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A unified description is presented for electron transfer reactions in molecular systems which proceed
against the background of fast vibrational relaxation processes. By generalizing earlier treatments a
common approach is developed which covers single- and two-electron transfer as well as processes
with the participation of even more electrons. Different types of reactions are discussed taking place
either in donor–bridge–acceptor complexes or molecular wires attached to nanolectrodes. In particular,
it is underlined that measuring the dependence of the transfer rate or of the stationary current on the
length of the molecular system may represent an efficient way to uncover the concrete mechanism of
charge transfer.
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1 Introduction

Although intensively studied during many decades, electron transfer (ET) reactions did not lose their
importance for different branches of physics, chemistry, and biology. ET reactions are currently stu-
died in complex biological systems, on a sub-picosecond time-scale, in artificial nanostructures, but
also in more traditional systems given by donor–acceptor (DA) complexes of medium size dissolved
in a polar or non-polar solvent. But in any case the aim of all these activities is to uncover the
relation between the atomic structure and the observed details of the reaction. Of course, this requires
a detailed theoretical analysis. A number of nice articles and textbooks documents the recent progress
in this field (cf., for example, [1–4]).

The type of theoretical description strongly depends on the concrete nature of the ET. If it is of the
ultrafast type proceeding on a 100 fs time-scale one has to simulate the whole electron-vibrational
dynamics. If the ET is much slower than vibrational motion, relaxation, and IVR (intramolecular
vibrational redistribution), every step of the charge transfer reaction takes place at the presence of an
(instantaneously formed) vibrational equilibrium. For such a situation one may choose a description
where only thermal distribution functions of the involved vibrational degrees of freedom (DOF) enter.
In particular, these treatments cover the broad field of so-called nonadiabatic ET reactions.

The present paper gives a unified description of such ET reactions which proceed against the back-
ground of fast vibrational relaxation (where vibrational coherences do not influence the charge mo-
tion). It will be demonstrated that in such a case ET is well described by rate equations. We present a
general way to derive such rate equations. They are valid for molecular donor–bridge–acceptor
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(DBA) systems as well as molecular wires attached to nanolectrodes and may describe single-electron
transfer (SET), but also reactions with the participation of more electrons (like two-electron transfer,
TET). Of course, the type of the electron distribution function as well as the expressions for the
transition rates strongly depend on the concrete system to be studied.

The general ideas of the used theoretical approach are explained in the following section. In Sec-
tions 3 and 4 we shortly comment on the description of SET in molecular DA complexes and through
molecular wires. Section 5 summarizes recent results on TET reactions.

2 Nonequilibrium quantum statistical description
of few-electron transfer reactions

The consideration following hereafter unifies our different attempts undertaken in recent years to de-
scribe single-, two-, and few-electron transfer in DBA complexes and molecular wires [5–14]. There-
fore, we will dwell upon the introduction of the model. The way to to obtain kinetic equations will
also be explained in some detail.

2.1 The model

In order to achieve a unified description of electron motion through DBA complexes and molecular
wires the approach has to be based on a sufficient general model. First its necessary to note that we
will concentrate on the motion of excess electrons (holes). The exclusive motion of intrinsic electrons,
for example, after an optical excitation, will be outside the scope of the following considerations. The
overall Hamiltonian includes Hmol, which may represent either the bridge part in a DBA complex or
the molecular wire attached to nanolectrodes. Furthermore, there is a coupling part to the D and A or
the electrodes, denoted by Hint. The Hamiltonian for the D and the A part or for the metal electrodes
is given by Hsd. The notation takes into account that those part of the whole system described by Hsd

acts as a source or drain for electrons moving through the molecular bridge. Accordingly, we obtain
the complete system Hamiltonian as

H ¼ Hmol þ Hint þ Hsd : ð1Þ
The given separation of the Hamiltonian is particularly suitable if the Hamiltonian Hint describing the
coupling to the part introduced as electron ‘‘source” and ‘‘drain” can be handled within perturbation
theory.

Next we specify Hmol in somewhat more detail. The most direct way would be the consideration of
the presence of N excess electrons (N ¼ 1; 2; . . .) in the system and the subsequent calculation of the
related states faðNÞ which can be considered as adiabatic (delocalized states). They comprize the
ground-state of the system of N excess electrons and some excited states. Then, Hmol can be decom-
posed into the separate Hamiltonians

HðNÞ
mol ¼

P
aðNÞ

HaðNÞðqÞ jfaðNÞi hfaðNÞj ; ð2Þ

valid for the concrete number N of excess electrons (cf. Fig. 1). The HaðNÞðqÞ are vibrational Hamilto-
nians referring to the respective electronic states. This notation seems simple but it represents a for-
midable task to determine the states faðNÞ and the related potential energy surfaces (PES) entering the
HaðNÞ for a concrete molecular system.

If the part of the system given by Eq. (2) can be characterized by molecular units coupled one to
another only weakly, it is more appropriate to chose a description based on states where the excess
electrons are localized at the different units. This can be achieved by a so-called diabatization of the
original adiabatic states faðNÞ, leading to different N-electron configurations. If only a single excess
electron is present the possible configurations are given by the states jm with the electron at site
(molecular unit) m (higher excited states of localized charges will be disregarded). Two excess elec-
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trons result in the states jm;n with a single electron at site m and a single electron at site n. But states
~jjm with two electrons at site m are also possible. In a similar way one can classify the configurations
of three excess electrons. Since the PES referring to all the localized N-electron states are the result
of a diabatization they account for the Coulombic interaction energy among the excess electron states.
However, as a residual effect of the Coulomb interaction we obtain the transfer coupling which con-
nects all configurations of a given number of excess electrons. The version of the molecular Hamilto-
nian valid for the presence of a single excess electron reads (see also Fig. 1)

Hð1Þ
mol ¼

P
m;n

ðdm;nHmðqÞ þ ð1� dm;nÞ VmnðqÞÞ jjmi hjnj : ð3Þ

Every (diabatic) electronic state is characterized by a vibrational Hamiltonian HmðqÞ and is coupled to
other states by the (single-electron) transfer integral VmnðqÞ.

In order to specify the coupling Hamiltonian Hint we may proceed in a way similar to the aforemen-
tioned separation of Hmol into states with localized electrons. Concentrating on single electron jumps
we get

Hint ¼
P

X;N ;N

P
jðN�1ÞaðN�1Þ

P
lðN ÞbðNÞ

VXðjðN � 1ÞaðN � 1Þ; bðNÞlðN ÞÞ

� jwXjðN�1ÞfaðN�1Þi hfbðNÞwXlðN Þj : ð4Þ

This formula needs some comments. It is obvious that it describes a transition from the molecular
state fbðNÞ with N excess electrons to the state faðN�1Þ with N � 1 excess electrons. This change of
the number of excess electrons results from the coupling to the additional units labeled by X. Those
units might be the D or A in a DBA complex or the left (L) or right (R) electrode in a linear arrange-
ment of two electrodes and a molecular wire.
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Fig. 1 Single electron transfer in a DBA complex with extended bridge states. Left panel: scheme of
electron transfer in a linear DBA system with extended bridge states (upper part, shown are only three
levels) and localized bridge state (lower part, every electronic level has been supplemented by the
manifold of vibrational levels). Right panel: overall D–A ET rate, Eq. (18) versus the number NB of
bridge units. The rate follows as the sum of the superexchange rate KðsupÞ and the thermally activated
rate KðactÞ (for details see [7]).

# 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



If a DBA complex is considered the wXlðN Þ and wXjðN�1Þ in Eq. (4) represent states of the D or A
with N or N � 1 excess electrons. Here, it is also common to introduce a state for the whole DBA
system valid for N D excess electrons at the D, N excess electrons in the molecule, and N A excess
electrons at the A. For the case of the coupling to nanolectrodes the states w introduced in Eq. (4)
describe the Fermi sea of metal electrons in the left as well as in the right electrode (with N X or
N X � 1 electrons). If a grand-canonical description is taken for the electrodes (with chemical poten-
tials) it is also useful to denote the states as

jwXlðN Þi ¼
Q
k;s

aþXks j0Xi ; ð5Þ

with the standard creation operators aþXks of metal electrons with spin s, wavevector k positioned in
electrode X (the whole set of s and k referring to the N electrons has been abbreviated by l).

From all what has been discussed so far the general notation of Hsd is obvious. In the case of a D
or an A it reads similar to that given in Eq. (2) with PES UD and UA included in the vibrational
Hamiltonians HaðNÞ (a ¼ D; A). Specifying Hsd to the case of electrodes one can use the creation and
annihilation operators for noninteracting electrons of a metal (the inclusion of respective phonon DOF
would be of less interest).

Based on the preceding discussion we introduce the many-electron expansion basis

jai ¼ jfaðNÞi �
Q
X
jwXlðN Þi : ð6Þ

It will find an application in the subsequent section where the kinetics of multielectron transfer are
considered.

2.2 Derivation of rate equations

The following considerations focus on a derivation of rate equations governing the time evolution of
the many-electron distribution

PaðtÞ ¼ haj trvibfŴWðtÞg jai ; ð7Þ

defined with respect to the states introduced in Eq. (6). Moreover, the expression for Pa includes the
total nonequilibrium statistical operator ŴWðtÞ of the electron-vibrational system under consideration. It
is transformed into a reduced form by the trace trvibf. . .g taken with respect to all vibrational DOF.
PaðtÞ is ready to describe multielectron transfer reactions in a DBA system or multielectron charge
transmission through a molecular wire. In the latter case it is of main interest to compute the I–V
characteristics with the stationary current obtained from, e.g.

I ¼ �e
@

@t

P
k;s

PLksðtÞ ; ð8Þ

where PLksðtÞ is the single-electron population of the left electrode (following from Pa, Eq. (7) after
an appropriate reduction).

As already underlined in the introductory part the computations concentrate on the case of nonadia-
batic ET characterized by the inequality

trel � tET : ð9Þ

This relation states that the overall charge motion with time constant tET is much slower than all
processes of vibrational relaxation characterized by trel. Accordingly, the ET takes place against the
background of fast vibrational relaxation. In the Refs. [5–7, 9, 12–14] we used an approach which
directly notices Eq. (9). This has been achieved by modeling vibrational relaxation via a coupling of
the respective DOF to secondary vibrational DOF acting as a heat bath. Here, we will chose a descrip-
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tion which accounts for Eq. (9) in a somewhat different way. We assume that vibrational equilibrium
is separately defined for every many-electron state jai (by the canonical equilibrium statistical opera-
tors R̂Ra). Such an approach is known from literature (see, e.g. [4, 8, 15–17]) but has been used so far
only for a description of SET (with the only exception given by us in [11]). The whole method is
based on the introduction of the following projection superoperator

P . . . ¼
P
a

R̂Ra P̂Pa tr fP̂Pa . . .g : ð10Þ

It contains a trace expression with respect to the complete set of electron-vibrational states and the
many-electron state projection operator P̂Pa ¼ jaihaj. The projector immediately gives the many-elec-
tron state population, Eq. (7) as

PaðtÞ ¼ haj trvib fPŴWðtÞg jai : ð11Þ

As in many other cases it is also possible here to apply the standard scheme of projection operator
technique (see, e.g. [4]). One first derives a Nakajima–Zwanzig identity for PŴWðtÞ. Then the rate
equation is obtained in noting Eq. (11). We neglect memory effects and obtain

@

@t
PaðtÞ ¼ �

P
b

ðka!bPaðtÞ � kb!aPbðtÞÞ : ð12Þ

The related many-electron transition rates are rather cumbersome expressions

ka!b ¼ tr fP̂PbT ðw ¼ 0ÞR̂RaP̂Pag ; ð13Þ

however, their meaning is simple. They describe the transition from the initial many-electron state jai
(represented in the trace expression by the statistical operator R̂RaP̂Pa) into the final many-electron state
jbi. The transition is induced by the (frequency dependent) transfer superoperator T ðwÞ. If expanded
with respect to the coupling part Hint of the total Hamiltonian, Eq. (1) one obtains

T ðwÞ ¼ �iLint
P1
j¼0

fG0ðwÞ Lintg2jþ1 : ð14Þ

Note Lint . . . ¼ ½Hint=�h; . . .�� and the expression for the zero-order Green’s superoperator:

G0ðwÞ ¼ �i
ð1

0

dt eiwt
�
U0ðtÞ � P

�
: ð15Þ

It contains the zero-order time evolution superoperator U0ðtÞ . . . ¼ U0ðtÞ . . .Uþ
0 ðtÞ, where U0ðtÞ is an

ordinary time–evolution operator given by the zero-order Hamiltonian Hmol þ Hsd. The combination
of U0 with P avoids double-counting of lower-order vibrational correlation functions (for more details
see [8, 16]).

To apply the general rate Eq. (12) to concrete reactions one, first, has to specify the many-electron
states jai and jbi to those of the particular reaction scheme and, second, one has to compute the
respective transition rates. This requires to decide up to which order the perturbational expansion in
Eq. (14) has to be taken.

In the following sections the whole description will be specified to SET and TET reactions in DBA
complexes and molecular wires. Of most interest will be studies focusing on the dependence of the
ET rate (in the case of a DBA system) or the current (in the case of a molecular wire attached to a
left and a right nanoelectrode) on the length of the bridging molecular system. Here, we will concen-
trate on the case where the levels of the bridging molecular system are positioned energetically far
above the D and A level or the nanoelectrode Fermi energies. It will be underlined that for such a
level configuration the whole ET is separately determined by an addend caused by sequential charge
transfer and an addend caused by the superexchange mechanism.
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3 Single electron transfer reactions
in a donor–bridge–acceptor complex

In studying the transfer of a single electron from the D to the A in a DBA complex two limiting cases
are possible: the description of the B by localized levels for the excess electron or the description by
delocalized levels common to the whole B (cf. Fig. 1). This latter case will be studied first followed
by that based on the use of localized B states. In any case we will assume a linear arrangement of the
D, the B units, and the A, with NB (identical) molecular units forming the B.

3.1 Bridge with delocalized states

To study SET through a B with orbitals delocalized over the whole B the respective Hamiltonian is
given by the single electron version of Eq. (2). Furthermore, we assume a weak coupling of the B to
the D and A, i.e. the respective interaction introduced in its general from in Eq. (4) can be handled
within perturbation theory. Such a situation is typical for oligomers with delocalized orbitals bound at
its terminal sites to molecules acting as a D and a A.

To achieve a uniform description of all states of the excess electron in the DBA complex the two-
state formulation in Eq. (4) via jwDjð0Þfað1Þi hfbð0ÞwDlð1Þj (note X ¼ D) is replaced by the more com-
pact expression jaihDj referring to the transfer of the electron from the D into the B level a. Similar
couplings are found for the reverse process as well as the transition between the B and the A. Intra B
transitions originated by nonadiabatic couplings are not taken into account explicitely (see below).

The processes described so far follow from Eq. (13) in the lowest order of perturbation theory with
respect to Hint, Eq. (4). For example, we obtain

kD!a ¼ tr fP̂PaLintG0ðw ¼ 0ÞLintR̂RDP̂PDg ; ð16Þ
what represents a standard nonadiabatic ET-rate [3, 4], here characterizing thermal activated ET from
the D into a particular B level.

If a level scheme is considered where the bottom of the PES corresponding to the excess electron
states in the bridge is 1 or 2 eV above the D and the A level a direct ET from the D to the A known
as the superexchange process is of some importance. It corresponds to the fourth-order term of the
transfer superoperator, Eq. (14) and the rate reads

kD!A ¼ tr fP̂PALint fG0ðw ¼ 0Þ Lintg3R̂RDP̂PDg : ð17Þ
Although there are a number of different contributions following from the various commutators the
rate is dominated by a single type of expression (superexchange rate) for the aforementioned level
configuration [4–8, 16]. It is characterized by electronic matrix elements, appearing during the evolu-
tion of the initial density operator R̂RDP̂PD, which are exclusively off-diagonal.

As a result we obtain the single-electron version of the rate Eq. (12) for the single excess electron
distributions PD, Pa, and PA with forward rates kD!a, ka!A and kD!A and the respective backward
rates. Although intra-bridge transitions have been neglected so far we can introduce them into the
description by assuming the fast formation of an equilibrium distribution within the B on the time-
scale of the whole ET. As a result the B can be described by a single overall population PB. Then, the
related rate equations for the three quantities PD, PB and PA can be solved analytically [5–7] and
different regimes of ET can be discussed.

In the initially described level configuration with the B levels far above the D and the A level one
obtains the inequality kB!D; kB!A � kD!B; kA!B, i.e. ET out of the B is much more efficient than
ET into the B. A detailed inspection of the solution of the rate equation shows that the DBA ET
can be described by a single overall transfer rate (note Pm¼D;B;A � ðPmðt ¼ 0Þ � Pmðt ¼ 1ÞÞ
� exp ð�KETtÞ þ Pmðt ¼ 1ÞÞ

KET ¼ kD!A þ kD!BkB!A

kB!D þ kB!A
þ kA!D þ kA!BkB!D

kB!D þ kB!A
: ð18Þ
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The first two terms correspond to the forward rate and the third and the fourth term to the backward
rate. Both types of contributions indicate that the forward (or backward) rate is given by two indepen-
dent addend one following from the superexchange mechanism of ET and the other from the ther-
mally activated ET. This is not an universal result but is strongly related to the mentioned off-resonant
position of the B levels [7]. It goes along with a very small bridge population in the course of the ET
(�10�2). For an illustration we refer to Fig. 1 and to Ref. [7].

3.2 Bridge with localized states

If the B can be decribed by localized states for the excess electron coupled one to another by small
transfer integrals Vmn, Eq. (3) the ET can take place via hopping transitions betwen the D and the
respective terminal unit of the B, among the B units (1 . . . NB), and between the terminal unit of the
B and the A (see Fig. 1). Additionally a direct transfer between the D and the A initiated by the
superexchange mechanism becomes possible. Respective rate equations can be drived from Eq. (3) in
a similar way as described in the preceeding section with one major exception. Since the transfer
integrals Vmn are small, perturbation theory becomes possible when considering the superexchange
transfer. In order to do this the coupling term of Eq. (3) covering all Vmn is removed from Hmol and
included into the SET version of Hint, Eq. (4). Then, the rate kD!A, Eq. (17) has to be generalized to
an expression with the 2NB � 1’th power of G0ðw ¼ 0ÞLint and with Lint exclusively defined by the
intra-bridge transfer integrals and the D–B and B–A coupling [5, 6]. In this way one may derive the
standard expression for the superexchange coupling (see, e.g. [3, 4]).

In Ref. [5, 6, 9, 10] the decribed approach has been used to explain the length dependence of SET
through an oligopeptide formed by the aminoacid proline and measured in [18]. As shown in Fig. 2
there is a good agreement between theory and experiment. In particular, the length dependence indi-
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Fig. 2 Single electron transfer in a DBA complex with localized bridge states. The DBA complex is
given by a ruthenium–oligoproline–cobalt complex ([(bpy)2Ru(II)L 	 (Pro)nCo(III)(NH3)5]3þ, see insert)
studied in [18] (related measured data are given by open circles). Theoretical results (full squares) are
obtained as described in Section 3.2 (for details of the computation see also [5, 6, 9, 10]). The curves
give the rate in dependence on the number NB of proline monomers in the polypeptide forming the
bridge. The broken lines follow from a sole NB-dependence of the superexchange and the sequential
ET mechanism, respectively.
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cates that the SET in the oligopeptide proceeds in a way where the bridge population remains small
and the overall transfer rate is given by two independent addends, one corresponding to the sequential
(hopping) ET and one to the superexchange ET. By the way, the absence of a dip like that in Fig. 1
offers strong evidence for an ET reaction which proceeds via localized and not delocalized B states.
The importance of strutural and energetic disorder in the chain is underlined in the studies of Ref.
[10]. An improved analytical solution of the rate equations can be found in Ref. [9]. Note that a
similar picture has also been used to interpret charge motion through DNA fragments [19–22].

4 Single electron transmission through a molecular wire

When considering the case of a molecule or a molecular complex attached to nanolectrodes it has to
be checked whether the electrode–molecule coupling is strong or weak. The first case is typical for a
covalent bonding of the molecule to the electrode and leads to a renormalization and life-time broad-
ening of the molecular levels (cf. [23, 24]). In the contrary case one can handle this coupling in
perturbation theory [8, 11]. Such a description has been carried out in [8] for a arrangement of a left
electrode, the wire and the right electrode (cf. Fig. 3) as well as for the case of strong wire-internal
transfer coupling. Then, it is appropriate to introduce delocalized wire-states, and one can discuss the
interplay of sequential transfer, for example from one electrode into the wire, and superexchange
transfer from the left to the right electrode.

In Ref. [11] a situation has been discussed which has some similarities to that of the foregoing
section. The DBA complex described there has been additionally attached with its D to a left elec-
trode and its A to a right electrode. Instead of a rate expression, now, one has to compute the station-
ary current, Eq. (8) moving at a given applied voltage through the wire. This current can be drawn
versus the applied voltage to give the I–V characteristics, or one can draw the current at a given
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Fig. 3 Single electron transmission through a molecular wire described by weakly interacting localized
states. Drawn is the stationary current through the wire in dependence on the number NB of wire units
and at fixed electric field strength E (achievable by a certain increase of the applied voltage with an
increase of NB). The insert shows the left electrode–wire–right electrode arrangement together with the
energetic position of all levels involved. Curve with quares: T ¼ 298 K, curve with circles: T ¼ 180 K.
Broken lines correspond to a sole NB–dependence of the part of the current originated by the super-
exchange (Isup) or the sequential mechanism (Iseq) of charge transmission (for more details see [11]).
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voltage versus the length of the wire. This has been done in Ref. [11]. It is a special feature of this
approach to account for the many-electron character of the electrode states as given in Eq. (5). Then,
the Fermi distribution of the left and the right electrode enter the respective transitions rates in the
correct manner, for example, kL!D representing the transition from the left electrode into the D. The
obtained length dependence of the current is shown in Fig. 3.

5 Two-electron transfer reactions in a donor–bridge–acceptor complex

As an example for a TET reaction we will study in the following charge motion through a DBA
system according to the scheme: D��BA ! D�B�A ! D�BA� ! DB�A� ! DBA�� (see Fig. 4).
Two excess electrons initially localized at the D move via a molecular bridge to the A. The reaction
scheme given in Fig. 4 excludes double population of the bridge with two excess electrons (doubly
reduced B state). The neglect is reasonable for a rigid B and a rigid environment of the B which do
not undergo a rearrangement if two excess charges are present (small reorganization energy). Then, the
state DB��A is energetically unfavourable and can be removed from the reaction scheme [12–14].

Having exluded the electron configuration DB��A one can relate the respective electronic states to
the different steps of the TET reaction which are characterized by state populations Eq. (11) and
connected via transition rates, Eq. (12). After a proper computation of the related transition rates (for
details see [12–14, 25, 26]) the dependence of the TET reaction on the bridge length can be calcu-
lated.

Assuming again high-lying B states the charge injection into the bridge appears to be much slower
than the motion of the electron out of the B. A thermal equilibrium is established along the TET in
the bridge with a small B population and the two parts D��BA ! D�B�A ! D�BA� and
D�BA� ! DB�A� ! DBA�� of the whole reaction can be described as the SET of Section 3.2.
Here, sequential transfer of a single electron takes place as well as superexchange transitions, but
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Fig. 4 Two-electron transfer in a DBA complex with localized bridge states. The insert displays the
different electronic configurations together with the transfer routes (full lines indicate squential transfer
and broken lines superexchange ET, the uppermost states with a doubly reduced bridge has been ne-
glected). Drawn is the bridge-length dependence of the overall transfer rate (triangles) as well as the
contributions following from the sequential transfer (circles) and the concerted two-electron superex-
change transfer (squares, for more details see [14]).
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described by overall rates of SET. We abbreviate the intermediate state corresponding to the electron
configuration D�BA� by I, and get the SET rates kD!I as well as kI!A for the forward transitiona and
kI!D as well as kA!I for the backward transition.

If the system parameters are of such a type that the population of the intermediate state I is also
small the TET can be described by single exponential kinetics with the overall TET rate

KTET ¼ kD!A þ kD!IkI!A

kI!D þ kI!A
þ kA!D þ kA!IkI!D

kI!D þ kI!A
: ð19Þ

The rate kD!A describes concerted TET directly from the reactant states D��BA to the product state
DBA��. The second term follows from SET (which includes sequential and superexchange contribu-
tions). The third and the fourth term are the respective backward rates. A numerical illustration can be
found in Fig. 4. The influence of bridge irregularities is studied in [25], and Ref. [26] generalizes the
description to the case of TET through extended B states as discussed in Section 3.1 for SET reac-
tions.

6 Conclusions

A unified theory of few-electron transfer reactions has been developed. The approach concentrates on
the particular type of charge transfer proceeding against the background of fast vibrational relaxation.
By considering rate equations for many-electron state populations we have been able to present a
decription which covers all of our earlier theories of single and two-electron transfer in donor–
bridge–acceptor complexes as well as molecular wires. The approach accounts for the many-electron
states of nano-electrodes as well as for the Coulomb interaction among the states of some excess
electrons in a molecular wire or in a donor–bridge–acceptor complex. But at the same time it is also
capable to include the coupling to intra-molecular as well as environmental vibrations beyond any
perturbation theory.

This unified theory has to be considered as the central and new result of the present paper. In order
to demonstrate that the general approach comprices all earlier theories it becomes necessary to carry
out a specificication to the concrete number of electrons involved in the reaction and to subsequently
determine the related transition rates.

The new description of few-electron transfer reactions has the capability to adress various problems
to be solved. Among them we mention two. For example, when dealing with few-electron transfer in
molecular wires forthcoming investigations should study the interplay between inelastic charge trans-
mission processes via electron-vibrational interaction and the strong coupling to the electrons of the
electrode Fermi sea. Of general interest would be also the change of the charge motion by an optical
excitation applied to some parts of a molecular wire or of a donor acceptor complex.
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