

function)

R
Rt G�� (t)"�(t)d(


�
, 0)!i���G�� (t)!

1
��

�
��	� �

�

�

d�C(

�
, �

�
, �

�
, �

�
; �)e�	���
G	� (t!�) . (185)

Transforming this expression into the frequency domain gives (cf. Eq. (114), ��� "E��
/�)

!i(�!��� )G��
(�)"d(


�
, 0)!

1
��

�
�� �	�

CI (

�
, �

�
, �

�
, �

�
;�

�
!���

)G	� (�) . (186)

If we neglect all elements of CI (

�
, �

�
, �

�
, �

�
;�) where �

�
is di!erent from 


�
it follows that

G�� (�)"
id(


�
, 0)

�!��� #(i/��)���
CI (


�
, �

�
, �

�
, 


�
;�!���

)#i�
(187)

and the absorption spectrum becomes (nonresonant contributions have been neglected)


(�)"
4��n

���
�c

�
��

�d(

�
, 0)��

�(

�
,�)

(�!��� !	(
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,�))�#��(
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. (188)

Here, the complex self-energy is given by

	(

�
,�)#i�(


�
,�)"!

i
��

�
��

CI (

�
, �

�
, �

�
, 


�
;�!���

) . (189)

Eq. (188) shows that the e!ect of EVC is two-fold: the spectrum is renormalized (	(

�
,�)) and

broadened (�(

�
,�)). Both e!ects are state-speci"c, i.e., they depend on the coupling matrix

g�(
� , ��
). The frequency dependence of the self-energy expresses the non-Markovian character of

the underlying dynamics. Replacing� by���
in �(


�
,�) (Markovian limit) and neglecting 	(


�
,�),

a Lorentzian-type spectrum is obtained


(�)"
4��n

���
�c

�
��

�d(

�
, 0)��

�(

�
)

(�!��� )�#��(

�
)

(190)

with the dephasing rates �(

�
) already introduced in Eq. (132). An iteration of the EVC which goes

beyond the one used to derive the QME has been given recently in [145].
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6.5. Nonlinear optical properties

6.5.1. Third-order response function
The formalism based on the third-order susceptibility �	�
 is well established and has been

extensively discussed for molecular systems in Ref. [57]. As long as the considered molecular
system can be described by a set of levels coupled in a diagonal manner to vibrational DOF one
can derive an expression for �	�
 which is beyond any perturbation theory with respect to the
coupling to the vibrational DOF. This is achieved by using a cumulant expansion. The result
for �	�
 becomes exact if the vibrational DOF are characterized by parabolic PES [57]. In
Section 4.3.1, we mapped the PPC excitations onto such a model by introducing excitonic PES.
Unfortunately, there remain o!-diagonal contributions to the multi-exciton vibrational coupling.
However, neglecting this contribution (compare Eq. (83)) one can follow the derivation of Ref. [79]
to obtain closed expressions.
According to Mukamel [57] one can relate �	�
 to the nonlinear response function using the

relation

P(r, t)"�
�

�

dt
�
dt

�
dt

�
R(t

�
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�
, t

�
)E(r, t!t

�
)E(r, t!t

�
!t

�
)E(r, t!t

�
!t

�
!t

�
) . (191)

The response function R(t
�
, t

�
, t

�
) has the following structure (here speci"ed to the case of no

inhomogeneous broadening):
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, 0)) , (192)

where the fourth-order dipole}dipole correlation function is given by
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)"tr�=K
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)� . (193)

The arrangement of the vectorial dipole operators has to be understood in the sense of dyadic
products leading to a fourth-rank correlation tensor.=K

��
"RK

��
�0�	0� describes the ground state

of the PPC with the vibrational equilibrium statistical operator RK
��
. The time-dependence of the

PPC dipole-operators, Eq. (47) is de"ned by the complete PPC Hamiltonian (see Eq. (1) or
Eq. (B.28)). Obviously the fourth-order dipole}dipole correlation function only contains contribu-
tions from the single- and the two-exciton manifold. Using the notation introduced in Eq. (50)
we obtain
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In this expression, the various time-dependencies are given by the PPC Hamiltonian H	�

���

for the
ground state and the "rst two excited exciton manifolds

�(
���

(t)"exp�iH	�

���
t/���(

���
exp�!iH	�


���
t/�� . (195)
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The fourth-order dipole}dipole correlation function C	�

�}�

can be calculated according to standard
procedures (see, e.g., [53,57]) if one uses the Hamiltonian H	�


���
(N"0, 1, 2) in the multi-exciton

representation (Eq. (77) or Eq. (83)), but neglects the o!-diagonal multi-exciton vibrational
coupling, i.e. g�(
�

,�
�
)"0 if 
O�. It has been discussed in Section 4.3.1 under what conditions

this approximation becomes possible. Furthermore, we note that the analytical determination of
C	�


���
relies on the harmonic oscillator model for the PPC vibrations. In this case, the correlation

function is obtained as a certain combination of the PPC spectral density of the type introduced in
Eq. (120):
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The two newly introduced functions G(

�
, �

�
; t

�
, t

�
, t

�
, t

�
) and GI (


�
, �

�
, �

�
; t

�
, t

�
, t

�
, t

�
) are deter-

mined by the type of correlation functions introduced in Eq. (118). Explicit expressions for G and
GI have been given in Ref. [79]. The derivation shows that the description of the nonlinear optical
response in the model of harmonic multi-exciton PES and using the nonlinear response function,
Eq. (192), has a number of advantages. First, the expression does not involve any perturbation
theory with respect to the diagonal part of the EVC. Such a perturbation theory was indeed the
basis for the derivation of the multi-exciton QME in Section 5.1.3. Second, the nonlinear response
function does not contain any assumption with respect to retardation e!ects in the EVC (no
Markov approximation). And, the neglect of the o!-diagonal multi-exciton vibrational coupling
necessary to get the exact expression for the nonlinear response function [79] can be circumvented
as explained in [81]. The nonlinear response function approach has been applied to simulated
photon echo and pump}probe experiments on PPCs.

6.5.2. Ultrafast pump}probe spectroscopy
In a pump}probe experiment the absorption of a weak probe pulse in the presence or after the

action of a strong pump pulse is measured. In this respect, the dependence of the absorption on the
delay time �

�
between the two pulses is of most interest. The probe-pulse absorption can be related

to the respective energy loss S	��
. This quantity is obtained from Eq. (165) if restricted to the probe
"eld E

��
and the related polarization P	��
. But the latter has to be determined in dependence on the

pump- "eld envelope E
��
. Accordingly, the di!erential absorption can be calculated as follows

�
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, (197)
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where S	��
(E
��

"0,E
��
) is proportional to the linear absorption measured by the probe pulse

alone. To determine S	��
 one can use an approach based on the third-order response function (see
Section 6.5.1). Alternatively, one can apply the technique based on the partial wave expansion of
the density operator as given in Eq. (159). In both cases one has to chose for S	��
 the time-integrated
expression (165), and, in particular, the term referring to p"pr, i.e. the probe-beam contribution.
Furthermore, n has to be identi"ed with (n

��
"0, n

��
"1), resulting in the properly oscillating

polarization part according to the expansion Eq. (163). Additionally, the transmitted probe-pulse
may be dispersed in a monochromator, thus obtaining an increased frequency resolution. Here,
instead of a single detector one has to assume that there is a detector for each Fourier component
E� of the probe "eld.

6.5.3. Photon echo spectroscopy
Photon echo techniques have been described in detail, for example, in the Refs. [57,79,81,109,138,

146}150]. In the case of stimulated (three-pulse) photon echo three di!erent pulses are applied

E(r, t)"E
�
(t) exp�i(k

�
r!�

�
t)�#E

�
(t) exp�i(k
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�
t)�#c.c. , (198)

delayed by � and ¹. At time � after the action of the third pulse one can detect in the direction
k
�
!k

�
!k

�
the echo signal whose characteristic decay gives access to the PPC dephasing times.

To see, how the observed echo signal is related to the correlation function of the electronic
excitation energies of the pigments we consider in the following the model used before to describe
linear absorption (Section 6.4.1, note the change of the time-arguments). The descriptiom is based
on the assumption of weakly interacting pigments and uses the site representation. Neglecting the
coupling between the pigments the third-order polarization which determines the echo signal reads
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Here we have assumed the same carrier frequencies for the three pulses, i.e. we set �
�
"�

�
"

�
�
"�. The time evolution operators ;

�
of the excited states are the same as used in Eq. (179).

Since here we are calculating a nonlinear polarization we obtain four-point dipole correlation
functions. However, as suggested in [57] these four-point functions can be expressed by two-point
correlation functions within a cumulant expansion. For the discussion below it is appropriate to
take the impulsive limit, i.e. to set E

�
(t)"A�(t), E

�
(t)"A�(¹#t), and E

�
(t)"A�(¹#�#t).

After performing an average over the inhomogeneous distribution of the pigment's transition
energies one obtains an analytical result for the echo signal J�P(t)��, reading
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!G	�
(¹#�)!G	�
(¹#t)#G	�
(¹)!G	�
(t))�

�cos��G	�
(¹)#G	�
(t)!G	�
(¹#�)!G	�
(0)� . (200)

As a consequence of the applied cumulant expansion the complex lineshape function G(t)"
G	�
(t)#iG	�
(t) appears (compare Eq. (180)). For simplicity, we have assumed equal EVC for all
pigments, i.e. the the lineshape function is assumed to be independent on the site indices m and n.
The exponential term in the "rst line of Eq. (200) contains the half-width �

	��
of the in-

homogeneous distribution of pigment energies. This term after all is responsible for the occurrence
of an echo at t"�. In this way, the inhomogeneous contribution to the overall dephasing of
coherences can be eliminated and the echo decay in dependence on � is a direct measure of the
homogeneous dephasing described here by the complex lineshape function G(t). Hence, we expect
a decay of the echo signal with increasing values of �. As it has been pointed out in [109] the
integrated three-pulse photon echo signal has its maximum at slightly higher values of � and this
so-called three-pulse photon echo peak shift (from the value �"0) depends on the time delay
¹ between the second and third pulse. As it could be demonstrated numerically [109] and
analytically [146] the peak shift function in dependence on¹ is direct proportional to the lineshape
function G(¹). This o!ers a direct way from photon echo experiments to the spectral density of the
proteins.
Another attractive feature of three-pulse photon echo experiments is that the period in which the

system resides in a population state (during ¹) rather than in a polarization state can be large.
Thus, changes in the population on very di!erent time scales can be investigated extending from
femtosecond energy transfer [147,149,150] up to conformational motion monitored by spectral
di!usion of the pigments transition energies [44]. Finally, we note that our standard picure given
above does include neither of these processes. It is, however, straightforward, to introduce
a S operator which treats the dipole}dipole interactions between the pigments in perturbation
theory. As it has been investigated in [147,149,150] the interpigment transfer destroys the echo
signal for large population periods¹. Furthermore, our qualitative picture also did not treat higher
excited states of the aggregate.We will investigate this point in Section 9.3 where it will be discussed
how photon echo experiments can be used to investigate the two-exciton manifold. (Note, that in
a two-pulse photon echo experiment the second and third interaction of the system with the light
"eld happens at once. This situation can be described by setting ¹"0 in Eq. (200).)

6.5.4. Green's function approach to nonlinear susceptibilities
An alternative description of the nonlinear optical response is provided by the equation of

motion approach. Here a closed set of Heisenberg equations of motion for exciton creation and
annihilation operators are is derived (cf. Appendix D). This technique lends itself to develop
a Green's function formulation of nonlinear optical spectroscopy in PPCs [137]. For an PPC of
three-level systems it has been shown in Ref. [151] that in the limit of negligible pure dephasing the
third-order nonlinear optical susceptibility can be expressed as
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Here �
 
"�

�
#�

�
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�
and c�.c�. stands for complex conjugation and changing of the signs of

all frequencies �
�
P!�

�
( j"1, 2, 3). Further, perm denotes the sum over all permutations of

pairs (m
�
,�

�
). Furthermore, the expression contains the single-exciton Green's function G

��
(�),

Eq. (D.11), as well as the exciton scattering matrix
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Here, the zero-order two-exciton Green's function
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has been introduced. The parameter �
�
is the ratio between the transition dipoles d	�



�
and d	�


�

and

g
�
"2�(�

��
/��

�
!�

��

). The structure of the two-exciton scattering matrix, Eq. (202), re#ects the

roles of statistics and anharmonicities in the optical nonlinearities. Obviously, �M (�) reduces to the
two-level limit with Pauli statistics (�

�
"0) [137] as well as to the limit of a three-level anharmonic

oscillator with Bose statistics (�
�
"�2, anharmonicity g

�
). Calculating the susceptibility using

Eq. (201) has the advantage that there is no need to diagonalize the exciton Hamiltonian.
Moreover, due to the local nature of the commutation relations for the Pauli operators the exciton
scattering matrix is not a tetradic N��N� but a N�N matrix. The incorporation of weak EVC
and static disorder within the two-level limit has been provided in [137].

7. The LH2 of purple bacteria

In this section we discuss some results on the dynamics of excitons in the peripheral antenna
complex of purple bacteria. The photosynthetic apparatus of purple bacteria is fully incorporated
into the cell membrane. Every photosynthetic unit organizes about 300 BChl molecules within
the antenna aggregates. The so-called core (LH1) complex has circular geometry with the
reaction center in its middle [24]. In addition, BChla containing complexes have a second
peripheral antenna system, the so-called LH2, which is also of circular geometry. Several LH2
complexes are assumed to surround the LH1 in a way to provide e!ective connectivity for energy
transfer [19,65]. High-resolution structural data have been obtained for Rps. acidophila [4] and
Rs. molischianum [152].
Both complexes consist of 
� protein pairs arranged in eight-fold (Rs. molischianum) and

nine-fold (Rps. acidophila) symmetry forming concentric rings with the 
/� polypeptides inside/
outside. The basic unit of such a circular aggregate is shown in Fig. 6. Every 
� pair noncovalently
binds three BChlamolecules and two carotenoids. In Fig. 6 only one carotenoidmolecule is shown,
the second one could only partly be resolved. The bacteriochlorophylls are arranged in two rings.
The BChls in the upper layer with large inter pigment distances of about 21 As are called the
B800 pigments according to their absorption maximum at 800 nm. Their macrocycles are roughly
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Fig. 6. Basic unit of the LH2 antenna. The 
-helices of the two proteins binding the BChl are shown together with a B800
pigment, two B850 pigments and a single carotenoid.

parallel to the membrane plane. The lower layer consists of more densely packed B850 bacterioch-
lorophylls (with nearest-neighbor distances of 9As ) absorbing at 850 nm. Their macrocycles are
approximately perpendicular to the membrane plane. The structurally resolved carotenoid mol-
ecule in a basic unit comes into close contact to all three BChls ((10As ) indicating its role in
light-harvesting, energy transfer, and triplet quenching. A full view of the LH2 of Rps. acidophila is
given in Fig. 7.
The unravelling of the atomic structure of the LH2 for Rps. acidophila [4] and Rs. molischianum

[152] has placed this system into the focus of experimental and theoretical investigations
[19,20,153,154]. Its unique structure inhabits dipole}dipole interactions spanning a wide range of
magnitudes. This is re#ected in a multitude of time scales for excitation energy transfer. Since the
LH2 of Rps. acidophila, for instance, comprises 27 BChlamolecules, the theoretical analysis will be
restricted to the case of weak EVC. We "rst discuss the linear absorption spectrum together with
the localization properties of the one-exciton wave function. This will provide us with a parameter
set which is used to address the B800 and B850 intraband and the B800}B850 interband transfer
dynamics in the context of nonlinear optical spectroscopy.

7.1. Linear absorption and wave function localization

The expression for the linear absorption coe$cient has been given in Eq. (190). Even though
microscopic structural data are available for the LH2 complex, monomeric transition energies as
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Fig. 7. Schematic view of the LH2 antenna with the bacteriochlorophyll molecules, of which only the porphyrine
planes are shown. The pigment molecules form two rings which are stabilized by proteins ("gure courtesy of
T. Pullerits).

well as the mutual interactions between the pigments are not unambiguously de"ned. Particularly,
the interaction energies reported in literature scatter quite considerably ranging from below
300 cm�� [62,70], to about 400 cm�� [67] up to about 800 cm�� [65,71]. These numbers re#ect the
di!erent approaches to the calculation of J

��
as well as di!erent parameters used to characterize

the dielectric properties of the protein environment and for the monomeric transition dipole
moments (cf. Section 3). The di!erent assumptions can only be tested by comparing the simulated
optical response with experimental observations. Since static and dynamic disorder are contribu-
ting to the optical spectra as well, di!erent techniques have to be compared to establish reasonable
parameters for the exciton}vibrational Hamiltonian Eq. (72). In the following we will explore the
linear optical properties of the LH2 "rst.
The calculated linear absorption spectrum of the 18 pigment B850 ring of an LH2-type system is

shown in Fig. 8 using the interaction matrix of Ref. [67] which was derived from the Rps. acidophila
structure [4]. The solid curve shows the stick spectrum for the isolated case, i.e., neglecting static
and dynamic disorder. In this case the energy levels E��

take 10 distinct values. The states at the
upper and lower band egde are nondegenerate, whereas the states inside the band are grouped into
pairs of identical energy. Because of the ring-like structure and because the dipoles are almost in the
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Fig. 8. Linear absorption spectrum of LH2 of Rb. sphaeroides at room temperature. The dashed line shows
the experimental result (data courtesy of J. Herek) while the solid lines corresponds to the calculated spectrum
for the isolated B850 pigment pool (thick line) and the homogeneously and inhomogeneously broadened case
(thin solid line).

plane of the ring, the lowest (nondegenerate) exciton state does not carry oscillator strength. Except
from a small contribution which comes from the upper band edge of the one-exciton manifold,
most oscillator strength is concentrated in the "rst pair of degenerate states above the lower band
edge. This situation changes upon inclusion of static disorder as can be seen from the thin solid
curve in Fig. 8. Oscillator strength is distributed over several states at the upper and lower band
edges (for a detailed discussion of the e!ect of static disorder on circular aggregates see [155]). The
calculation further includes the e!ect of dynamic disorder at room temperature which adds to the
total broadening of the individual exciton states according to Eq. (190). For the spectral density
entering the dephasing rate, Eq. (132), we have used form (129) with p"2 and J

�
"g�/2��

�
(cf. [64]). The correlation radius in Eq. (128) has been set to zero, i.e. f (Z

��
)"�

��
. Further,

#uctuations of the dipole}dipole coupling have been neglected and the diagonal EVC was
described by a single parameter g (In addition, a pure dephasing term like c	��
 in Eq. (C.8) has been
added (for details see Ref. [64]).). For the given parameter set (�

�
"50 cm��, g��"100 cm��) the

agreement with the experimental spectrum taken at room temperature (dashed line in Fig. 8) for the
B850 band is rather good.
Having speci"ed the one-exciton Hamiltonian one can characterize the one-exciton wave

function using the concept of the inverse of the so-called participation ratio de"ned as

¸(E)"
1

ND(E)��
��

�(E!E�� )��
�

C�
���� 	


�	�
����

(205)

T. Renger et al. / Physics Reports 343 (2001) 137}254204



Fig. 9. Participation ratio Eq. (205) (upper panel) and density of states Eq. (206) (lower panel) for LH2. The scaling factor
for dipole}dipole coupling is 1.0 (A), 0.75 (B), and 0.5 (C). (Note that the wavelength scale is di!erent in the di!erent
panels.)

with the excitonic density of states given by

D(E)"
1
N��

��

�(E!E��
)


�	�
����

(206)

andN is the number of pigments. We note in caution that ¸(E) is a static quantity entirely speci"ed
by the solutions of the stationary SchroK dinger equation. Since dynamic disorder is not taken into
account, the coherence domain size N

�
�
"¸��(E) has to be viewed as an upper boundary to the

`reala value (see below). In addition, one should keep in mind that ¸(E) always resembles the
symmetry of the system, i.e. for a linear aggregate, for instance, one hasN

�
�
"2(N#1)/3 and not

N
�
�

"N.
In Fig. 9 we explore the e!ect of a scaling of the dipole}dipole coupling matrix of Ref. [67] on the

participation ratio and the density of states for the LH2. Let us discuss the density of states. First,
we notice that the overall bandwidth depends on the maximum coupling strength, Max�J

��
�, an

e!ect which is more pronounced for the B850 pigment pool. Decreasing the coupling strength from
panel (A) to (C) leads to an increase of D(E) at the blue edge of the LH2 absorption band due to the
overlap between B800 and B850 states. In fact, both types of pigments are coupled and `tuninga the
upper band edge of the B850 band into resonance with the B800 band has strong implications on
the inter- and intraband transfer dynamics as we will see below.We further notice that D(E) is quite
structured in the region where only B850 excitations contribute to the spectrum. As noted before
a consequence of the circular symmetry of the B850 system is that energy levels occur mostly in
degenerate pairs (except the lowest and the highest one) which are split up due to the static
disorder. The lowest exciton state can be identi"ed as the weak shoulder on the red edge of the
density of states in Fig. 9.
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Next, we focus on the participation ratio ¸(E) (upper panel in Fig. 9) which gives an estimate for
the static coherence domain size of the one-exciton states. From Fig. 9 we see that exciton states
located at the band edges tend to be more localized than states within the energy band. If we focus
on case (C) in Fig. 9, for example, we calculate from ¸(E), N

�
�
+10 sites around 850 nm and

N
�
�

+3 sites around 800 nm. Note that the coherence domain size around 800 nm appears to
be larger than for the B800 only pigment system where it is about 1.6 [63]. This is another
consequence of the mixing between both types of pigments in this wavelength region.

7.2. Pump}probe spectroscopy

The presence of di!erent ranges of coupling strengths in the LH2 system results in a rich
dynamics taking place on a multitude of time scales. Let us consider the B800 pigment pool "rst
which is weakly coupled because of the large separations between the pigments (cf. Fig. 7). The
fastest time scale for intraband dynamics has been found to increase from 0.3 to 0.6 ps upon tuning
the excitation wavelength in a one-colour pump}probe measurement from the blue to the red
of the B800 band at 77K [156]. Similar results were obtained in Ref. [157]. Two-colour experi-
ments performed at 19K gave a 0.4 ps rise time for the photobleaching/stimulated emission
signal at 805 nm after excitation at 783nm [158]. The most striking feature of the B800
intraband dynamics, however, is that it appears to be impossible to describe the two-colour
pump}probe data and the hole-burning results simultaneously without introducing an additional
decay channel for B800 excitations. Small and co-workers proposed in this respect a model in
which exciton levels of the B850 band located at the upper band edge mediate the energy relaxation
within the B800 band [158]. This type of upper excitonic state has been suggested by the excitonic
calculations reported in Ref. [70]; it is clearly seen as a feature in the absorption pro"le of the
B850 ring in Fig. 8. Recent measurements of the circular dichroism in B800-free mutants of
Rb. sphaeroides provided clear indications for this upper excitonic feature which is located to the
blue of the B800 band at around 780 nm [159]. Frequency-domain nonlinear optical spectroscopy
of the same type of mutant, on the other hand, suggested the upper excitonic state to be at about
800nm [160].
In Ref. [63] the B800 intraband and B800}B850 interband dynamics has been investigated using

the set of density matrix equations (115) reduced to the one-exciton manifold. For the EVC
a stochastic model had been chosen (cf. Section 4.2). In order to explore the in#uence of B850
pigments on the B800 dynamics, simulations with di!erent coupling matrices were performed such
that the position of the upper excitonic state was gradually tuned in resonance with the B800
absorption maximum (cf. Fig. 9). Further, explicit expressions for a quenching matrix entering the
equations of motion and describing unidirectional energy #ow according to the spectral overlaps
were derived. Using this setup the following results were established: The fast intraband dynamics
as observed by Hess et al. [156] could only be explained by including, besides the direct B800}B800
transfer, the `detoura via B850 pigments as shown in Fig. 10. At "rst glance this process seems to be
rather improbable for it involves transfer over a large spatial distance. However, if the upper
excitonic state (or the upper excitonic band in the case of static disorder) deriving from the B850
pool is in resonance with the B800 states it provides an e$cient bridge (with rather delocalized
states) for mediating this transfer. We note in passing that in the presence of o!-diagonal dynamic
disorder, i.e. a stochastic #uctuation of the coupling matrix J

��
, it is not necessary for the (bridge)
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Fig. 10. Possible pathways of energy #ow for B800 intraband transfer. As the consequence of the upper excitonic states,
indirect transfer where the B850 pigment pool acts as an e!ective bridge becomes possible (light-gray arrows). The direct
path between two B800 pigments is shown as a black arrow.

B850 exciton states to carry oscillator strength in order to participate in this process [161]. (The
possibility of transfer to optically forbidden states has also been discussed in Refs. [82,145].) Of
course, the position of the upper excitonic state as well as the possibility of dark state transfer has
also a strong impact on the B800}B850 interband transfer. This process takes place on a time scale
of 0.7 ps at room temperature [162] and slows down to about 1.5 ps at low temperatures [157,163].
Information on these time scales can be obtained already from the population dynamics. In Fig. 11
we show the wavelength-resolved populations across the B800}B850 absorption band after
selective excitation of the B800 band for EVC parameters as in Fig. 8. A consistent "t of intra- and
interband dynamics suggested a maximum dipole}dipole coupling strength between 200 and
300 cm��. Thus, the upper exciton state is located between 780 and 800 nm. This is in good
agreement with the results of hole burning [158], circular dichroism [159], and nonlinear absorp-
tion [160].
Next, we focus on the B850 intraband dynamics which, as a consequence of the strong

dipole}dipole coupling, is more suitably described as energy relaxation within the delocalized
one-exciton band [20,64]. Early two-colour pump}probe investigations on Rb. sphaeroides using
200 fs pulses by Savikhin et al. [164] indicated intraband transfer on a 80}100 fs time scale at room
temperature which slowed down to 250}300 fs at 19K. Room temperature measurements at higher
time resolution resulted in relaxation time scales of about 100 fs and anisotropy decay times of
about 30 fs [165]. Further, it was found that excitation at the blue side of the B850 absorption peak
leads to a dynamic red shift and a decrease in amplitude of the signal. On the other hand, there are
a number of experiments suggesting two sub-picosecond time scales at cryogenic temperatures
[111,166,167]. Lowering the temperature to 7K a small red shift was found even for excitation at
880nm [166].

207T. Renger et al. / Physics Reports 343 (2001) 137}254



Fig. 11. Population dynamics within the LH2 like system after excitation in the B800 band (for parameters see text).

These observations are in general in accord with the picture of exciton relaxation. However, the
details of the dynamics in the red edge of the B850 band appear to be quite complicated.
Low-temperature hole-burning studies gave evidence for a so-called B870 exciton level being
200 cm�� below the B850 band maximum of Rps. acidophila [168] (cf. also recent Stark hole
burning data on various photosynthetic antennae in Ref. [169]). On the other hand, it has been
demonstrated by Chachisvilis and co-workers [161] that at low temperature a new band splits
o! to the red the B850 band and continues to move on the time scale of some tens of picoseconds.
As a possible explanation of this long-time feature polaron formation together with a transition
to a charge transfer state has been suggested in Ref. [111]. On the other hand, exciton
transfer between di!erent B850 complexes has been proposed as a source of this spectral evolution
in [167].
In Ref. [64] it was shown that the quasi-equilibrium state reached after about 2 ps in a transient

absorption experiment [161] can be modelled using multilevel density matrix theory, i.e. the
coupled set Eqs. (115) including up to two-exciton states. The EVC characteristics was chosen as in
the case of the linear absorption, Section 7.1. In this case the stationary limit of Eq. (197) can be
applied to give the room temperature signal shown in Fig. 12. (Note that we have restricted
ourselves to an expansion of the set of equations (168) up to third order in the "eld.) The calculation
includes energy-relaxation-related dephasing as well as pure dephasing (see Section 7.1). Two
situations are considered in Fig. 12, weak (solid line) and strong (dashed line) pure dephasing. The
energy-relaxation-related dephasing rate has been adjusted to "t the experimental data (for details
see Ref. [64]). Apparently, the relative importance of these relaxation mechanisms cannot be
inferred from the stationary data. The most important point of Fig. 12 is that in order to reproduce
the positions and relative magnitudes of the photobelaching/stimulated emission and excited
state absorption features (given separately in the inset) the variance of the static disorder has to be
on the order of the dipole}dipole coupling [64]. In this case one "nds the average separation
between the two lowest exciton states to be about 190 cm�� which is in good agreement with
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Fig. 12. Quasi-stationary room temperatures transient absorption signal for the B850 system considered in Fig. 8: solid
} weak pure dephasing, dashed } strong pure dephasing, circles } experiment [161]. The inset shows the separate
contribution from ground state bleaching plus stimulated emission and excited state absorption (for parameters see text).

the value estimated from low-temperature hole-burning [168]. Thus, Fig. 12 strongly supports the
conjecture that the energy level structure of LH2 is subject to signi"cant static #uctuations of the
transition energies [20,64].
Finally, we note that the simulations of the quasi-stationary absorption spectra included

a higher excited monomeric S
�
state [64] (cf. Appendix A) with a detuning of 100 cm�� and a ratio

between the monomeric transition dipole moments of d	�

�

/d	�



�
"0.5 [67]. Anisotropy measure-

ments indicated that the dipoles for both transitions in monomeric BChla are likely to be tilted by
an angle (203 with respect to each other [170]. This, however, does not have a considerable e!ect
on the results shown in Fig. 12, i.e. parallel intramolecular dipoles can be used as long as d	�


�

/d	�



�
is

not much larger than unity. For d	�

�

/d	�



�
'1.5, however, the mixing between molecular double

excitations and collective double-excitations results in a dramatic modi"cation of the two-exciton
manifold [151]. However, in this case the ESA peak would gradually be shifted to the red
contradicting the experimental data.
In Ref. [151] it was shown that frequency-domain pump}probe spectroscopy provides direct

access to the two-exciton band and therefore might be amenable to address the question
of the relative importance of intramolcular excited state absorption. In Ref. [151] the collective
excitonic oscillator approach of Appendix D was used to calculate the two-photon absorption
signal from the Green's function expression for the susceptibility given in Eq. (201) as =

���
"

Im �	�
(!�
�
;�

�
,!�

�
,�

�
). The structure of the two-exciton band is probed by "xing the pump

frequency o!-resonant to the one-exciton band and tuning the probe frequency through the
two-exciton band.

7.3. Exciton relaxation and delocalization

The strong interaction between the pigments in the B850 band of LH2 or in LH1 suggests that
the delocalization of the excitonic wave function plays a pivotal role for the understanding of the
spectroscopy of these systems [67,154]. Strictly speaking, the collective behavior of the exciton
dynamics, as manifested in the size of the exciton coherence domain, is no static property. An
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initially prepared coherent superposition of delocalized states, i.e., an excitonic wave packet, will
dephase due to static and dynamic disorder and the exciton will be localized.
Nevertheless, this dynamic character is often neglected and the focus is put on the static

properties of the exciton wave function. In this case by the participation ratio de"ned in Eq. (205)
provides a means for addressing this problem. For example, in Ref. [171] the exciton coherence
domain size for the B850 ring was estimated to be about 5. Recently, Novoderezhkin and
co-workers presented a detailed study of this subject for the core light-harvesting antenna of Rps.
viridis [155]. The de"nition of the participation ratio does not include the e!ect of dynamic
disorder although there has been generalization of this concept for an in"nite temperature model in
Ref. [172]. (This approach has been applied in Ref. [173] to extract a delocalization length of about
3}4 pigments from three-pulse photon echo data.) On the other hand, the degree of delocalization
can be accessed directly from spectroscopic data. For example, simulations of quasi-stationary
absorption spectra using fragments of the B850 ring yielded N

�
�
"4$2 [67]. (For a discussion

of the relation between pump}probe spectra and delocalization lengths see also Ref. [174].) In
Ref. [175] the superradiance enhancement factor was analyzed to give emitting dipole strengths of
2.8 for LH2 at 4 K temperature. This value which is also almost independent of temperature could
only be explained by assuming static disorder for the site energies. A similar analysis has been given
in Ref. [165]. The theoretical formulation including the e!ect of dynamic disorder was provided in
Ref. [79], where also the relation between the superradiance enhancement factor and an exciton
coherence size de"ned in analogy to the participation ratio but using the density matrix in the site
representation was given [80]. Another alternative for addressing the issue of the coherence length
is provided by imaginary time path integral simulations which allow to take into account dynamic
and static disorder nonperturbatively. Using this approach Makri and co-worker found a mean
coherence length of 2}3 pigments for the B850 ring at room temperature [176].
In the context of extracting coherence lengths from experimental data it should be pointed out

that di!erent experimental setups are probing particular aspects of the system's evolution. There-
fore, it is no surprise that di!erent numbers for the size of the coherence domain of the same system
have been suggested (cf. discussion in Ref. [154]). For example, di!erence absorption [67,161,177]
and #uorescence [175] indicated the exciton to be localized on a few pigments only, but steady
state nonlinear absorption experiments suggested a fully delocalized excitonic wave function
[178,179]. As another alternative the measurement of anisotropy related to transitions between the
one } exciton and intramolecular S

�
} S

�
states has been suggested in Ref. [180].

In Ref. [64] it has been proposed to use the information contained in the time-dependent
one-exciton density matrix to estimate the dynamic size of the exciton coherence domain. This way,
static disorder and dynamic relaxation phenomena are accounted for and a direct link to the
nonlinear optical response is established. This goal is achieved by de"ning the function

C
�
(t)"�

�

�	

�����

(t)�
�	�
����

� (207)

which contains the one-exciton density matrix in the site representation (cf. Eq. (133)). Note that the
m summation averages 


��
with respect to the whole ring thus making C

�
(t) independent of the

particular excitation condition in a member of the inhomogeneous ensemble.
In Fig. 13 C

�
(t) is plotted for the B850 pigment pool of LH2. The dynamic nature of exciton

localization in real space is apparent. Initially, coherences are excited which extend over the whole
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Fig. 13. Dynamics of the one-exciton coherences in a B850 system as expressed in the functionC
�
(t) de"ned in Eq. (207).

ring; the shape of C
�
(t) re#ects the behaviour of the states which contribute to the superposition

state. Static and dynamic disorder then lead to a dephasing of the coherences. Notice that
substantial coherences survive for about 1 ps. In the asymptotic regime an incoherent superposition
of exciton eigenstates is formed:

C
�
(R)J �

���
C

����C������ e�#�� ���$ . (208)

The shape of the "nal distribution in Fig. 13 resembles a Gaussian whose width (+4) could be
taken as a measure of the size of the exciton coherence domain. This width is determined by the
interplay between static disorder and the Boltzmann-type population of the di!erent exciton states.
As a reference we notice that for an in"nite nondisordered chain with nearest-neighbor interactions
and periodic boundary condition one has the Gaussian form C

�
(R)Jexp�!�n�¹� with � being

some constant parameter [181]. In the present case, it was found [64] that the asymptotic width of
C

�
(t) is determined mostly by the static disorder. The measure C

�
(t) has also been applied to the

core antenna of Rps. viridis where the size of the coherence domain is also only a fraction of the full
ring (4}9 sites) [155].

8. The FMO-complex of Chlorobium tepidum

The water soluble bacteriochlorophylla}protein (Fenna}Mathew}Olson (FMO) complex),
which forms the base plate in green sulphur bacteria Prosthecochloris (Pc.) aestuarii was the "rst
pigment protein complex whose structure could be successfully analyzed by X-ray crystallography
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[2] with a nominal resolution of 2.8As . Later Tronrud et al. [40] improved the resolution of the
electron density map down to 1.8As . With this exceptionally high-resolution structure at hand the
FMO-complex has always been considered as a key for the understanding of the microscopic
processes in photosynthetic antennae.
The main light-harvesting antenna of green sulphur bacteria is formed by chlorosomes which in

many respects di!er from any other types of antenna systems. First, they contain the highest
number of pigments. Up to 10 000 BChlcmolecules, i.e. 95% of all the BChls in these bacteria, are
bound in chlorosomes, which makes them adaptable to even extreme poor light conditions. The
overall structure of chlorosomes is built from several cigar-shaped rod elements, 80 up to 200 nm
long and about 10 nm in diameter. Although chlorosomes contain proteins it is not clear whether
the pigments are bound to the proteins as in all other known antennae or if they form self-
aggregated BChlc oligomers. Strong arguments in favor of a direct BChlc}BChlc bond (between
central magnesium and C-9 keto carbonyl) have been provided by resonance Raman studies of
Lutz et al. [182]. Besides BChlc chlorosomes also contain a small amount of BChlawhich mediates
the transfer of excitation energy to the base plate containing the FMO complex. The chlorosomal
BChla absorbs at high energies compared to the BChla contained in the base plate. The funnelling
of energy thus may be divided into several steps: chlorosomes (BChlc, 749 nm P BChla, 794 nm)
P base plate (FMO-complex, BChla, 809 nm) P membrane (reaction center P840, BChla, Fe}S).
Although the FMO-complex situated in the base plate contains only a very small fraction of the
pigments of the overall antenna system it acts as a bottleneck for excitation energy on its way from
the outer chlorosome to the inner-membrane reaction center. The FMO-protein consists of three
identical subunits arranged in three-fold symmetry. In each of the three subunits the protein
backbone forms a pocket shape �-sheet with 17 strands enclosing a core of 7 BChla pigments as it is
shown in Fig. 14. The pigments are bound to the protein by ligation of their central magnesium
atoms, and hydrogen bonding of special parts (ring I 2-acetyl group, ring V 9-keto group) of their
pyrol rings. The local environments of the 7 BChls are di!erent. Therefore the nonexcitonic shift of
the pigment energies will be di!erent.
Recently, the bacteriochlorophylla antenna complex of another green bacteria Chlorobium (Cb.)

tepidum could be resolved by Li et al. [183]. The structure very closely resembles the struc-
ture of Pc. aestuarii, i.e. the relative positions of the pigments are largely unchanged in the two
species. Therefore, one should expect that the mutual Coulomb interactions between the pigments
are not very di!erent. However, a close examination of the tetrapyrols revealed di!erences
in their planarity. For example the mean out-of-plane distance of the central magnesium
atom of BChls in Pc. aestuarii is 0.48As whereas a much smaller value (0.09As ) is observed in
Cb. tepidum. There are also di!erences in hydrogen bonding (for a detailed comparison see
[183]). Altogether these modi"cations in the pigment}protein interaction lead to a change
in oscillator strengths of the pigment transitions as re#ected in the linear absorption spectra
[184,185].
The FMO-complex provides a testing ground for concepts of exciton transfer in PPCs. Its

microscopic structure is well-known and its Q
�
absorption band has a number of well-resolved

features. Therefore, this PPC challenges level assignments and concepts for structure}function
relationships. In the following we present results for the linear absorption and pump}probe
spectroscopy of Cb. tepidum and provide evidence for an assignment of the structure in terms of
a microscopic one-exciton Hamiltonian matrix according to Eq. (37).
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Fig. 14. FMO subunit from the base plate of Prosthecochloris aestuarii. The seven bacteriochlorophyllamolecules as well
as the amino acid sequence of the protein are numbered (after [40]).

8.1. Linear spectroscopy and level assignment

The availability of highly resolved structural information and a host of spectroscopic data for the
FMO-complex of Pc. aestuarii has triggered many e!orts to establish an appropriate one-exciton
Hamiltonian matrix, i.e., Coulomb interaction matrix elements and site energies entering Eq. (37)
(for a discussion see [186]). From the work of Pearlstein and co-workers [187}189] it was
appreciated that the di!erent absorption bands are not solely due to Coulomb interactions but to
a large extent a consequence of di!erent site energies of BChla in the protein environment. Based
on a semiempirical analysis the strongest intramonomer dipole}dipole coupling was estimated to
be about 190 cm��, while intermonomer interactions are as weak as 20 cm��. Using their assign-
ment, Pearlstein et al. [188,189] were able to reproduce details of absorption and circular
dichroism spectra obtained in Refs. [190,191]. GuK len proposed to assign the one-exciton Hamil-
tonian by "tting linear dichroism and triplet minus singlet absorption di!erence spectra. The
resulting parameter set, however, was not suitable for reproducing circular dichroism data [192].
A reasonable "t to absorption, circular and linear dichroism, and triplet minus singlet spectra
could be obtained by Louwe et al. [193] after scaling down of the dipole}dipole interaction matrix
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Table 1
Optimized site energies of the seven BChla's in the FMO monomers of Cb. tepidum as obtained in Refs. [84,195]. The
values for Pc. aestuarii given in Ref. [193] are shown for comparison

BChl �
�
(eg) (eV)

j Ref. [84] Ref. [195] Ref. [193]

1 1.589 1.538 1.527
2 1.538 1.562 1.542
3 1.508 1.505 1.504
4 1.551 1.523 1.527
5 1.549 1.550 1.558
6 1.541 1.550 1.544
7 1.557 1.541 1.541

elements (strongest coupling &100 cm��). This basically required to use an ewective dipole
strength of 28.7D� for BChla.
Even though BChla positions and orientations in Pc. aestuarii and Cb. tepidum are almost

identical, there is only a 78% homology in the amino acid sequences [194]. As stated in Ref. [195]
this may cause a di!erent local environment for the BChla molecules thus giving rise to the
observed di!erence in the spectroscopy [195]. This e!ect has been accounted for in [195] in the
assignment of Cb. tepidum by using the dipole}dipole couplings from Ref. [193] but keeping the site
energies as free parameters. This way a good "t for the di!erent spectra could be obtained at least
for wavelengths above 800 nm [195] (see Table 1).
The essential feature of all theoretical assignments mentioned so far is that the EVC is only

accounted for by `dressinga the excitonic stick spectra with a "nite width due to the in-
homogeneous and homogeneous broadening. In view of the theory presented in Section 6.4 this
appears to be a strong simpli"cation (cf. also Fig. 15 below). In Refs. [84,196] the e!ect of
homogeneous broadening was taken into account according to Eq. (132) and on the basis of
a microscopic model for the EVC as outlined in Section 5. For the spectral density the empirical
form (129) has been used, with p"!1 and J

�
"1/��

�
. Further only diagonal EVC was

considered, i.e. g� (m, n)"�
��
g�(m) (cf. Eq. (B.26)). For the #uctuation of the site energies a correla-

tion radius Z
�
��

was introduced (see Eq. (128)). The 11 parameters, i.e., the seven site energies, the
EVC strength which was comprised of a single parameter g��, the cut-o! frequency �

�
, the

correlation radius Z
�
��

, and the inhomogeneous width of spectrum have been optimized to
reproduce the linear absorption at the temperatures ¹"5 and 107K. Calculated and experi-
mental spectra are compared in Fig. 15 (for parameters see Tables 1 and 2).
Having this rather good agreement it is possible to draw conclusions on the EVC. First, it has

been pointed out in Ref. [84] that due to the heterogeneous energy spectrum of the FMO-complex
the spectral density is `probeda at many di!erent frequencies. In other words, linear absorption
provides a sensitive test for the spectral density model. In this respect, we note that the cut-o!
frequency�

�
"37 cm�� is in rather good agreement with the mean frequency of the low-frequency

protein vibrations (30 cm��) observed for Pc. aestuarii in Ref. [184]. The correlation radius for the
EVC was found to be Z

�
��
"21As . Since this is about the size of a FMO monomer we conclude
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Fig. 15. Linear absorption of the FMO subunit at di!erent temperatures. The calculated spectra for the optimized
parameter set are drawn as thick lines. Thin lines show the calculated homogeneous spectra (i.e., before convoluting with
a Gaussian distribution function). The points represent the experimental values measured by Freiberg et al. [185]. In the
upper panel the excitonic stick spectrum is also shown (for parameters see, Tables 1 and 2).

Table 2
Single exciton energies E�� , dipole strength of the related transitions from the ground state in units of the Q

�
dipole

strengths of the BChls, and temperature-dependent homogeneous line widths �
��

(¹"5K, 107K) of the single-
exciton levels. The parameters entering the relaxation rates density are g��"5meV, �

�
"37 cm��, Z

�
��
"21As . The

inhomogeneous width is obtained as 101 cm�� (cf. Eq. (132))

N E�� �d�� �� �� ��� (¹"5K) ��� (¹"107K)
(eV (nm)) (51 D�) (cm��) (cm��)

1 1.502 (825.6) 0.53 0.59 1.58
2 1.520 (815.4) 1.23 5.23 20.42
3 1.531 (810.1) 1.27 29.47 43.11
4 1.544 (803.2) 2.57 32.66 56.05
5 1.558 (795.8) 0.69 75.58 98.93
6 1.580 (784.7) 0.08 42.72 46.72
7 1.598 (775.6) 0.62 0.92 0.97

that the coupled dynamics of electronic and nuclear degrees of freedom is highly correlated with
respect to all BChla sites in the complex.
In Table 1 we compare the site energies obtained with the present approach with the parameters

of Ref. [195]. (Note that in [195] the dipole strength was chosen to be 28.7 D� as compared with
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51 D� used here.) The di!erences are apparent and it was pointed out in Ref. [197] that the
parameters of Ref. [84] do not correctly reproduce the linear dichroism spectra. On the other hand,
we show that the two approaches for the calculation of linear absorption spectrummay give rather
di!erent results. These discrepancies merely demonstrate that a system as complicated as the FMO
pigment}protein complex at present cannot be simulated by only a single parameter set, i.e.,
multiple solutions which give reasonable agreement for certain observables exist. The appropriate-
ness of the assignment of Ref. [84] for modeling di!erent experiments will be demonstrated in the
following section.

8.2. Pump}probe spectroscopy

As a "rst test for the assignment established in the previous section we will simulate two-color
pump}probe spectra. There has been a number of ultrafast optical experiments on the FMO-
complex which invites a two-color pump}probe study where the pump pulses excite the complex in
the blue of the absorption band and with the probe pulse one watches the excitation energy to
sweep through the distinct bands at lower energy. According to the heterogeneous structure of the
complex it is no surprise that a multitude of time scales has been observed (for a recent review see
also Ref. [186]). For example, isotropic two-color measurements of Cb. tepidum at room temper-
ature yielded kinetics with time scales ranging from 55}990 fs [198]. At cryogenic temperatures
Buck and co-workers obtained as much as six lifetimes ranging from 170 fs to 840 ps. Similar results
were reported by Freiberg et al. (see below) [185]. Interestingly, for the FMO-complex of Pc.
aestuarii Vulto et al. found only four lifetimes (500 fs}30 ps) [199] even though both complexes are
rather similar. From anisotropy measurements it was established that the early dynamics takes
places in a single monomer of the trimeric FMO-complex [200]. Further, indications of excitonic
quantum beats have been observed in the anisotropy data for the case that the bands at 815 and
825nm are excited simultaneously [201].
In the following we will demonstrate that our set of parameters allows the simulation of

pump}probe spectra for Cb. tepidum at di!erent temperatures [84]. Our calculations will be
compared with the experimental data of Ref. [185]. This requires to "x a further set of parameters
which govern the monomeric excited state absorption. We use excited state transition frequencies
shifted 100 cm�� to the blue with respect to the S

�
PS

�
transitions. The ratio of the transition

dipole strength will be taken as a parameter.
In Fig. 16 simulations of the low-temperature two-colour (magic angle) pump}probe signals

according to Eq. (197) are compared with the experimental results of Freiberg et al. [185]. In this
setup the pump pulse is tuned to the absorption band at 803 nm whereas the dynamics is probed at
803, 815, and 826 nm. In order to elucidate the e!ect of the intramolecular S

�
state curves are shown

for di!erent ratios between S
�
PS

�
and S

�
PS

�
transition dipole strengths d	�


�

/d	�



�
(cf. Appendix

A). First, we note that in contrast to the discussions in Refs. [186,197], it is obvious from Fig. 16
that intramolecular double excitations do play a role for understanding pump}probe spectra.
Second, the transition dipole ratio of d	�


�

/d	�



�
"0.5 appears to provide the best "t to the

experimental data (note that the same value was suggested for LH2 in Ref. [67]).
The time evolution of the signal at di!erent test wavelengths re#ects the cascading of the

excitation energy in the FMO-complex. For short delay times the one-color signal at 803 nm is due
to pump-pulse-induced ground state bleaching and stimulated emission. The signal then partly
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Fig. 16. Simulation of the 20K two-color pump}probe experiments of Freiberg et al. [185] (curves with circles) at
a pump wavelength of 803 nm and for di!erent probe wavelengths. Solid curve: �

��
"803nm, dashed curve:

�
��

"815 nm, long dashed curve: �
��

"826 nm. The three panels correspond to three di!erent ratios of the intramolecu-
lar transition dipole moments. We have d	�


�

/d	�



�
"0.25 (left), 0.5 (middle) and 0.75 (right).

decays on a 500 fs time scale. This is correlated to the population increase in the 815 nm band
(increased stimulated emission). Subsequently, the 815 nm signal decays on a 2 ps time scale along
with the 2 ps rise of the signal at 826 nm. The latter is due to the population of the lowest exciton
state. In Fig. 17 we show the signal at 825 nm for di!erent temperatures [196]. The good agreement
with the observed behaviour [84] gives further justi"cation for our assignment.
Next we focus on the anisotropy de"ned as

r(�)"
�
�!�


�
�
�#2�


�

. (209)

Here,�
� (�
� ) is the di!erential absorption for parallel (perpendicular) polarized pump and probe
pulses, and � denotes the delay between the pulses. Of particular interest is the value of the
anisotropy at zero delay, which takes the value 0.4 for randomly oriented isolated two-level systems
[202]. In the case of a multi-level system this initial value of the anisotropymay become larger than
0.4. In the simplest case a multi-level system originates from the interaction between two-level
systems as considered in [203], or it might represent a molecule having two optically allowed
transitions with di!erent polarizations [141,204]. Considering the FMO-complex one has a mix-
ture of all the above-mentioned cases. There are several di!erent transitions with di!erent
polarizations, between the ground state and the one-exciton manifold and between one- and
two-exciton manifolds.
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Fig. 17. Two-color pump}probe spectra at two di!erent temperatures. Pump wavelength at 803nm, probe wavelength at
825 nm. Experimental data of Freiberg et al. [185] are shown as circles.

In Fig. 18 we compare measured [200] and calculated [196] two-color polarized pump}probe
signals as well as the related anisotropy decay. The agreement is rather good except for the
anisotropy at short delay times. However, as pointed out in [141] coherent processes may lead to
a strong modulation of the anisotropy when pump and probe pulse overlap. Having a closer look
at the perpendicular signal in Fig. 18 for short delay times ((1 ps) one notices an oscillatory
modulation. The oscillation period of 220 fs corresponds to the transition frequency between the
815 and the 826 nm one-exciton states which are simultaneously excited. Indeed, this quantum
beating has been experimentally observed in Ref. [201].
To summarize, the present assignment provides a basis for simulating di!erent nonlinear optical

spectroscopies. Whether the alternative parameter set suggested by Vulto et al. [195] can give this
almost quantitative agreement with the experiments remains to be shown. First simulations of
prompt pump}probe spectra [205] produced reasonable results. However, the calculation of
time-resolved signals using a master equation for the level populations could reproduce the
experimental data at most qualitatively [166].

9. The LHC-II of green plants

Amajor breakthrough in the evolution of all higher organisms was the use of water as hydrogen
source. The photochemical splitting of water for the evolution of oxygen made it necessary to built
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Fig. 18. Two-color anisotropy at 19K, pump wavelength at 815 nm, probe wavelength at 825nm. Top: Measured [200]
pump}probe signals for parallel (squares) and perpendicular (circles) polarized pump and probe pulses in comparison to
the theoretical curves (full lines). Bottom: Resulting anisotropy, experimental data [200]: circles, theory: full line.

up two di!erent types of cooperating reaction centers referred to as photosystem I (PS I) and
photosystem II (PS II). The two photosystems are supplied with energy by two di!erent types of
light-harvesting complexes, LHC-I and LHC-II, respectively. The LHC-II is the major photosyn-
thetic antenna on earth. It contains roughly half of all photosynthetic active pigments of plants. It is
fully incorporated in the photosynthetic membrane. Between the LHC-II and the PS-II reaction
center smaller core antenna complexes are situated which mediate the transfer of excitation energy
(for a recent review on PS II energy transfer see [206]). The core antennae only contain Chla,
whereas the LHC-II also incorporates Chlb which absorbs at slightly higher energies, thus
increasing the absorption cross section of the reaction center. One important LHC-II function
therefore is, besides a spatial transfer, also a spectral relaxation of high energetic excitations from
Chlb to Chla which is energetically close to the reaction center. A detailed understanding of this
process, of course, requires the knowledge of the microscopic structure of the LHC-II. Since 1994
this structure is known with a resolution of 3.4As from electron di!raction experiments of
KuK hlbrandt et al. [3]. Similar to the FMO-complex also in the case of LHC-II a trimeric
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Fig. 19. LHC-II monomer according to KuK hlbrandt et al. [3]. The membrane-spanning 
 helices hold seven pigments in
the vicinity of two carotenoids (in the center) which were assigned to Chla. The remaining pigments are likely to be Chlb.

arrangement of identical subunits has been found. Each monomer (compare Fig. 19) contains three
membrane-spanning 
 helices, two carotenoids (xantophylls) and 12 Chls. Even though the
obtained resolution did not allow for an identi"cation of the di!erent Chls, physiological argu-
ments have been used to give a preliminary assignment for Chla and Chlb. In the vicinity of seven
Chls carotenoids were found which act as triplet-quenchers for the Chls to prevent the generation
of singlet oxygen. Since energy transfer from Chlb to Chla is very fast the intersystem crossing to
the Chl-triplet states will take place at Chla. Therefore, the above-mentioned seven Chls were
assigned to Chla (labeled a

�
to a

�
in Fig. 19). Based on this assignment minimal distances between

nearest Chls as short as 8}10As were found within pairs of Chla and Chlb. Recently (see [207] and
references therein), it has been suggested that the original assignment of Chls must be changed
slightly such that Chla

�
switches its identity with Chlb

�
. Very recently a study on LHC-II mutants

challenged this model [208]. It was concluded that the original assignment of the Chlb
�
as a Chlb

was correct, but that the Chlb
�
is likely to be a Chla.

In the remainder of this section we will "rst consider the linear absorption based on the exciton
model with weak EVC (cf. Section 6.4.2). With respect to the Chl assignments the original
KuK hlbrandt model [3] and a model suggested by Gradinaru et al. [207] will be compared. Then we
review results obtained for an e!ective vibrational mode dimer model in a pump}probe setup.
Finally, we comment on two-photon two-exciton spectroscopy of this complex.

9.1. Level assignment and exciton}vibrational coupling

In Fig. 20 we show the linear absorption spectrum at di!erent temperatures (upper panel)
consisting of two main bands around 650 and 676nmwhich are believed to originate from the Chlb
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Fig. 20. Linear absorption (upper panel) and circular dichroism (lower panel) spectrum of LHC-II (after [85]). The linear
absorption of the LHC-II is shown for three di!erent temperatures and within two structural models. Dashed line:
KuK hlbrandt model [3]. Solid line: modi"ed KuK hlbrandt model (Chla

�
�b

�
). The circles give the experimental values of

Voigt and SchroK tter [238]. The sharp features in the 40K spectra are due to the "nite ensemble size (1000) used for the
statistical average. The 77K circular dichroism spectra calculated within the two models is compared to experimental
values of Nussberger [239] (circles).

and Chla pigment pool, respectively. There have been several attempts to assign spectral features to
chlorophyll S

�
PS

�
transition energies. Linear and circular dichroism spectra (lower panel of

Fig. 20) suggested the positions of nine chlorophyll transitions [209], placing the lowest transition
at 676 nm. Recent nonphotochemical hole-burning studies re"ned this "nding suggesting the
lowest Chla absorption to be at about 680 nm [42,210]. It should be noted that the position of this
lowest state changes upon aggregation of the LHC-II trimers as suggested in [211]. The theoretical
modeling of these "ndings is complicated due to the low resolution of the structural data. Several
attempts have been made to assign monomeric transition energies, pigment}pigment coupling
strengths, and orientations of the transition dipoles [85,86,207,212}214].When interpreting optical
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experiments one is also faced by the general problem which lies in an appropriate inclusion of
protein-induced dynamic and static disorder.
As in all photosynthetic antennae the coupling between electronic and vibrational degrees of

freedom plays an important role in LHC-II. For the lowest state at about 680 nm early hole-
burning studies suggested a Huang}Rhys factor (compare Eq. (105)) of S"0.4 and a mean
vibrational frequencies of �

�	�
&20 cm�� [210]. Recently, using higher resolution, values of

S"0.8 and �
�	�

&18 cm�� have been obtained which independently reproduced the Stokes shift
("2S�

�	�
) of about 29 cm�� for the exciton lowest state at a temperature of 5K [42]. In Ref. [42]

it was also found that the Huang}Rhys factor is smaller than unity in between the interval from 640
to 682 nm. A value of S"0.6$0.1 for the Huang}Rhys factor has been found in polarized
site-selective #uorescence measurements at 4K [41]. It was assigned to protein motions while as
many as 48 distinct vibrational modes could be identi"ed. On the other hand, analysis of the
temperature-dependent #uorescence and absorption linewidth resulted in a mean vibrational
frequency of �

�	�
"40 cm�� [215].

Recently, in [85] it could be demonstrated, how the above characteristics of exciton}vibrational
coupling in the LHC-II can be used to describe linear absorption and circular dichroism
spectra. Based on the "tting of linear absorption at di!erent temperatures using the non-
Markovian formulation of the absorption coe$cient (Eq. (184)) two di!erent structural models of
Chl assignments were investigated. Within both models a satisfying "t could be obtained.
However, the circular dichroism simulation clearly favored the model of Gradinaru et al. [207].
Experimental data and "ts are shown together in Figs. 20 and 21. The respective level assignment
is given in the upper part of Fig. 21. Static disorder was included by a Monte Carlo-type
simulation using the mean site energies of the 12 Chls as "t parameters. To keep the number of "t
parameters small the same strength of static disorder has been assumed for all pigments. The
simulation gave a width of 140 cm�� (FWHM) for the Gaussian distribution of pigment transition
energies. To relate this number to hole-burning experiments, motional narrowing [216]
which leads to a smaller width of the distribution of exciton energies must be considered. From
the comparison of the obtained widths for the exciton states with the width for the pigment
transition energies the delocalization of the exciton in the di!erent states could be estimated. The
states in the Chla region (except the lowest) showed a mean delocalization length of about four
pigments whereas in the Chlb region this number is lower by a factor of two. Dynamic disorder
has been neglected for this estimation. Therefore, the above delocalization numbers have to
be understood as upper limits. The in#uence of dynamic disorder on the homogeneous line
widths has been taken into account by assuming a single lineshape for the spectral density
(estimated from the #uorescence side band at low temperatures [214]) and using the amplitude
(integral over the spectral density, i.e. the Huang}Rhys factor) as a "t parameter. For Chla
a Huang}Rhys factor of 0.95 was obtained and for Chlb this value amounts 0.75. An equal
Huang}Rhys factor for all Chla and all Chlb was assumed. To relate these values to hole-burning
experiments, excitonic PES were constructed and from these Huang}Rhys factors of the exciton
states could be obtained.
We note that the above calculations used results from extensive exciton simulations of global

features of polarized absorption [217] and energy transfer kinetics [218] which allowed to reduce
the number of possible con"gurations of Chl transition dipole geometries. In the light of the recent
experimental results on LHC-II mutants and the suggested new assignment of Chl [208] similiar
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Fig. 21. Upper panel: Mean site energies of the Chl in the LHC-II monomer (thin solid lines, from left to right: Chl
b
�
, b

�
, b

�
, b

�
, b

�
, a

�
, a

�
,a

�
, a

�
, a

�
, a

�
, a

�
). The dashed vertical lines give the exciton stick spectrum where the height of the

lines corresponds to the respective dipole strength of the transition. (The mean delocalization number of the exciton
states are drawn at the top of the lines, for more details see [85].) The optimization procedure gave for the pigment's
dipole strength values of 20D� (assumed equal for all Chlb) and 25 D� (assumed equal for all Chla). Lower panel:
Homogenous absorption (thin solid line) at 80K for the mean site energies and inhomogeneous absorption for di!erent
values of the correlation radius of protein vibrations, Z

�
��
"20As (solid line } same as in Fig. 20), Z

�
��
"2As (long

dashed line) and Z
�
��

"200As (short dashed line). The inset shows the distribution of the lowest state exciton energy.

simulations could be very useful to reduce the number of possible dipole con"gurations. The model
proposed in [85] could then be used to re"ne the local site energies of the pigments.
A crucial test for the suggested LHC-II pigment organizations would be the ability to reproduce

nonlinear optical data on the energy transfer dynamics in the time domain. Early pump}probe
investigations estimated the Chla}Chlb transfer time to be about 6 ps [219]. However, with
increasing time resolution this number decreased starting with the #uorescence up conversion
experiments by Eads and co-workers [220] which resulted in a 500 fs time scale for this transfer
step. Recent years witnessed a number of investigations of the LHC-II energy transfer dynamics
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revealing time scales for Chla}Chlb transfer close to about 100 fs [135,209,221}226] (for an
overview see also Ref. [225].) In particular, it became obvious that this structurally heterogeneous
complex supports a multitude of transfer times ranging from some 100 fs to a few picoseconds for
the Chla}Chlb transfer up to some tenths of picoseconds for the intra-Chla pool transfer [224,227].
Further, studying LHC-II monomers it was concluded that the ultrafast Chla}Chlb transfer [226]
as well as the slower spectral equilibration between the Chla monomers [207] is of intramonomer
nature.

9.2. The dimer model

The organization of the LHC-II complex in Chla/b pairs which are responsible for the sub-
picosecond energy transfer dynamics lends itself to use a dimer model. Here the monomers
correspond to Chla and Chlb pigment molecules. Within this reduced description of the LHC-II it
is possible to include explicitly the coupling to a few vibrational modes as outlined in Sections 4.4
and 5.2.1. In the present context, the incorporation of one ewective vibrational mode per monomer
is suggested by the fact that Chla and Chlb are bound to di!erent proteins [3]. The remaining
vibrational degrees of freedom of the LHC-II are considered to form a heat bath for the two site,
two mode model. The population dynamics within such a model dimer has been considered, for
instance, in Refs. [100,202]. A Brownian oscillator description of the dimer spectroscopy was given
in [228]. Further, it should be noted that the theory presented below is, of course, applicable to
other photosynthetic dimer systems such as the C-phycocyanin trimers [229] and the B820 subunit
of LH1.
The potential energy surfaces for the dimer model are shown in Fig. 22. Notice that each site has

its own e!ective vibrational coordinate, i.e., as far as it concerns the vibrational states the problem
is essentially two-dimensional. Further, we have included a higher excited intramonomer S

�
state

which becomes relevant when studying the e!ect of high pulse intensities (see below). From the
structural data the relative orientations of the monomeric transition dipole moments d	�



�
could not

be obtained. Pump}probe spectroscopy, however, provides a hint to the most probable mutual
orientation as will be shown in the following section.

9.2.1. Evidence for the dipole transition geometry
In order to describe third-order nonlinear optical spectroscopy one- and two-exciton states

have to be included in the description. The situation is sketched for the dimer model in Fig. 23
where we neglected the intramolecular S

�
states. A pump pulse with wave vector k

��
excites the

sample. The evolution of this excitation is probed by a delayed weak probe pulse (�
�
"�	��


�
!�	��


�
).

In order to "gure out the relevant contribution of the nonlinear polarization the density matrix has
to be propagated with both pulses as explained in Section 6.2. From the obtained amplitude
P

���
�����
�
of the polarization wave the time integrated detector signal S





(E

��
,E

��
, �

�
) can be

calculated which together with the linear absorption S




(E

��
"0,E

��
) determines the di!erential

absorption according to Eq. (197). This quantity is measured in a pump}probe experiment in
dependence on the delay time between the two pulses.
In Fig. 24 the pump}probe signal, Eq. (197), is shown for the pump pulse tuned in resonance with

the Chlb transition and the probe pulse centered at Chla transition. The signal is shown for three
di!erent orientations of the transition dipoles. The system}environment coupling was described by

T. Renger et al. / Physics Reports 343 (2001) 137}254224



Fig. 22. Potential energy surfaces for the Chla/b dimer model of LHC-II. Each monomer is described by three electronic
states and an individual vibrational coordinate. The displacement along the dimensionless normal mode coordinates
corresponds to a Huang}Rhys factor of 0.6 (S

�
states) and 1.0 (S

�
states); the e!ective vibrational frequency is

40 cm�� for both sites [215]. The dipole}dipole coupling strength is J
��

"11meV (89 cm��) for the sandwich
[��], 13meV (105 cm��) for the in-line [QQ], and 0meV for the perpendicular [Q�] dipole geometry (dielectric
constant �"2.0, �d����


�
��"20D� and �d���



�
��"15D�).

a #at spectral density including diagonal EVC and no correlations between the di!erent sites. The
coupling strength was taken as g��"0.8meV.
The signal in Fig. 24 can be understood by considering the four possible electronic states only.

The coupling to the vibrational states is reduced to the relaxation between the one-exciton
eigenstates only for simplicity. Due to the large gap between Chla and Chlb S

�
}S

�
transitions, the

di!erence between exciton eigenstates and monomer energies is rather small. However, as shown in
Ref. [12] the wave functions and thus the transition dipole matrix elements are in#uenced by the
Coulomb interaction. To quantify this e!ect we de"ned the ratio between two- and one-exciton
transition dipoles at a certain wavelength �

�
[12]

r
����

"�
�
���

gP$ �
�
"�

1Gsgn(J
��
)�D�

1$sgn(J
��
)�D��

�
. (210)

If the monomers are uncoupled (D"0) it results r
����"1. This re#ects the fact that without

coupling an optical transition within one pigment is independent of the electronic state of the other
pigment.
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Fig. 23. Potential energy surfaces for the zero-, one- and two-exciton states of the dimer model ("lled area indicates
population of electron}vibrational state). Transitions between di!erent excitonmanifolds are due to the external "eld; the
one-exciton states are coupled via the dipole}dipole interaction.

Using Eq. (210) the two-color spectra shown in Fig. 24 can be explained as follows. The pump
pulse populates the upper one-exciton eigenstate �#� of the system according to the Franck}
Condon overlap integrals. The probe pulse centered at the lower one-exciton transition energy
E
�

can either lead to a ground state absorption or to an excited state absorption. If the ratio
r
����

'1 at the probe pulse wavelength �
�
(sandwich geometry) the excited state absorption will

over-compensate the ground state bleaching giving rise to a positive pump}probe signal.
For r

����
(1 (in-line geometry) the excited state absorption is weaker than the ground state

bleaching and the signal will be negative. Since the signal observed in [135] is negative, we are
in the position to conclude that the geometry of the dipoles of the Chla/b dimers in the membrane
is rather in-line [12,213]. An important point concerning the ultrafast component of the signal is
that it is caused by the delocalization of the exciton wave function and not by a hopping like
transfer of excitation energy. This is in agreement with the observation that the determination of
the time scale of the ultrafast component was limited by the resolution of the experimental setup
used in [135].
Next, the picosecond component of the calculated transfer dynamics in Fig. 24 will be discussed.

The relaxation of the pump-pulse-induced population from the high-energetic to the low-energetic
exciton state reduces the excited state absorption, because the probe pulse is o!-resonant to the
transition between the low-energetic one- and the two-exciton states. On the other hand, the probe
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Fig. 24. Two-color pump}probe spectra for the pump wavelength of 650 nm (Chlb) and a probe wavelength of 680 nm
(Chla). Pulse parameter: �

�
"�

�
"100 fs (FWHM 120 fs). The spectrum was calculated for di!erent orientations of the

monomer dipoles, sandwich like (dotted line), in line (dashed line) and perpendicular orientation (full line). The
experimental spectrum of Bittner et al. is shown with stars [135].

pulse can stimulate transitions of low-energetic excitons back to the ground state. Both e!ects
increase the probe transmission resulting in a decay of the pump}probe signal with the relaxation
time of the excitons.

9.2.2. Intensity dependence of two-color pump}probe signals
To understand the intensity dependence of the pump}probe signals requires the inclusion

of the higher excited S
�
-states. Thus, one has to consider the nine electronic state scheme shown in

Fig. 25. The assignment of a single S
�
}S

�
transition energy for the di!erent monomers is

complicated by the fact that the spectra for excited state absorption of chlorophylls are rather
broad. In order to explore the principal e!ect we will assume that �

��
!�

�

"�

�

!�

��
for

simplicity (cf. Appendix A). The ratio between the di!erent intramolecular transition dipole
moments, d	�


�

/d	�



�
, will be taken as a parameter.

In Fig. 26, we compare the calculated and the measured [135] two-color pump}probe signals for
di!erent intensities of the pump pulse. The agreement for the asymptotic signals is rather good and
could be used to "x the relaxation and internal conversion parameters (see "gure caption) as well as
the ratio d	�


�

/d	�



�
which was found to be 1.19 [14].

At long delay times the signal for high pump intensities is decaying while for lower intensities it is
still rising. In order to trace the origin of this behavior we consider the occupation probabilities of
the exciton eigenstates �


�
� de"ned as

P��
(Q

�
,Q

�
)"�

�


(CH
���

(Q
�
,Q

�
)


�

(Q

�
,Q

�
)C


���
(Q

�
,Q

�
)) , (211)
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Fig. 25. Potential energy surfaces for the possible exciton states of the dimer model with intramolecular excited state
absorption ("lled area indicates population of electron}vibrational state). Transitions between di!erent exciton mani-
folds are due to the external "eld or internal conversion (internal conversion between the one-exciton manifold and the
ground state can be neglected); one- and two-exciton states are coupled via the dipole}dipole interaction (note the scaling
of the dipole}dipole coupling with m

��
"�d

�

�/�d


�
� if the state �

�
is involved, cf. Section 3.5).

where 

�

counts the eigenstate in the N-exciton manifold (N"024). a"�a
�
, a

�
� and

b"�b
�
, b

�
� are the electronic quantum numbers of the dimer. The coe$cients C

���
are obtained

by diagonalizing the electronic part of the Hamiltonian including the dipole}dipole interaction for
"xed values of the (classical) e!ective vibrational coordinates Q

�
and Q

�
. As explained in [14,101]

the Q
�
/Q

�
dependence of Eq. (211) is rather weak and can be neglected.

In Fig. 27 the state occupation probabilities in the one- and two-excitonmanifolds are shown for
the two extreme intensities I

�
(full line) and 3.1I

�
(dashed line); the relevant relaxation channels and

the excitation conditions are schematically plotted in Fig. 28.
The pump pulse populates mainly the upper one-exciton state �1#� and the highest two-exciton

state �2#�. Due to the interplay of the dipole}dipole coupling and the vibrational energy
dissipation a relaxation between exciton states in the same manifold takes place (for example, the
transition from �1#� to �1!�). However, there is also IC-type relaxation between di!erent exciton
manifolds which becomes important at higher intensities where higher manifolds are populated.
At low intensities the population of the one-exciton manifold determines the nonlinear optical
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Fig. 26. Two-color pump}probe signals measured by Bittner et al. [135] versus delay time for three di!erent peak
intensities of the pump beam: I

�
"6�10�� photons cm�� pulse�� (circles), 2.2I

�
(squares), and 3.1I

�
(triangles). The

simulation was performed at 4.2K including four vibrational states per potential energy surface. Pump and probe pulse
were of Gaussian shape assuming a width of 100 fs. O!-diagonal #uctuations of the dipole}dipole coupling has been
included what necessitated to change the coupling strength g�� to 0.5meV as compared with Fig. 24. For the internal
conversion rates we used �R	��


%��%�
"0.3meV (1/R	��


%��%�
"2.2 ps).

Fig. 27. Multi-exciton state population for the two extreme pump intensities I
�
"6�10�� photons cm�� pulse��

(full line) and 3.1 I
�
(dashed line) versus time.
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Fig. 28. Electronic eigenstates of the dimer. Arrows indicate the action of the external "elds in the two-color pump}probe
setup. Wavy lines show the relevant relaxation processes within and between the exciton manifolds.

response. Due to the relaxation �1#�P�1!� there is an increase of the probe-pulse transmission
as a consequence of stimulated emission from the lower one-exciton state to the ground state. But,
at higher intensities this e!ect is over-compensated by an increase of the probe-pulse absorption.
This originates from the relaxation between the two- and the one-exciton manifold, which opens
new channels for the probe pulse to be absorbed. Additionally, Fig. 27 displays that the ratio
between the occupations of the two- and the one-exciton manifold becomes larger with increasing
intensity. This causes the qualitative change of the di!erential absorption in the related pump}
probe experiment.

9.2.3. Intramolecular excited state absorption
In the following it will be shown that one-color pump}probe spectroscopy can be used to draw

conclusions on the nature of the intramolecular S
�
}S

�
transitions [101]. To this end we modeled

the low-temperature data obtained by Visser et al. [224]. In order to provide optimummonomeric
excited state absorption at both pigments, the S

�
}S

�
transition energies have been set equal to the

Chla value for which the probe pulse is resonant.
One prominent feature of the experimental data shown in Fig. 29 is the change of the sign around

2 ps delay. This indicates that upon one-exciton relaxation excited state absorption from the lower
one-exciton state into the two-exciton manifold dominates [135,224]. As shown in Ref. [151] the
dipole}dipole coupling between intramolecular double excitation states and delocalized two-
exciton states leads to a redistribution of oscillator strength strength within the two-exciton
manifold as well as to some energetic shift of the di!erent states. The strength of this interaction is
proportional to the ratio d	�


�

/d	�



�
. Thus changing d	�


�

/d	�



�
for a given transition energy will modify

the absorption out of the lower one-exciton state. This e!ect is clearly seen in Fig. 29 where we
plotted the signal calculated for di!erent d	�


�

/d	�



�
. The fact that the excited state absorption

becomes weaker with increasing d	�

�

/d	�



�
indicates that the relevant two-exciton eigenstate moves

out of resonance with the probe pulse.
In order to determine the in#uence of the mutual displacements of the excited PES of the

pigments in Fig. 30 the previous simulation is compared with the case for which the minimum of
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Fig. 29. In#uence of intramolecular excited state absorption in the simulation of the 77K one-color pump}probe
experiment of [224] (Circles). Pumping and probing at wavelength 650nm (Chlb), pulse widths 150 fs (FWHM 175 s) for
an energy of the Chla S

�
-state at �

��
"3.733 eV, (i.e. strong intramolecular excited state absorption at the probe

wavelength). Same coupling to the environment as in the simulation of two-color pump}probe signals (see Fig. 26).
Simulation for di!erent strengths of intramolecular excited state absorption, characterized by the ratio of transition
dipole moments m

��
"�d

�

�/�d


�
� (cf. Section 3.5): m

��
"0, i.e. no intramolecular excited state absorption (long dashed

line), m
��

"0.5 (dashed line), m
��

"1.19 (solid line).

Fig. 30. Simulation of the 77K one-color pump}probe experiment of Visser et al. [224] (Circles). In#uence of the
displacement of the S

�
PES of the pigments. Solid line same as in Fig. 29: Q	�


��%�
!Q	�


��%�
"!1.41, dashed line

Q	�

��%�

!Q	�

��%�

"#1.41. All the remaining parameters as for the solid line in Fig. 29.
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the S
�
PES of the pigments is shifted by the same value as the S

�
state PES but into the opposite

direction. Since this shifts also the vertical Franck}Condon energy for excited state absorption,
the long-time dynamics will be modi"ed. In line with the above given arguments and Fig. 29
it is clear that in principle the original result could be recovered by increasing the ratio
between the transition dipole moments, d	�


�

/d	�



�
. However, since large ratios d	�


�

/d	�



�
are

rather unlikely we conclude that an appreciable shift of the S
�
state PES minimum position can be

excluded.
Finally, we comment on the plateau which is discernible in Fig. 29 after about 800 fs. This time

corresponds to the vibrational period of the motion in the di!erent PES. Obviously, the wave
packet motion in the Chlb S

�
-state which is initiated by the electronic transition is monitored by

the probe pulse. Note that because of the dissipative nature of the Chlb/a transfer no vibrational
coherences were seen in the simulation of the two-color experiments (cf. Fig. 26). However, such
a signature of coherent vibrational motion has not yet been observed in experiments on the
LHC-II, even though it is documented for the bacterial light-harvesting complexes LH1 and LH2
[99]. One reason for the lack of indications for coherent vibrational motion in LHC-II may be the
large heterogeneity of this complex, which causes a destructive interference of many vibrational
frequencies.

9.2.4. Signatures of non-Markovian dynamics
So far it has been tacitly assumed that the nonperurbative inclusion of e!ective vibrational

modes is essential for the simulation of the pump}probe signals. In view of the rather small
Huang}Rhys factors [42,210], implying a weak EVC, one might wonder whether a simple exciton
description where all vibrational degrees of freedom are comprised in the reservoir would not give
the same result. In order to test this assertion we compare in Fig. 31 one-color pump}probe spectra
with and without incorporation of an e!ective vibrational mode. In the simple excitonic model
(thin dashed lines) and using the same #at spectral density it was only possible either to simulate the
femtosecond part of the signal, or to get a good agreement for the long time behavior. As stated
before the model which includes the e!ective vibrational mode gave a good "t to the global time
evolution. This "nding has been explained to originate from the retardation e!ects seen in the
pump}probe signal due to the vibrational wave packet motion along the e!ective vibrational
coordinate [14].
Alternatively, one can characterize this as the signature of non-Markovianmemory e!ects present

in the measured data. The presence of these memory e!ects has also been demonstrated for the
intensity-dependent two-color pump}probe signals [14,101].

9.3. Two-exciton spectroscopy

In the previous section it was found that the presence of higher excited intramolecular S
�
states

may have an in#uence on the pump}probe spectra as a consequence of the mixing between these
intramolecular double excitations with delocalized two-exciton states. As shown in Ref. [151]
the strength of this coupling depends on the ratio between the intramolecular transition dipole
moments as wells as on the intramolecular electronic anharmonicity. As a matter of fact the
pump}probe signals with resonant excitation give only an indirect indication for the spectrum and
oscillator strength distributionwithin the two-excitonmanifold. In Ref. [138] it was shown that the
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Fig. 31. Simulation of the 77K one-color pump}probe experiment of Visser et al. [224] (circles) in di!erent models, solid
line: one e!ective vibrational mode per monomer, dashed lines: all vibrational degrees of freedom are treated as a heat
bath modulating the dipole}dipole interaction. Higher excited state of Chla at �

��
"3.733 eV, #uctuation of the

monomer site energies as in Fig. 29, #uctuations of the dipole}dipole interaction correspond to an inverse rate constants
of 0.6 ps (dashed dotted line), 2.3 ps (dashed line) and 2.7 ps (solid line).

so-called two-exciton photon echo spectroscopy [230] gives a more direct access to the two-exciton
manifold. Here at time zero a "rst pulse tuned in resonance with the one-exciton band creates
a coherence oscillating with the transition frequency�(


�
,0). After a delay time � pulses 2 and 3 act

simultaneously both being o!-resonance with the one-exciton band, but �
�
#�

�
lies within the

two-exciton band. This transforms the system into a coherence between the one- and two-exciton
bands oscillating with the frequency �(


�
, 


�
). Provided the energy level structure is such that

�(

�
, 0)+�(


�
, 


�
), i.e. the system is almost harmonic and that there is dephasing due to static

energetic disorder, an echo signal can be expected at t"2� in direction k
 
"k

�
#k

�
!k

�
[230].

In Ref. [231], it was found that the heterogeneous exciton-level structure of the LHC-II is
amenable for observation of the two-exciton photon echo. The details of the signal are very
sensitive with respect to the structure of the two-exciton band.

10. Conclusions

Being a "eld which crosses the borders of biology, chemistry, and physics the research on
photosynthetic antenna systems and their pigment (chlorophyll) protein complexes attracted
considerable attention over the years. The main task of these systems is to absorb light in the visible
region, and consequently optical spectroscopy represents an adequate experimental technique to
study the properties of antenna systems. The correct interpretation of the measured spectra asks,
on the one hand side, for the formulation of microscopic models based on the detailed structures.
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Furthermore, because of the complexity of these models it is necessary to utilize concepts of
dissipative quantum dynamics. By means of these approaches one is able to simulate various
properties of the antenna systems which have been determined in optical measurements carried out
either in the frequency domain or in the ultrashort (femtosecond) time domain.
It has been underlined that the concept of the Frenkel exciton model (including some necessary

extensions of its standard version) in combination with a coupling to the vibrational modes of the
pigment protein complexes establishes an appropriate model system. Moreover, the reduced
multi-exciton density matrix determined by the QuantumMaster Equation has to be considered as
the unique framework for the description of excitation energy dynamics. This theoretical concept
together with its ability to simulate the dissipative exciton motion has to be considered as an
important link which connects the known structures and the various experimental data and
enables us to achieve a deeper understanding of the structure function relationship. The possible
extension to the case of a strong exciton}vibrational coupling has been presented for a dimer model
showing the importance of memory e!ects for the simulation of nonlinear optical spectra.
Primarily, the task of all physico}chemical research on photosynthetic antenna systems is to help

biologists to unravel the mechanism of life. But there is a tendency to investigate pigment}protein
complexes as a system of basic physical research. Since the pigment}protein complexes with
a known structure represent one of the best characterized types of dye aggregates these biological
macromolecules are also used to test new experimental techniques as well as microscopic theories.
One point which attracts the interest of basic research is the large number of electronic levels which
often are only masked by a weak or intermediate inhomogeneous broadening. And, using
site-directed mutagenesis a given structure of a pigment}protein complex can be altered in
a controllable manner.
Comparing pigment}protein complexes with systems traditionally investigated in molecular

or chemical physics they really seem to be too complex for a theoretical description. But it has
to be grasped as one main message here that this prejudice is not correct for the interpretation
of the large number of optical experiments. This is due to the fact that the experiments mostly
provide access to the electronic degrees of freedom of the pigments only. The protein enters the
description in an approximate manner via di!erent types of spectral densities (besides its static
function to "x the spatial position of the pigments as well as their so-called site energies).
Nevertheless, optical spectroscopy enables us to draw di!erent conclusions on the functionality of
pigment}protein complexes with emphasis on their ability to absorb light and to transfer excitation
energy. The investigations reviewed in the foregoing sections underline the importance of the
pigment geometry and of static disorder for the frequency range and strength of light absorption.
Furthermore, it has been possible to achieve a detailed understanding of exciton relaxation which
is of basic importance for the transfer of excitation energy from the antennae to the reaction center.
Interestingly, the main complication of the theoretical approach related to the existence of higher
exciton manifolds seems to be of no importance for the functionality under physiological condi-
tions. On the contrary, higher exciton manifolds are essential for the understanding of nonlinear
optical processes.
Meanwhile, the research arrived at a point where the chlorophyll absorption and exciton motion

has been understood to a certain extent. Consequently, the di!erent carotenoid species absorbing
at shorter wavelength received a lot of interest. But photosynthetic antenna systems have also
inspired people to develop (by chemical synthesis or mechanisms of self-organization) arti"cial
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antenna systems. An earlier approach has been based on the use of the Langmuir}Blodgett
technique. Of current interest are macromolecules which show a structural self-similarity and
which are known as dendrimers (see, for example, [232]).
Another point of possible intensive future research we would like to mention is the application of

single molecule spectroscopic techniques to photosynthetic antenna systems. There are some "rst
results (see, e.g., [233]) which show that the investigation of a single complex o!ers direct insight
into the respective individual environment. Since the latter is formed by the carrier protein one
would get access to the di!erent types of protein conformations.
Have theoretical physics and theoretical chemistry reached a point where the main concepts and

simulation techniques to describe dissipative exciton motion in photosynthetic antennae have been
worked out? To a certain extent we would like to answer in an a$rmative way. As it has been
explained in the preceding sections there is a large number of experiments which can be understood
in the existing framework of microscopic models and density matrix approaches. But in relation to
this work there is still one open question. For all mentioned types of theories it would be of great
importance to consequently calculate the microscopic parameters entering the computations. This
includes, for example, the correct position of the electronic levels in the protein environment, the
Coulomb interaction and the coupling to the protein vibrations. In doing so, the number of free
parameters entering the theoretical description can be reduced. Additionally, it would be of interest
to get the various protein spectral densities as the result of, for example, molecular dynamic
simulations.
Concerning, however, stronger exciton}vibrational coupling there is a current need to improve

the existing simulation techniques either on larger systems (what is necessary for the path integral
approach) or to a description which fully accounts for the quantum nature of the vibrational
motion (this has to be done, for example, if one uses the so-called surface hopping method).
Probably, the Liouville space approach is a useful way to meet this goal. Since pigment}protein
complexes represent an valuable system to test new attempts in the "eld of dissipative quantum
dynamics there would be a fertilization by this biological-oriented research of some basic problems
of theoretical chemical physics.
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Appendix A. The chlorophyll three-level model

The three-level model has been introduced at the end of Section 3.2. It is characterized by three
electronic states for each Chl molecule with energy �

��
, �

�

, and �

��
, corresponding to the ground,

the "rst excited, and a higher excited singlet level, respectively. The higher excited level has to be
chosen to ful"ll the relation �

��
!�

��
+�

�

!�

��
. The main reason for such a more involved

model is to include an intramolecular channel for excited state absorption, namely the transition
from the "rst excited to the higher excited state. Hence, we provide the existence of a transition
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dipole moment d	�

�


"	�
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��(
�
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�

�. Correspondingly, the complete single-Chl dipole operator

reads
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The electronic PPC Hamiltonian H
��
, Eq. (15) follows as
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The "rst term of the interaction contribution describes transitions between the ground and the "rst
excited state and has been already discussed within the two-level model, Section 3.3. The transition
between the "rst excited and the higher excited S

�
-level is encountered in the last term. The

transition from a state with two S
�
-excitations into a state with a single S

�
-excitation is given by the

second term whereas the reverse process is described by the hermitian conjugate contribution.
To have a more compact notation we introduce excitation and de-excitation operators as in
Section 3.3. Besides the operators Eqs. (19) and (20) one has to introduce operators allowing for
a transition into the higher excited S

�
-state. We use

D�
�

"��
��

�	�
�

� (A.3)

and

D
�

"��
�

�	�

��
� . (A.4)

Here, excitation and de-excitation from the state e to the state f are directly incorporated. Using the
newly introduced operators Eqs. (A.3) and (A.4) the electronic Hamiltonian reads
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��
B

�
B�

�
#�

�

B�

�
B

�
#�

��
D�

�
D

�
)

# �
���

(J
��
(e, g, e, g)B�

�
B

�
#J

��
( f, e, f, e)D�

�
D

�
# �J

��
( f, g, e, e)D�

�
B

�
#h.c.�) . (A.5)

The inclusion of a higher intramolecular excitations (into the S
�
-state) has been done such that

a degeneracy of this state exists with a state where two S
�
-excitations are present at two di!erent

Chl. It is obvious that the state �0� and �m�, introduced in Eqs. (27) and (28), respectively, does not
change. But the two-excitation state �m, n� Eq. (29) has to be supplemented by a state with a single
intramolecular excitation present in the state ��

�
�:

�mf �"��
��

� �
���

��
��
� . (A.6)

In a similar manner, the three-excitation state �m
�
,m

�
,m

�
� must be completed by a state with

a single excitation in state ��


� and a single excitation in state ��

�
�. Generally, we expect

a particular (quasi-) degeneracy of di!erent types of excited states. On the one-hand, we have the
PPC-states withM Chl molecules in the "rst excited state and N Chls in the higher excited state.
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These state are degenerate with those states withM#2j Chl in state ��


� and with N!j Chl in

state ��
�
�. The number 2j runs between !M and 2N. All possible excited states are comprised in

the expression

��me�
�
; �nf �

�
�"

��

�
�
��

B�
�

��

�
�
��

D�
�
B�

�
�0� , (A.7)

where all excitations are present at di!erent molecules and whereM#N4N
���

must be ful"lled.
Clearly, if it is necessary to discuss highly excited states further excited intra-Chl states have to be
incorporated.
The multi-excitation expansion ofH

��
, Eq. (A.2) or (A.5) becomes more involved as in the case of

a two-level model for the single pigments. Since the interaction part of Hamiltonian, Eq. (A.5),
mixes states with di!erent numbers of Chl in the states ��



� and ��

�
� we introduce a new ordering

of the unit operator 1
���

with respect to the numberN"2M#N. This number is de"ned as the
number of excitations with energy �

�

!�

��
. We can write

1
���

"

�����

�
N
�

PK N . (A.8)

The projector on the N-excitation state reads

PK N"

N

�
�
�

N���	N��
��
�

�
�

�N�����
�

��
��

�
�����

��me�
�
; �nf �

�
�	�me�

�
; �nf �

�
� . (A.9)

The appearance ofN/2 and (N!1)/2 in the summation with respect toN means that one has to
take N/2 as the upper limit if N is even and otherwise (N!1)/2.
The N-excitation expansion of Hamiltonian, Eq. (A.5), can be written similar to Eqs. (33) and

(35). We obtain

H
��

"

�����

�
N
�

(E
�
#�H	N


��
)PK N . (A.10)

The electronic ground state energy of the PPC has been already introduced in Eq. (24). The
remaining Hamiltonian reads (�

�
( fg)"�

��
!�

��
)

H	N

��

"

N

�
�
�

N���	N��
��
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�
�

�N�����
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�
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# �
��	��
�� ������ 


�
�������

J
��
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�
D

�

# �
����
��

�
�������

J
��
( f, e, f, e)D�

�
D

����me�� ; �nf ���	�me�� ; �nf �� � . (A.11)

Considering the second excited state the Hamiltonian is speci"ed to

H	�

��

" �
���

(�
�
(eg)#�

�
(eg)) �ke, le�	ke, le�#�

�

�
�
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# �
���
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�����

(J
��
(e, g, e, g)�me, le�	ke, le�#J

��
(e, g, e, g)�ke,me�	ke, le�)

#2�
���

(J
��
( f, g, e, e)�kf�	ke, le�#h.c.) . (A.12)

In the considered case of the three-level model for the single Chl the multi-exciton state is
obtained as

�N
�"

N

�
�
�

N���	N��
��
�

�
�

�N�����
�

��
��

�
�����

C� (�me�� ; �nf ��) ��me�� ; �nf ��� . (A.13)

The expansion includes the proper combination of states with single-excited and doubly excited
Chl. We give the two-exciton equation which splits up into separate equations

(E�� !�
�
(eg)!�

�
(eg))C�(me, ne)"J

��
( f, g, e, e)C� (mf )

# �
�����

(J
��
(e, g, e, g)C�(ke, ne)#J

��
(e, g, e, g)C�(me, ke)) (A.14)

and

(E�� !�
�
( fg))C�(mf )"2�

�

J
��
( f, g, e, e)C�(me, ne) . (A.15)

The transition dipole operator into this two-exciton state reads

�(
���

"�
���

d	�


�
�me, ne�	ne�#�

�

d	�

�

�mf�	me� . (A.16)

To derive the EVC for the electronic three-level Chl-model we use the projection operator
PK N projecting on the N-excited state and obtain the complete PPC-Hamiltonian as

H
���

"�
N

H	N

���
PK N . (A.17)

N counts the number of excitations with energy �
�
(eg), and again we get an equation of the type

given in Eq. (60) but with N instead of N. The related excitation Hamiltonian H	�

��

is given in
Eq. (A.11). PresentingH	N


���
as the three-level extension ofH	�


���
, Eq. (63) we avoid here to repeat the
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complete interaction terms (compare (A.11)). We only give the related PES which read

;(�me�
�
�nf �

�
;R)";

�
(R)# �

����
��

�
�
(eg;R)# �

�������

�
�
( fg;R) . (A.18)

This expression may serve as the starting point for various approximations resulting in
the respective multi-exciton}vibrational coupling as discussed for the two-level Chl model in
Section 3.6 and in Appendix B.

Appendix B. Normal mode analysis of PPC vibrations

The following considerations are devoted to obtain the multi-exciton vibrational Hamiltonian,
Eq. (72), based on the introduction of normal mode oscillators. We will explain the microscopic
foundation of the EVC and demonstrate that all parameters appearing in this approach can be
calculated, at least in principle. But it is the great advantage of these microscopically founded
models that one can also use them to determine the parameters by "tting of experimental data. To
meet the di!erent notations used in literature we present formulas using mass-weighted normal
mode oscillators and a notation where dimensionless normal mode coordinates are introduced.
These coordinates can be directly related to oscillator annihilation and creation operators.
If the PES introduced in Eq. (64) have a well-de"nedminimum and if only small deviations of the

nuclear coordinates from their equilibrium value are important one can carry out a normal mode
analysis (see, e.g., [53]). We start with the most general case of the set �q�� of mass-weighted normal
mode coordinates with mode index � and frequency �� valid for all types of PPC nuclear DOF.
This model results in the following type of ground state PES:

;
�
(R)";	�


�
#�

�

���
2
q�� . (B.1)

The minimum value of the potential energy is denoted by ;
�
(R	�
),;	�


�
, where R	�
,�R	�


�
� is

the equilibrium con"guration of all types R
�
of nuclear coordinates. Next, we introduce normal

mode coordinates. In a "rst step, the PES ;
�
(R) is expanded (up to the "rst nonvanishing order)

with respect to the deviations �R
�
"R

�
!R	�


�
. In a second step, one diagonalizes the related

Hamilton function which is bilinear with respect to the Cartesian nuclear coordinates and
momenta. It results in a PES of type Eq. (B.1). The normal mode coordinates are related to the
Cartesian coordinates via a linear transformation. For the present purpose we write

�R
�
"�

�
M����

�
A

��q� . (B.2)

Since the nuclear degrees of freedom have been mapped onto a set of uncoupled harmonic
oscillators one can also introduce an alternative notation of Eq. (B.1). Here creation and annihila-
tion operators C�� , and C� , respectively, of the normal mode quanta ��� are used and the PES
reads

;
�
(R)";	�


�
#�

�

���
4
Q�� (B.3)
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with the dimensionless normal mode coordinate

Q�"C�#C�� . (B.4)

Note that we have

q�"��/2��Q� . (B.5)

The related PPC ground state Hamiltonian simply reads

H	�

���

"; 	�

�

#H
�	�

(B.6)

with the multi-mode harmonic oscillator Hamiltonian

H
�	�

"�
�

���C�� C� . (B.7)

Note that the zero-point energy �� ���/2 has been included into the de"nition of ;	�

�
.

Clearly, for the present case of many Chl molecules embedded in a protein matrix this
diagonalization represents a di$cult task. In particular, the force constant matrix given by the
second derivatives of the PES ;

�
(R) is hardly available. Nevertheless, the relations enable one to

introduce into the theory parameters which are based on correct microscopic expressions.
In a next step, we construct the normal mode representation of the excited state PES. General

expressions are easily derived after writing Eq. (64) as

;(�k�
�
;R)";

�
(R)#�;(�k�

�
;R) (B.8)

with

�;(�k�
�
;R)" �

������

�
�
(eg;R) , (B.9)

i.e. the sum of the isolated Chl excitation energies. Since the PES ;(�k�
�
;R) (�;(�k�

�
;R))

correspond to excited electronic con"gurations of the PPC they do not posses a minimum at the
nuclear con"guration R	�
. The expansion up to the "rst order with respect to the �R

�
reads

�;(�k�
�
;R)+�;(�k�

�
;R	�
)#�

�

R�;(�k�
�
;R)

RR
�

��
�
	�

�R

�
. (B.10)

Inserting the transformation Eq. (B.2) and renaming the terms "nally gives

�;(�k�
�
;R)+�;(�k�

�
;R	�
)!�

�
��� q� (�k��)q� . (B.11)

The constant coordinate q�(�k��) can be identi"ed as

q�(�k�� )"!

1
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R�;(�k�
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�� . (B.12)
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For a singly excited PPC state it follows that (excitation at Chlk)

q�(k)"!

1
���

�
�

R�
�
(eg;R)
RR

�
� �
�

	�

M����

�
A

�� . (B.13)

This set of quantities de"nes the shift of those PES relevant for vibrational motion in higher-excited
PPC states. For example, because of Eq. (B.12) we have

q�(k, l)"q� (k)#q�(l) (B.14)

and

q�(k, l,m)"q� (k)#q� (l)#q�(m) (B.15)

and so on.
Expression (B.11) enables one to introduce excited PPC-state PES as shifted parabola governing

the motion of the normal mode vibrations

;(�k�
�
; q)";(�k�

�
;R	�
)!�

�

���
2
q�� (�k��)#�

�

���
2
(q�!q� (�k��))� . (B.16)

Here, as a direct consequence of the restriction to the linear expansion, Eq. (B.10) it is assumed that
the normal-mode frequencies do not change when the Chl are excited. The quantity ;(�k�

�
;R	�
)

can be considered as an e!ective Franck}Condon transition energy to the excited PPC-state ��k�
�
�

at "xed nuclear con"guration. This energy is corrected by the second term on the right-hand side of
Eq. (B.16) (polaron shift or reorganization energy). An alternative notation is obtained if the
dimensionless normal mode coordinates, Eq. (B.4), are introduced:

;(�k�
�
;Q)";(�k�

�
;R	�
)#�
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���
4
Q��#�

�
���g� (�k�� )Q� . (B.17)

The dimensionless coupling constant reads

g�(�k�� )"!�
��
2�
q�(�k��)" �

������

g�(m) , (B.18)

where the second part of this equation directly follows from Eq. (B.12).
In addition to the formation of excited PPC-state PES (which are shifted with respect to the

normal mode coordinate axis) we expect a modulation of the Chl}Chl coupling by the vibrational
DOF. Using the general dipole}dipole coupling function, Eq. (17) we get the expansion

J
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(R)+J

��
(R	�
)#�
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The new coupling constants are de"ned as
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(�)"�
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�� . (B.20)
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Using dimensionless normal mode coordinates Q� we may write

J
��
(R)+J

��
(R	�
)#�

�
���g� �(m, n)Q� (B.21)

with

g� �(m, n)"
1

�2����
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RJ
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M����

�
A

�� . (B.22)

The derived expressions are used to present the complete multi-excitation expansion of the
PPC-Hamiltonian. Collecting the di!erent contributions entering the Hamiltonian we write

H	�

���

"H	�

��
(R

�
)#H	�


��}�	�
#H

�	�
. (B.23)

The "rst part is the electronic Hamiltonian for the Nth excited state, Eq. (34), but for the PPC
electronic ground state nuclear con"guration R

�
. The second term on the right-hand side of

Eq. (B.23) describes the coupling of vibrational modes to the various electronic PPC excitations

H	�

��}�	�

"��
����
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�

���g� (�k��)Q�

# �
������
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������

�
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����k���	�k�� � . (B.24)

The multi-mode harmonic oscillator Hamiltonian H
�	�

(third part on the right-hand side of
Eq. (B.23)) has been already introduced in Eq. (B.7).
As an example, we present H	�


���
for the manifold of singly excited states and the doubly excited

ones. The respective electronic Hamiltonians H	�
���

��

(R
�
) have already been presented in the

Eqs. (37) and (38). The coupling of the single-excited state to the vibrational DOF can be written in
the following compact form:

H	�

��}�	�

"�
���

�
�

���g� (m, n)Q� �m�	n� , (B.25)

where the coupling constant comprises diagonal and o!-diagonal contributions, i.e.,

g�(m, n)"�
��
g� (m)#(1!�

��
)g� � (m, n) . (B.26)

The two-excitation part reads
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��}�	�
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���

�
�

���g�(m, n)Q� �m, n�	m, n�

# �
�������
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��� (g� � (k,m)�k, n�	m, n�#g� � (k, n)�m, k�	m,n�)Q� . (B.27)

The notation presented so far has been introduced to derive a multi-exciton}vibrational coupling
and to achieve a correct description of multi-exciton energy dissipation. If one bypasses the
multi-excitation ordering scheme and the introduction of related PES one can use the notation of
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Eq. (26) for H
��
and simply obtain the complete PPC Hamiltonian as [9,57,73,74]
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. (B.28)

Here, the EVC constant g	�
� (m, n) introduced in Eq. (B.26) is valid for all excitations.

Appendix C. Nonlinear exciton}vibrational coupling

Nonlinear EVC contributions like the expression introduced in Eq. (81) can be systematically
derived if one continues the Taylor expansion, Eq. (B.10), of �;(�k�

�
;R), and Eq. (B.19) of J

��
(R)

to higher orders [20,83]. For instance, the respective second-order contributions can be written as
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For the expansion of the dipole}dipole coupling we have
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The new second-order coupling constants read
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and
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. (C.4)

These expressions can be used to derive respective correlation functions, Eq. (98), governing
multi-exciton energy dissipation via a quadratic EVC. To do this we have to change to the
multi-exciton representation and, in similarity to Eq. (74), have to combine both coupling constants
to the common quantity denoted here as g	�
� (


�
, �

�
). The correlation function originating from the

linear EVC has been introduced in Eq. (118). For the sake of completeness, we combine here the
linear (C	�
) and the quadratic contribution (C	��
) of the coupling to the vibrational DOF, Eq. (81).
Consequently, the correlation function splits up into two parts (a mixed part vanishes since it is of
odd order in Q� )
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The "rst contribution can be expressed via a spectral density according to Eq. (118). The second
type of correlation function is obtained as
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Note that it has been necessary here to use the so-called correlated part of C	��
 (i.e. the full
expression minus excpectation values of Q�� , cf. [53]). For the spectral density we have
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)�(�!2�� ) . (C.7)

Resulting from the quadratic coupling, C	��
 describes electronic energy dissipation via the excita-
tion (or de-excitation) of two quanta of normal mode vibrations. The part c	��
 of the correlation
function which is proportional to �(�) is given by
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With the help of Eq. (116) this expression can be used to de"ne a rate which is responsible for
pure dephasing of excitonic coherences (see, e.g., Ref. [64]).

Appendix D. The anharmonic oscillator model of exciton dynamics

Having discussed the electronic PPC states based on a two-level model of the Chls in Section 3.3
and for a three-level model in Appendix A we present in the following a description which is valid
for any number of intra-Chl electronic levels [80,138,151,234]. But in contrast to the Hamiltonian,
Eq. (15), a di!erent notation is used. It is based on the structure of the transition dipole operator
which exclusively induces transitions between neighboring multi-excitation (multi-exciton) mani-
foldsN andN$1. Assuming all dipole matrix elements d	�


�

to have the same orientation, one can

write d	�

�


"e
�
d	�

�


with e	�
 being the respective unity vector. This enables one to introduce the
dipole operator, Eq. (11), as a basic quantity (instead of a"S

�
, S

�
,2 we will write a"0, 1,2)
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The new type of operators read
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where the number of relevant Chl levels has been denoted by ¸. With the X
�
-operators the

dipole}dipole coupling, Eq. (9), is easily rewritten to give (neglecting nonresonant contributions)
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The single Chl contribution to the electronic PPC Hamiltonian, Eq. (15), reads
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Here, the multiple application ofX�
�
andX

�
builds up the projector ��

��
�	�

��
�. The X-operators

obey the following commutation relation:
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The unknown quantities �
��

and q
��

can be determined via recursion relations [151]. For the
three-level scheme introduced in Appendix A one gets ��
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. The complete electronic PPCHamiltonian, Eq. (15), in this collective oscillator representation

reads
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Within this notation all relevant excited Chl states are comprised in the single operator X�
�
,

Eq. (D.2). This gives a compact notation in terms of anharmonic oscillators which represent the
whole set of electronic levels. But the approach is less straightforward if a detailed description of
relaxation processes via the multi-exciton levels becomes necessary. Therefore, the anharmonic
oscillator representation of the Frenkel exciton Hamiltonian is well-suited for those cases where
approximate description of EVC is valid.
To describe exciton dynamics within the present approach of an anharmonic oscillator repres-

entation it is advantageously to derive Heisenberg equations of motion for di!erent types
of products of the operators X�

�
and X

�
. If one takes the expectation value of these equations

of motion respective equations for di!erent types of observables are obtained. This anharmonic
oscillator representation as well as the use of the excitation and deexcitation operators introduced
in Eqs. (19) and (20), respectively have been extensively used in literature (see, e.g. [57,73,74,80,
138,151,234}236]). Since there is no direct translation of the expectation values of products of
X�

�
and X

�
to observables like populations of the di!erent exciton manifolds (cf. also [15]) we

explain the equation of motion approach by using excitation and de-excitation operators, B�
�
and

B
�
, Eqs. (19) and (20). The following considerations will be based on the Hamiltonian Eq. (B.28),

and the equations of motion for the operators B
�
read [57,73,74]

i�
R
Rt	B�

�"�
�

h
��
	B

�
�#�

�
�

�

�

dt�K
��
(t�)	B

�
�(t!t�)

#2 �
���

J
��
	B�

�
B

�
B

�
�#d	�



�
E(t)[1!2	B�

�
B

�
�] , (D.7)

where the averaging is with respect to the vibrational DOF and we have introduced h
��

"

�
��
�
�
(eg)#(1!�

��
)J

��
. First, we notice that the dynamics of the operator B

�
, which represents

a S
�
}S

�
coherence at site m, is coupled to the S

�
state population B�

�
B

�
, as well as to a nonlocal

operator B�
�
B

�
B

�
. In principle, this generates an in"nite hierarchy of coupled equations for

di!erent operator products. In practice, it has been shown that upon restriction to a certain order
in the external "eld this hierarchy can be truncated since the ordered operator product (B�)�(B)& is
a least of order p#q in the "eld [57].
The e!ect of the EVC is contained in the kernelK

��
(t) in Eq. (D.7). According to the form of the

interaction Hamiltonian, Eq. (B.28), on the right-hand side of the equation for B
�

a term
�

���g	�
� (m, n)B
�
(C�� #C� ) appears. B�

(C�� #C� ) can be considered as a new operator } a so-called
vibrational-assisted operator } whose equations of motion have to be solved. Neglecting cross-
terms which contain the interaction with the "eld and the EVC one "nds the time-dependence

245T. Renger et al. / Physics Reports 343 (2001) 137}254



of this operator from

[B
�
(C�� #C�)](t)"!

i
��

�

��

dtM �
��

�
�M
G

��
(t!tM )g	�


�M
(k, l)

�[e	��M 	���M 
[B
�
C�� C�M ](tM )#e�	��M 	���M 
[B

�
C�C��M ](tM )] . (D.8)

Here, G
��
(t)"�(t)[exp�!iht�]

��
is the one-exciton Green's function. Apparently, this procedure

gives a hierarchy of equations of motion for the vibrational-assisted operators as well which
corresponds to a summation of the respective perturbations series. To lowest order in the EVC we
can set (correlations between di!erent vibrational modes does not appear)

	B
�
C�� C�M �+���M n(�� )	B�

� (D.9)

with n(�� ) being the Bose}Einstein distribution for the vibrational modes. This allows us to identify
the kernel in Eq. (D.7) with the second-order expression

K
��
(t)"!

i
�
�
��

�
�
g	�
� (mn)g	�
� (kl) G

��
(t)[e	�� �n(�� )#e�	�� �(1#n(�� ))] . (D.10)

Note that the respective contributions to the equation of motion for the exciton operator products
in Eq. (D.7) will be di!erent (see [235]). In Ref. [235] it has been shown that the equation of motion
concept can be extended at least in principle to the nonperturbative regime using the method of
generating functions.
In order to arrive at a Markovian approximation to the dissipative contribution to (D.7) we set

	B
�
�(t!tM )+exp�i�

�
(eq)tM /��	B

�
�(t). The remaining time-integral ofK

��
(tM ) can be further simpli"-

ed by introducing the frequency domain one-exciton Green's function

G
��
(�)"!

i
��

�

�

dt e	��G
��
(t)"�

�

C�� (m)CH��
(n)

��!E�� #i�
. (D.11)

In the second part, we made use of the one-exciton eigenstates. Thus, the dissipative contribution to
Eq. (D.7) becomes �

�
K

��
(�

�
)	B

�
� with

K
��
(�)"�

��

�
�
g	�
� (m, n)g	�
� (k, l)[G

��
(�#�� )n(�� )#G

��
(�!�� )(1#n(�� ))] . (D.12)

It should be noted that 	B
�
�"	�0�	m��"


��
, i.e. the dissipative contribution to Eq. (D.7) is

identical to the one which is obtained from the QME for 

��
(t) (see, also [118]). The main

advantage provided by the equation of motion approach can be appreciated, however, if one wants
to keep track of the order in which the external "eld appears in the theory. Moreover, it allows to
develop factorization schemes for expectation values of operator product as explained in [57].
Finally, this approach is well suited to develop a Green's function formulation of the nonlinear
optical response as shown in [137] and Section 6.5.4.
At the end of this section we underline that the outlined treatment of the coupling to vibrational

DOF is, of course, equivalent to that given by the QME in Section 5.1.1. For example, we can identify

	B
�
�"tr

��
�
( (t)B

�
� . (D.13)

Here, 
( (t) is the density operator reduced to the electronic (excitonic) DOF and tr
��
�2� denotes

the trace to the electronic DOF. The respective equation of motion is easily generated from the
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QME, Eq. (101), by virtue of

R
Rt	B�

�"tr
����
R
Rt
( (t)�B��"tr

���
( (t)
i
�
(H

�
,B

�
)
�

!(R[
( ](t))B
�� . (D.14)

Inserting respective expressions for H
�
and R Eq. (D.7) is reproduced.

Appendix E. Static disorder

An important factor in#uencing any optical measurement on PPC is static disorder [216]. All
quantities entering the PPC Hamiltonian can be subject to #uctuations caused by structural and
energetic disorder. For example, a change of the energy level structure from PPC to PPC leads to
an additional broadening of the absorption which is measured on a sample containing a large
number of PPC. Let us characterize such #uctuations by a set of parameters y,�y

�
� which enter

the Hamiltonian and describe a speci"c energetic and structural situation in the PPC. For the
present type of systems we expect that the set y is closely related to the actual conformational
substrate state the protein occupies (see [237] for the description of electron transfer reactions in
proteins). To indicate the structure variation of the PPC the parameter set y will be additionally
labeled by P counting all PPC contained in the sample volume <.
If we want to simulate a certain observableA(t) measured in the experiment we have to note that

every PPC will have its own A
'
(t) and the measured value follows as a ensemble (con"guration)

average (n
���

is the volume density of the PPC in the probe)

	A(t)�
�	�
����

"

1
<n

���

�
'��

A(t; y
'
) . (E.1)

If there exists a large number of di!erent realizations one can change from the summation to the
integration with respect to the set of parameters y:

	A(t)�
�	�
����

"� dy F(y)A(t;y) (E.2)

with the distribution function

F(y)"
1

<n
���

�
'��

�
�

�(y
�
!y

'�
) . (E.3)

For speci"c applications F(y) is taken to be a continuous function of the parameters y
�
.

Although the introduction of the distribution F(y) enables one to proceed with analytical
calculations (see, for example [137,174,237]) in most of the cases the complex PPC structure asks
for a numerical disorder averaging. This is usually done by generating via aMonte Carlo algorithm
a parameter set �y

�
� and identifying this as belonging to a PPC from the probe volume. The

disorder mean of A(t) is calculated according to Eq. (E.1) by repeating the choice of �y
�
� as often as

necessary (see, e.g. [63,64,84,138,236]).
The standard quantity one determines in this manner is the inhomogeneously broadened

absorption coe$cient [84,236]. Introducing the absorption cross section �"�(�; y
'
) of a single
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PPC the measured absorption can be determined via



	��
(�)"

1
�<

�
'���

�(�; y
'
) . (E.4)

Here, �< denotes the volume from which the PPC have been take to compute 

	��
. To characterize

the disorder in#uence on the single-exciton state one can introduce the exciton coherence length as
discussed in Section 7.

Appendix F. Orientational average

In many types of optical experiments, PPC are isolated from the membrane and dissolved in
a particular solvent thus showing random distribution of the di!erent transition dipoles involved in
the optical transitions of a, for example, pump}probe experiment. Consequently, the calculation of
pump}probe spectra should include an averaging over the random orientations of the PPC in the
sample. Taking the orientational average of the probe pulse signal leads to

	S	��
(t)�

�	��


"2�
��

�
�

�
���

Im EH
��
(t)

�	(e
��

dH(N#1
,N�)) 
	���
�����
�
(N#1
,N�; t)�

�	��


. (F.1)

The orientational average on the r.h.s. cannot be further simpli"ed, since the density matrix
coe$cients depend also on scalar products of the transition dipoles and the external pump and
probe "elds. One way to proceed would be a perturbational treatment of the interaction with the
external "eld. In a scheme leading to a nonlinear susceptibility of third order (see Section 6.5.1) one
has to average an expression containing four times the dipole operator.
A second possible approach is based on the derivation of equations of motion for the above

given combined types of orientational averages including scalar products of the type
e
��

dH(N#1
,N�) and RDM expansion coe$cients. In this manner a in"nite hierarchy of orienta-
tional averages with increasing complexity is generated. A third way is given by a numerical
calculation of the orientational average [84].
For this reason the vector e

���
representing the spatial orientation of the PPC is introduced. As

usual it may be characterized by the two angles � and �. For each particular orientation of e
���

the
time-integrated signal S





"�dt S	��
(t) is calculated. Then, the orientationally averaged signal is

obtained as

	S




�

�	��


"

1
4��

�

�

d� sin��
��

�

d� S




(e

���
(�,�)) . (F.2)

If one has a closed expression for S




(e

���
(�,�)) the averaging can be carried out analytically

(e.g. [165]). If S




(e

���
(�,�)) is obtained via the numerical solution of a set of coupled di!erential

equations the averaging has to be carried out numerically [196]. In Ref. [196] it could be
demonstrated that convergence of the average can be obtained if a mesh with 12 points is used for
the discretization of the unit sphere. Since the FMO complex with seven Chl forming the PPC has
been investigated in [84] one deals with a system of seven coupled pigments, and the number of
RDM equations that has to be solved are in the order of 10� at low pump-intensities. Even if these
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equations are solved 12 times to incorporate the orientational average, the computing time is about
three times less than solving 3�10� equations at once. The latter computation would be necessary
if the hierarchy of orientational averaged quantities are truncated in the simplest way. This
di!erence of course increases rapidly at higher pump-pulse intensities where higher exciton
manifolds have to be included in the simulation.
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