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Abstract

Linear frequency-domain absorption spectra of chromophore complexes are studied within a Frenkel-exciton model

including static and dynamic disorder. While static disorder is accounted for by explicite numerical ensemble averaging,

dynamic disorder is described via the coupling of excitons to low-frequency vibrational modes (solvent or protein

modes) and to high-frequency (intra-molecular) modes. Using a time-dependent formulation of the absorption density

matrix theory can be applied. It is shown that the non-Markovian version of the Quantum Master Equation offers a

certain approximation for the absorption based on a partial summation with respect to the exciton–vibrational cou-

pling. In a first application the approach is used to describe absorption spectra of phenylacetylene dendrimers where

static disorder is introduced to account for solvent induced deviations from the ideal structure. A detailed analysis of

the long-wavelength tail underlines the dominance of structure fluctuations in the outer part of the dendrimer. While a

concrete classification of the low-frequency modes remains impossible (according to the presence of static disorder) a

qualitative estimate of the high-frequency modes becomes feasible. In a second application linear absorption of the

photosynthetic antenna complex LHC-II of higher plants is analyzed and different structural parameters (Huang Rhys

factor, inhomogeneous width of site energies, exciton state life times) are deduced. In particular the measured tem-

perature dependence of the absorption spectrum can be well reproduced. A simultaneous fit of the circular dichroism

spectrum at 77 K is used to discriminate between two different structural models. � 2002 Elsevier Science B.V. All
rights reserved.

1. Introduction

The detection of linear absorption spectra re-
lated to molecular system represents a standard
technique of optical spectroscopy. Of course, as
discussed before (see, e.g. [1]), it only gives a re-
stricted amount of information, the reason being

to a large part the presence of inhomogeneous
broadening. To overcome this difficulty often more
involved techniques come to an application. To
remove the influence of inhomogeneous broaden-
ing hole burning or fluorescence line-narrowing
spectroscopy can be used if the lowest exciton state
shall be investigated. If, however, the relaxation of
excitons between different electronic states is of
interest time-resolved non-linear optical spectros-
copy is the choice. In general, non-linear tech-
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niques must be used if excited state absorption
shall be investigated. Single molecule spectroscopy
may also be used to remove part of the static
disorder, however, slow conformational motion
will still be a broadening factor in the spectrum
since it is obtained as a time average over many
optical cycles of a single molecule.
But, continuous wave (cw) linear absorption

spectroscopy never lost its importance as a sim-
ple technique to give reference data for all these
more difficult approaches. Furthermore, if the
system that shall be studied is not so well
structurally characterized a simple technique of-
ten has its advantage, because it allows for a
more general interpretation than more involved
techniques.
For the following discussion we will denote the

frequency dependent absorption according to

aðxÞ ¼ 4pxnCC
�hc

IðxÞ; ð1Þ

where n is the volume density of the absorbing
units, e.g. single chromophores or chromophore
complexes (CC). The quantity IðxÞ denotes the
real part of the half-sided Fourier-transform of the
dipole–dipole correlation function

Cd–dðtÞ ¼ trfŴWeq½l̂lðtÞ; l̂lð0Þ�g: ð2Þ
The expression contains the equilibrium statistical
operator ŴWeq of the considered system and the di-
pole operator l̂lðtÞ for which time-dependence is
given by the system Hamiltonian (without the
coupling to the light-field). Note that Cd–d is a
scalar since the dipole operators are multiplied
according to a scalar product. Neglecting the so-
called anti-resonant part, i.e., setting
Cd–dðtÞ ¼ trfŴWeql̂lðtÞl̂lð0Þg the simple sum-rule for
the absorption

R
dxaðxÞ=2px ¼ 2pn trfŴWeql̂l2g=�hc

can be deduced. Inhomogeneous broadening can
be accounted for by an averaging with respect to
the different disordered configurations (labeled by
h	 	 	idis in the following).
In simulating the optical absorption of dye ag-

gregates or CC one is confronted with the interplay
of two distinct interactions, the coupling of elec-
tronic excitations to vibrational degrees of freedom
(vibrational DOF) and the interaction among the
electronic excitations. An exact formula for the

absorption can be given in the limit of vanishing
electronic inter-chromophore coupling. And, ad-
ditionally, it is necessary that the two electronic
states involved in the absorption process of a single
chromophore are characterized by potential energy
surfaces (PESs) of the independent harmonic os-
cillator type (see, e.g. [1,2]). One obtains

IðxÞ ¼ jdj2e�sð0Þ Re
Z 1

0

dt expðiðx � xegÞ þ sðtÞÞ;

ð3Þ
where xeg denotes the intra-chromophore transi-
tion frequency and d is the related transition ma-
trix element. The standard line-shape function has
the form

sðtÞ ¼
Z
dxe�ixtð1þ nðxÞÞ JðxÞð � Jð � xÞÞ;

ð4Þ
where the so-called spectral density JðxÞ describes
the electron–vibrational coupling upon the elec-
tronic transition. The great advantage of Eq. (3) is
given by the fact that it can account for a huge
(macroscopic) number of vibrational DOF. Once
JðxÞ is known all details of the absorption spectra
can be calculated.
The other tractable case of a CC absorption

spectrum is reached if one considers a set of
chromophores coupled, e.g., via an electronic di-
pole–dipole interaction but being free of any in-
fluence of the vibrational degrees of freedom. In
this case one may introduce delocalized excitations
of the Frenkel-exciton type. The optical transition
takes place into these states and we have

IðxÞ ¼
X

a

jdaj2dðx � XaÞ: ð5Þ

The quantity da is the dipole matrix element for the
transition into the (single) exciton state jai with
energy �hXa. Since larger absorbing units (the CC)
are introduced, n in Eq. (1) has to be replaced by
nCC denoting the volume density of the CC.
After the early works on molecular excitons

(see, e.g. [3–5]) it has been the subject of numerous
theoretical considerations published within the last
two decades (see, e.g. [6–9]) to combine both types
of interactions and to find proper approximations
for the various special cases of CC absorption
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spectra. The problem never lost its attraction and
was in the focus of theoretical activities in the late
nineties, too (see, e.g. [10–15]). In particular, a
number of papers concentrated on photosynthetic
antenna systems (e.g. [16–18], see also the over-
views in [19,20]).
It is the aim of the present contribution to pre-

sent a further study of CC absorption, and in this
manner, to interrelate formulas (3) and (5). This
should enable one to obtain a proper approxima-
tion for CC where the inter-chromophore coupling
as well as the exciton–vibrational coupling have to
be considered at the same time (the interchromo-
phore interaction is assumed strong enough to use
the delocalized representation of Frenkel excitons).
Our approach is based on the density matrix de-
scription of exciton motion formulated in the
framework of the Quantum Master Equation
(QME) for exciton states (see the recent overview
[20]). If the non-Markovian version of the QME is
used a formula for the absorption can be derived
which accounts for both mentioned coupling
mechanisms beyond any perturbation theory. This
will be demonstrated in Section 3. The used Fren-
kel-exciton model is shortly introduced in Section
2, whereas the basics of density matrix theory are
reviewed in Appendix C. Alternative approaches to
determine the absorption in carrying out an ex-
pansion leading to vibrational satellites of in-
creasing order are given in Appendices A and B.
The whole approach is applied in Section 4 to

interpret spectra of phenylacetylene dendrimers
measured in [21]. Chlorophyll–protein complexes
in the photosynthetic apparatus of higher plants
(light harvesting complex of photosystem two,
LHC-II) are discussed in Section 5 as a second
example of CC.

2. The exciton model of chromophore complexes

For notational convenience we shortly remind
of the assumptions necessary to derive the Fren-
kel-exciton model for CC excitations including the
coupling to different types of vibrational DOF.
Since we are exclusively interested in the study of
linear optical properties we will describe our CC
by the Hamiltonian

HCC ¼ H0 þ H1; ð6Þ
which only incorporates a part related to the
electronic ground-state and a part related to the
first excited electronic state. The Hamiltonian

H0 � Hvib ¼ Hlf þ Hhf ð7Þ
refers to the electronic ground-state j0i (where
the electronic ground-state energy E0 has been
set equal to zero) and governs the dynamics of
the various vibrational modes. We will pro-
vide two distinct classes, low-frequency mainly
solvent vibrations described by Hlf and high-fre-
quency intramolecular vibrations with Hamilto-
nian Hhf . The latter class will be handled in such
a manner that vibrational satellites can appear in
the optical spectra. The other class should be
responsible for homogeneous line-broadening.
This separation should be also understood as a
separation into vibrational DOF which weakly
couple to the electronic excitations (low-fre-
quency vibrations) and those with a large cou-
pling-strength (high-frequency vibrations). This
identification has been done from a practical
viewpoint by classifying different approximations
but does not have any microscopic reason.
Whenever this separation is not necessary we use
the notation Hvib for the complete vibrational
Hamiltonian.
The excited state part H1 of Hamiltonian Eq. (6)

is given by

H1 ¼ Hex þ Hex–vib þ Hvib ð8Þ
with the standard Frenkel-exciton Hamiltonian
Hex and the coupling to the vibrational modes
Hex–vib. The part Hex may be either written in the
site representation

Hex ¼
X
m;n

ðdm;nEm þ ð1� dm;nÞJmnÞjmihnj ð9Þ

or if it has been diagonalized in the representation
of excitonic states

Hex ¼
X

a

�hXajaihaj: ð10Þ

In the first version of Hex the Em give the electronic
excitation energies (site energies) of the various
chromophores whereas the Jmn are responsible for
inter-site Coulomb interaction (usually of the dipole
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dipole coupling type). The state jmi describes the
presence of a single excitation at chromophore m.
Structural disorder may strongly alternate the

Jmn whereas energetic disorder reflects itself via
fluctuations of the Em. Both types of static disorder
may result in disorder with respect to the excitonic
eigenenergies Ea and the respective states jai. A
(time-dependent) modulation of the Em and Jmn by
different types of vibrational modes results in the
exciton–vibrational coupling. If one carries out a
power expansion with respect to deviations from
the ground-state equilibrium position and uses the
eigenstates representation the coupling reads in the
lowest order

Hex–vib ¼
X
a;b

X
n

�hxngnða; bÞQnjaihbj: ð11Þ

Concentrating on an expansion of the Em only one
obtains

gnða; bÞ ¼
X
m

C�
aðmÞgnðmÞCbðmÞ; ð12Þ

where the Ca are the expansion coefficients of the
localized states jmi in the exciton state jai, and
�2gnðmÞ gives the dimensionless displacement of
the vibrational equilibrium position if site M is in
the excited state (for more details see [20]). The Qn

in Eq. (11) denote the respective vibrational co-
ordinates (understood here as dimensionless
quantities). If a normal-mode analysis is possible
the Qn as well as the xn correspond to normal-
mode coordinates and frequencies, respectively.
(Otherwise, the latter have only the meaning of a
reference energy.) In this case the related vibra-
tional Hamiltonian reads (with respective kinetic
energy operator Tvib)

Hvib ¼ Tvib þ
X

n

�hxn

4
Q2n: ð13Þ

It is worth mentioning that Qn ¼ Cn þ Cþ
n where

the Cn and Cþ
n describe harmonic oscillator oper-

ator. Of course it might be useful to discuss a
coupling among them. But this has been done
elsewhere in the framework of the multi-mode
Brownian oscillator model [1].
It would be of interest to take the diagonal part

gnða; aÞ of the coupling matrix gnða; bÞ and intro-
duce vibrational Hamiltonian valid for the various

exciton levels. This simply follows from a rear-
rangement of H1, Eq. (8)

H1 ¼
X

a

Hajaihaj þ
X
a 6¼b

X
n

�hxngnða; bÞQnjaihbj:

ð14Þ

The vibrational Hamiltonian for exciton level a is
given as

Ha ¼ Tvib þ U ð0Þ
a þ

X
n

�hxn

4
ðQn þ 2gnða; aÞÞ2:

ð15Þ
The second and the third terms on the right-hand
side form an excitonic PES UaðQÞ with equilibrium
value

U ð0Þ
a � �hea ¼ �hXa �

X
n

�hxng2nða; aÞ: ð16Þ

For further use we write Ha ¼ �hea þ DHa, where
DHa is the (harmonic oscillator) Hamiltonian of the
various vibrational modes displaced by �2gnða; aÞ.
If the inequality gnða; aÞ � jgnða; bÞj; ða 6¼ bÞ is
fulfilled this introduction of excitonic PES allows
to exactly account for the diagonal coupling matrix
and to carry out an perturbation theory with re-
spect to the off-diagonal parts. In Section 5 num-
bers are given for the diagonal and off-diagonal
parts of the exciton vibrational coupling matrix.

3. Reduced density operator formulation of the

linear absorption coefficient

As already claimed in the introduction an ex-
pression for the absorption coefficient will be of
central interest for us which is based on a partic-
ular solution of the QME for the exciton density
matrix. To characterize the quality of this ap-
proximation we refer to some alternative expres-
sions given in Appendices A and B. Although it is
possible to start from the site-representation of the
CC Hamiltonian (see, e.g. [13,20]) we will exclu-
sively concentrate on those treatments which are
based on the use of the electronic eigenstates.
We start the discussion with a formula for the

absorption (or for IðxÞ) which is based on a
complete expansion with respect to the exciton
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vibrational coupling gnða; bÞ. This formula can be
found in Appendix A. It describes the standard
expansion of the absorption with respect to vib-
rational satellites. Therefore, its application is only
advisable if one can concentrate on low-order
contributions with respect to the exciton vibra-
tional coupling. Any partial summation related to
that coupling cannot be carried out. In Appendix
B use is made of the excitonic PES introduced in
Eq. (15). Now, a partial summation with respect to
the diagonal matrix elements gnða; aÞ becomes
possible, and the perturbation expansion with re-
spect to the off-diagonal coupling matrix elements
becomes possible. The lowest-order contribution is
given in Appendix B too.
These direct perturbational expansions will be

confronted in Sections 3.1 and 3.2 with an approach
which uses a certain solution of the QME for the
exciton density matrix. A separate consideration of
high-frequency vibrational DOF is carried out in
Section 3.2 too. To achieve a density matrix for-
mulation, Eq. (2) for the dipole–dipole correlation
function needs to be modified. The given form
represents an often used starting point for calcula-
tions based on many-body techniques. Typically, in
this manner one describes the interacting many-
electron system of a semiconductor. If molecular
systems in a condensed-phase situation are of in-
terest methods of dissipative quantum dynamics are
usually the method of the choice. They do not focus
on many body effects but account for the coupling
of an active system to a certain environment (res-
ervoir). Since we will base our consideration on the
QME governing the exciton density matrix a re-
spective formulation of the absorption has to be
given. Accordingly a reduced density operator

q̂qðtÞ ¼ trvibfŴW ðtÞg ð17Þ
is introduced which is valid for the active system
formed by the electronic ground-state and all sin-
gle-excited electronic states (exciton states). These
electronic DOF form the so-called active system
whereas the reservoir is given by the vibrational
DOF of the CC. (At a later step of our consider-
ations some selected high-frequency vibrational
DOF will be incorporated into the definition of q̂q,
too.) According to the formulation of the active
(relevant) system q̂qðtÞ follows from the total sta-

tistical operator ŴW ðtÞ as a trace with respect to the
vibrational DOF. Furthermore, the correlation
function, Eq. (2) is obtained as [22]

Cd–dðtÞ ¼ trSfl̂lr̂rðtÞg; ð18Þ

where the newly introduced density operator takes
the form

r̂rðtÞ ¼ UðtÞ½l̂l; q̂qeq��: ð19Þ

The definition of the time-evolution superoperator
UðtÞ has to correspond to the choice of the QME
(for details see Appendix C). Furthermore, the
equilibrium value of the reduced density operator
q̂qeq is given by the projector j0ih0j on the CC
electronic ground-state. (If high-frequency modes
are incorporated into the definition of q̂q the part
j0ih0j has to be extended by the vibrational equi-
librium statistical operator R̂Req.)
Carrying out an expansion with respect to the

electronic eigenstates, i.e., the CC ground-state j0i
and the states jai of the first excited CC levels one
obtains

Cd–dðtÞ ¼
X

a

d�aBaðtÞ þ c:c: ð20Þ

with the transition amplitude from j0i into the
states jai
BaðtÞ ¼ hajr̂rðtÞj0i: ð21Þ
If we introduce the half-sided Fourier-transform
~BBaðxÞ of the transition amplitude we obtain

IðxÞ ¼ Re
X

a

ðd�a ~BBaðxÞ þ da
~BB�

að�xÞÞ: ð22Þ

3.1. Inclusion of non-Markovian contributions

As already mentioned the density matrix de-
scription of the absorption will be of central in-
terest for our studies and will be used to give an
alternative to Eqs. (A.3) and (B.1). It is based on
Eq. (18) with a density operator obtained ac-
cording to Eq. (19). For its propagation we as-
sumed that the vibrational DOF should form a
thermal reservoir entering the respective density
matrix equation via energy relaxation and deph-
asing rates. In the case of linear absorption one
has to calculate electronic off-diagonal matrix

J. Sch€uutze et al. / Chemical Physics 275 (2002) 333–354 337



elements of the density operator as introduced in
Eq. (21). The respective equation of motion has
been derived in Appendix C, Eq. (C.17) and
reads

o

ot
BaðtÞ ¼ � iXaBaðtÞ �

X
b;c

Z t�t0

0

dse�iXbsCabbcðsÞ

� Bcðt � sÞ: ð23Þ

First we shortly indicate how the time-dependent
approach recovers an absorption spectrum with
homogeneous broadened exciton levels. To this
end the dissipative part governed by the correla-
tion function, Eq. (C.6) has to be reduced to a
simple dephasing rate Ca, Eq. (C.19). Details of
this approximation have been given in Appendix
C. Accordingly, the right-hand side of Eq. (23)
reduces to �iðXa � iCaÞBa, and the respective
equation of motion can be simply solved leading to
the following analytical expression of I (positive
frequency part only):

IðxÞ ¼
X

a

jdaj2
Ca

ðx � XaÞ2 þ C2a
: ð24Þ

This formula is a generalization of the expression
(5), with homogeneous line-broadening given via
the dephasing rates Ca. However, there is no de-
viation from a simple Lorentzian line-shape, and
not any mixture of different exciton levels appears.
Next it is demonstrated how an improvement of

the Lorentzian line shape of the absorption, Eq.
(24) can be achieved by including non-Markovian
contributions to the QME. Although the whole
approach can be formulated via standard Green’s
functions defined in the frequency domain [20]
here we demonstrate how the result can be ob-
tained from the non-Markovian QME. According
to Eqs. (19) and (18) we have to note that the
propagation of r̂r (or more specifically of BaðtÞ)
starts at t0 ¼ 0. Following Eq. (22) where IðxÞ has
been given by the half-sided Fourier-transform
~BBaðxÞ of BaðtÞ, it becomes necessary to transform
the non-Markovian QME, (23) into the following
equation for ~BBaðxÞ:

�iðx � XaÞ ~BBaðxÞ ¼ da �
X
b;c

~CCab;bcðx � XbÞ ~BBcðxÞ:

ð25Þ

The half-sided Fourier-transform ~CC of the corre-
lation function is given in Eq. (C.8).
An analytical formula which generalizes Eq.

(24) is obtained if we neglect all parts of ~CCab;bc

where c is different from a. In this case it follows
(note the neglect of the non-resonant contribu-
tions):

IðxÞ ¼
X

a

jdaj2
CaðxÞ

ðx � Xa � RaðxÞÞ2 þ C2aðxÞ
ð26Þ

with

RaðxÞ � iCaðxÞ
¼ �i

X
b

~CCab;baðx � XbÞ

¼
X

b

X
n

x2njgnða; bÞj2

� 1þ nðxnÞ
x � Xb � xn þ ie

�
þ nðxnÞ

x � Xb þ xn þ ie

�
:

ð27Þ

Expression (26) generalizes formula (24) for the
absorption coefficient in two ways. First, the line-
broadening became frequency dependent. And
second, the resonance frequencies Xa have been
shifted by the (frequency–dependent) quantity
RaðxÞ. We note that the Markovian result Eq. (24)
does not include a line shift because the imaginary
part of the exciton–vibrational correlation func-
tion has been neglected. Otherwise a frequency
independent line shift Ra results and would appear
in the denominator of Eq. (24). Furthermore, Eq.
(26) for the absorption indicates that a partial
summation with respect to the complete exciton–
vibrational coupling has been achieved. Of course,
the result is different from the complete summation
contained in Eq. (A.3). An improvement of Eq.
(26) is possible by a numerical solution of Eq. (25).
For further comparison we will use Eq. (25) to

compute the first vibrational satellite. Therefore,
~BBaðxÞ is approximated up to the second order in
the exciton–vibrational coupling (note ~xx ¼ x þ ie)

~BBaðxÞ � ida

~xx � Xa
�
X
b;c

~CCab;bcðx � XbÞdc

ð ~xx � XaÞð ~xx � XcÞ
: ð28Þ

A generalization of this expression will be derived
in the following section. Here we only note that the
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first term would result in the main exciton ab-
sorption whereas the vibrational satellite (related
to a single vibrational quantum) is given by the
second term.

3.2. Inclusion of high-frequency vibrations

Next we present an approach which allows to
handle high-frequency vibrations separately if it
gives rise to clearly identifiable vibrational satel-
lites. A broadening of the exciton levels will be
accounted for by the coupling to low-frequency
vibrational modes. Therefore, high-frequency (hf)
vibrational modes together with the exciton levels
define the active system and the reservoir is given
by the low-frequency vibrations. (Note that the
given description of the vibrational DOF does not
correspond to the widely used multi-mode
Brownian oscillator model [1].) Consequently, the
active-system Hamiltonian has to be identified
with the high-frequency mode vibrational Hamil-
tonian Hhf for the CC electronic ground-state and
with H1, Eq. (8). In the latter expression again the
vibrational DOF have to be restricted to the high-
frequency modes. Furthermore, Eq. (17) defining
the reduced density operator has to be specified to
q̂qðtÞ ¼ trlffŴW ðtÞg, where the trace corresponds to
the low-frequency (reservoir) modes. The transi-
tion amplitude reads as

BaðtÞ ¼ hajtrhffr̂rðtÞgj0i: ð29Þ
In the following we will construct a perturbation
expansion with respect to the coupling Hex–hf be-
tween the excitons and the high-frequency vibra-
tions. This can be achieved by the perturbational
treatment of the equation of motion for the tran-
sition amplitude, Eq. (29). Such an equation is
simply obtained from the density matrix Eq.
(C.15) in noting the generalization of the transition
amplitude

o

ot
BaðtÞ

¼ � i
�h
hajtrhffðHexþHex�hfÞr̂rðtÞþ ½Hhf ; r̂rðtÞ��gj0i

�CaBaðtÞ: ð30Þ

The commutator with respect to Hhf vanishes since
it appears under the trace. Note that Ca is the re-

sult of the exclusive coupling to the low-frequency
vibrational DOF. As a convenient abbreviation we
define complex exciton frequencies

~XXa ¼ Xa � iCa: ð31Þ

The appearance of Hex–hf in Eq. (30) leads to the
(single) vibrational quantum assisted transition
amplitude Lð�Þðn; a; tÞ ¼ hajtrhffC�

n r̂rðtÞgj0i. To
have a short-hand notation C�

n has been intro-
duced referring to Cþ

n and C
�
n � Cn, respectively.

Accordingly, Eq. (30) results in

o

ot
BaðtÞ ¼ i~XXaBaðtÞ � i

X
b;n

xngnðabÞðLð�Þðn; b; tÞ

þ LðþÞðn; b; tÞÞ: ð32Þ

The complete hierarchy of equations of motion
for all types of multi-vibrational quantum as-
sisted transition amplitudes gives all vibrational
satellites. Since single-quantum assisted contri-
butions to the absorption are of main interest
the equation of motion for Lð�Þðn; b; tÞ is de-
coupled from the hierarchy of higher functions.
We note

o

ot
Lð�Þðn;b; tÞ

¼ �ið~XXb � xnÞLð�Þðn; b; tÞ � i
X
c;�nn

x�nng�nnðbcÞ

� ch jtrhffC�
n Q�nnr̂rðtÞg 0j i ð33Þ

and replace C�
n Q�nn by its thermal expectation value

to get dn;�nnnðxnÞ and dn;�nnð1þ nðxnÞÞ, respectively.
Integrating the resulting equation and inserting the
result into Eq. (32) gives a closed equation for the
transition amplitude which is identical with Eq.
(23) except two points. First, the correlation
function is exclusively defined by the high-fre-
quency vibrational DOF (we will write CðhfÞ). And
second, any frequency Xa has to be replaced by the
complex quantity, Eq. (31) [23].
In similarity to Eq. (22) we can determine the

absorption by the half-sided Fourier-transform
~BBaðxÞ of BaðtÞ. Restricting to a formula which only
incorporates contributions up to the first high-
frequency vibrational satellite the related approx-
imate solution for ~BBaðxÞ reads (note the possible
replacement of ~xx by the real quantity x)
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~BBaðxÞ � ida

x � ~XXa

þ
X
b;c

~CCðhfÞ
ab;bcðx � ~XXbÞdc

ðx � ~XXaÞðx � ~XXcÞ
: ð34Þ

This expression is similar to that given in Eq. (28)
but restricted here on vibrational satellites origi-
nating from the high-frequency modes together
with a broadening of the exciton levels caused by
the low-frequency vibrational DOF. ( ~CCðhfÞ

ab;bc is
simply obtained as the generalization of the
quantity in Eq. (27) to the set of quantum numbers
ðab; bcÞ but in using the high-frequency vibra-
tional mode correlation function.) We insert Eq.
(34) into Eq. (18) and get the absorption cross
section as

IðxÞ ¼
X

a

daj j2Ca

ðx � XaÞ2 þ C2a

�Re
X
a;b;c

d�a
~CCðhfÞ

ab;bcðx � ~XXbÞdc

ðx � ~XXaÞðx � ~XXcÞ
: ð35Þ

To compute higher-order contributions within this
frame becomes a difficult task. However, if the
inequality gnðaaÞijgnðabÞj; a 6¼ b is valid it might be
possible to concentrate on those contributions
which are exclusively caused by the diagonal cou-
pling matrix elements. In this manner vibrational
progression beyond the single-quantum assisted
transition can be accounted for. To do this we
follow Appendix B and split off the active system
Hamiltonian Hex þ Hex–hf þ Hhf according to Eq.
(14). But now the vibrational Hamiltonian Ha de-
scribes the high-frequency mode dynamics in the
excitonic PES. If this new separation of the
Hamiltonian has been introduced into the equa-
tion of motion (30) an integration becomes possi-
ble after neglecting the off-diagonal contribution
of the exciton (high-frequency) vibrational cou-
pling. It yields

Cd–dðtÞ ¼
X

a

jdaj2e�CattrhffR̂RhfUþ
hfðtÞUaðtÞg: ð36Þ

The trace is similar to that in Eq. (B.5) but re-
stricted here to the high-frequency vibrational
DOF. According to Eq. (B.6) the above given ex-
pression for the dipole–dipole correlation function
can be expressed via the line-shape function, Eq.
(B.7).

For further use let us shortly indicate the deri-
vation of the absorption if only a single high-fre-
quency mode is present. In this case the spectral
density equation (C.7) simply reads

Jaa;aaðxÞ ¼ g2ðaaÞdðx � xhfÞ: ð37Þ

Assuming kBT � �hxhf the lineshape function, Eq.
(B.7) follows as:

saðtÞ ¼ g2ðaaÞe�ixhf t: ð38Þ
Finally the absorption is obtained as

aðxÞ ¼ 4pxnCC
�hc

X
a

jdaje�g
2ðaaÞ

�
X1
n¼0

g2nðaaÞ
n!

Ca

ðx � ea � xhfÞ2 þ C2a
; ð39Þ

which is not completely standard since shifted and
broadened excitonic energies �hea are included.

4. Linear absorption of dendrimers

Since a couple of years dendrimeric molecular
systems received much interest, on the one-hand
side because of their self-similar structure and on
the other-hand side because of their potential ap-
plicability in different fields of chemistry [21,24–27]
(for a recent overview on the literature see also
[28]). Here, we will concentrate on the particular
type of dendrimers: the compact phenylacetylene
dendrimers. Different so-called generation of this
molecule are created by the repetition of the basic
structure D1 (or D5, compare Figs. 1 and 2) of
four phenyl rings and three acetylene groups.
Every generation is labeled by the number of
repetitions (D2, D3, D4, etc.) or by the number of
phenyl rings D4 instead of D1 followed by D10,
D22, D46, and D94. The specification compact
dendrimers refers to the fact that the various
phenyl rings are only connected by single acetylene
groups (see Fig. 2). In the couple of theoretical
papers [28–32] these phenylacetylene dendrimers
have been considered, and, in particular, the va-
lidity of a Frenkel-exciton model, Eq. (9) to de-
scribe the electronic excitations has been justified
as well as its applicability to understand optical
and transport properties.
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It is far from being an obvious conclusion that
the Frenkel-exciton model can be applied to the
molecular structure of phenylacetylene dendri-
mers. But the quantum chemical calculations of
[29] gave clear hints for its usage. Accordingly, the
phenyl group between two acetylene rings can be
interpreted as the site characterized by the local
excitation energy Em. All these sites are coupled by
nearest-neighbor inter-site coupling energies Jmn

resulting in a Hamiltonian like that of Eq. (9).
Although a detailed characterization of the elec-
tronic properties including two-exciton states can
be found in [29–31] a consideration of the coupling
to vibrational degrees of freedom has only been
given recently in [28]. Here, we will concentrate on
this aspect together with the influence of structural
and energetic disorder.

4.1. Long-wavelength tail of the absorption

First our computations will be devoted to a
detailed study of the long-wavelength tail of the
absorption spectra at the 320 nm position of the
0–0 transition as measured in [21] for the different
generations (D4–D94). Since the 0–1 transition is
separated from the 0–0 transition more than
10 nm, and does not substantially change its shape
with increasing generation number, and the long
wavelength tail extends up to 30 nm above the 0–0
transition such an approach seems to be justified.
(Vibrationally assisted transitions will be discussed
in a second step and are explained in Section 4.2.)
Fig. 3 displays the position of the fundamental

absorption lines (exciton energies �hXa) of compact
dendrimers. Additionally the oscillator strength
� jdaj2 is given showing a concentration in the 320
nm region. The influence of homogeneous broad-
ening according to a formula like Eq. (24) has been
already described in [30]. Here the basic hypothesis
will be the assumption that static disorder sub-
stantially determines the spectra; and it will be

Fig. 1. Structure of different generations (D4–D94) of compact phenylacetylene dendrimers. Points stand for phenyl rings, lines for

acetylene groups. All branches are of the same length, for the two-dimensional presentation the acetylene groups of the center are

extended.

Fig. 2. Schematic picture of the chromophores of D10 and their

interaction in the Frenkel-exciton model. The ellipses mark the

chromophores at the acetylene threefold bonds. The transition

dipole moments are aligned with the bondings, marked with the

big arrows. Only next-neighbor interaction is taken into ac-

count (double arrows).
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tested whether or not there is a change of (struc-
tural and energetic) disorder from the center to the
peripherical part of the dendrimer. Such an in-
vestigation seems to be useful since the coupling of
the outer part of the macromolecule to the solvent
molecules should be stronger and should introduce
various deviations from the ideal structure.
To this end a standard Monte Carlo approach

will be used where energetic and structural disorder
is accounted for by randomly chosen site-energies
Em and inter-site couplings Jmn belonging to the

Frenkel-exciton Hamiltonian Eq. (9) (compare,
e.g. [9,18,13]). The change of the disorder influence
onto different parts of the molecule is modeled via
increasing fluctuations of the various Em and Jmn
from the inner to the outer part of the dendrimer. A
direct access to such a site-specific disorder would
be obtained via MD simulation of dissolved den-
drimers. Here, we will follow an easier way and will
compare different types of an ansatz for this vari-
ation. Therefore we introduce Dr as the distance
between the centers of neighboring acetylene

Fig. 3. Energetic position of the fundamental absorption lines for compact phenylacetylene dendrimer generations D4–D94 (a)–(e).

The length of the vertical lines corresponds to the oscillator strength for the idealized case of the absence of static as well as dynamic

disorder. (For a clear identification of those lines with a small oscillator strength the positions of all lines are marked in the lower part

of the figures.) For the nearest-neighbor coupling constants we used �68 cm�1 [30].
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groups in the dendrimer (distance between neigh-
boring sites). Then, the width of the particular
energy fluctuation should vary from generation to
generation with x ¼ NDr=rchar, where N counts
the generation and rchar represents a characteristic
reference length. We have used the functions
x; x2; 2x; 5x, and 10x. The results for the exclusive
presence of diagonal and off-diagonal disorder in
the D22 dendrimer are shown in Figs. 5 and 6,
respectively. All spectra have been obtained by
generating 1000 configuration and, afterwards, by
smoothing out the resulting configuration averaged
absorption. For comparison the homogeneous
broadening of the D22 absorption is given in Fig. 4.
A detailed inspection of all absorption curves

shows a strong dependence on the used disorder
model. In particular off-diagonal disorder results
in a very structured line shape. Comparing the
different shapes with the one measured in [21] (see
Fig. 7) one may conclude that diagonal disorder
with an increase of the site energy fluctuations
according to 5ðNDr=rcharÞ seems most appropriate if
related to the other introduced models.

4.2. Vibrational satellites

Vibrational satellites of the main excitonic
transitions are visible in the experimental absorp-

tion spectra of all generations of compact dendri-
mers (see [21]). In a first attempt we used Eq. (35)
to compute the measured absorption. However,
better agreement could be achieved when simu-

Fig. 5. Absorption lineshape corresponding to the phenyl-

acetylene dendrimer generation D22 with the exclusive incor-

poration of energetic disorder (diagonal disorder with respect to

the site-representation). The disorder increases from the center

to the periphery with different functional dependences: linear

ðxÞ, quadratic ðx2Þ; 2x; 5x, and 10x (from the background to the
front panel).

Fig. 6. Absorption lineshape corresponding to the phenyl-

acetylene dendrimer generation D22 with the exclusive incor-

poration of structural disorder (off-diagonal disorder with

respect to the site-representation) The disorder increases from

the center to the periphery with different functional depen-

dences: linear ðxÞ, quadratic ðx2Þ; 2x; 5x, and 10x (from the
background to the front panel).

Fig. 4. Absorption lineshape corresponding to the phenyl-

acetylene dendrimer generation D22 with the exclusive incor-

poration of homogeneous line-broadening Ca ¼ 2; 8; 32; 128,
and 512 cm�1 (from the front panel to the background).
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lating the absorption spectra according to Eq. (39),
but introducing two different vibrational modes.
For simplicity, static disorder has been neglected.
The vibration with the higher frequency xð1Þ

hf has
the fixed energy of �hxð1Þ

hf ¼ 1936 cm�1 in all gen-
erations of the dendrimer. In contrast the vibra-
tion with the lower frequency xð2Þ

hf shifts from

�hxð2Þ
hf ¼ 1008 cm�1 in generations 1–3 to �hxð2Þ

hf ¼
1065 cm�1 in generation 4 and �hxð2Þ

hf ¼ 1170 cm�1

in generation 5. (Note that spectra shown in Fig. 8
have been obtained in neglecting combination
frequencies.)
Since the experimental spectra get broader due

to higher disorder in higher generations, in this
simple model a dephasing rate of Ca ¼ 645 cm�1

for the first generations, Ca ¼ 726 cm�1 for the
fourth and Ca ¼ 968 cm�1 for the fifth generation
has been introduced. Due to this high spectral
broadening and the much lower coupling between
the chromophores one cannot distinguish the dif-
ferent excitonic contributions to the absorption
spectrum. The displacement parameter g2ða; aÞ is
determined to be 0.5 for the vibration with the
larger frequency and 0.39 for that with the lower
frequency. With these parameters we can fairly
well reproduce the vibrational features of the ex-
perimental spectra of [21].

5. Linear absorption of chlorophyll–protein com-

plexes

At the present time the microscopically best
characterized class of chromophore complexes (on
an �AA length scale) is given by a selected number of

Fig. 8. Simulation of the short wavelength part of the absorption spectrum of D4–D94 including vibrational satellites. Parameters are

discussed in Section 4.2.

Fig. 7. Simulation of the absorption spectrum of D22 (solid

line) in comparison with the long wavelength tail of the ex-

perimental absorption spectra [21] (dashed line). The diagonal

disorder goes with x5.
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CC of photosynthetic active biological systems.
CC which contains as photoactive pigments dif-
ferent variants of chlorophyll molecules (Chl) and
carotenoids fulfill a light harvesting function. The
light energy that is absorbed in these so-called
antenna systems is transferred to the photosyn-
thetic reaction center where it drives charge
transfer reactions. The pigments of the photosyn-
thetic antennae are held in position by a scaffold of
membrane-bound proteins. Energy transfer be-
tween the pigments occurs via an exciton mecha-
nism [33].
The pigment–protein interaction plays a crucial

role for the functionality of the antennae. Different
binding sites in the protein lead to different mi-
croscopic environments of the pigments. The op-
tical transition energies of the pigments experience
a modulation by the protein dynamics. The slow
conformational motion of the protein with large
amplitude can be considered as static disorder
which leads to an inhomogeneous broadening of
the absorption spectrum of the antenna. The ho-
mogeneous broadening of the optical transitions is
determined by the fast and small-amplitude mo-
tion of the protein on a pico- and femtosecond
time scale. The static disorder together with the
heterogeneity in binding sites helps to increase the
absorption cross section of the antenna system to
achieve absorption of sun light in a broad spectral
range. The reaction center absorbs at the energetic
bottom of the antenna absorption spectrum.
Hence, the spatial transfer of excitation energy is
related with a spectral relaxation. The electronic
excess energy is dissipated into the protein. The
latter process is triggered by the fast protein dy-
namics, the dynamic disorder.
It is a challenge for the theory to understand the

complex scenario of the absorption process in
photosynthetic antennae. Starting from structural
information the inter-pigment couplings can be
estimated. However, little is known about how the
different binding sites in the protein shift the
electronic transition energies of the pigments.
Therefore, these energies have to be considered as
parameters. The local dynamic disorder will be
described by the spectral density JðxÞ, Eq. (C.13).
There is no direct way to obtain this quantity.
However, from vibrational side bands seen in high

resolution optical spectra on CC the shape and
amplitude (the so-called Huang–Rhys factor) of
JðxÞ can be estimated.
To describe linear optical absorption we can use

the CC Hamiltonian, Eq. (6). The use of the ex-
citon eigenstates jai is essential for the following
since only in this representation a correct de-
scription of exciton relaxation can be achieved.
The various protein vibrations described by the
coordinates Qn are comprised in Hvib, Eq. (13)
whereas their coupling to the excitonic states is
contained in Eq. (11). To obtain a sufficient so-
phisticated expression for IðxÞ which considers the
dipole–dipole coupling and exciton–vibrational
interaction we use the results of Section 3.2.

5.1. The temperature dependence of the absorption
spectrum

In the following we will apply the approach to
simulate the temperature dependent absorption of
a CC located in the light harvesting complex LHC-
II of higher plants. The importance of exciton ef-
fects for the interpretation of absorption spectra of
the LHC-II has been recognized earlier [34,35]. A
recent review on the energy transfer function of the
LHC-II can be found in [36]. Since the interaction
between CC monomers (which are arranged as
trimers in the LHC-II) is weak, the absorption can
be simulated in using a monomer model. From the
structural investigations of [37] it is known that the
LHC-II monomer contains 12 Chl. According to
their arrangements in relation to the carotenoids
they were tentatively assigned to 7 Chla and 5 Chlb
(see Fig. 9).
Recent mutation studies [38,39] confirmed a

large part of the original assignment, but revealed
also some differences. In [39] it was found that the
originally assigned Chlb3 is a Chla whereas a mixed
binding of Chla and Chlb was suggested for this
site in [38]. In addition, the latter study also found
further mixed sites at the originally assigned sites
of Chla3, Chla6, and Chla7. And, it was found in
[38] that the originally assigned Chlb1 is likely to be
a Chla.
Besides the assignment of the Chl species an-

other uncertainty concerns the direction of the Qy

transition dipole moments. The resolution of the
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electron diffraction experiment did not give the
exact orientation of the Qy optical transition di-
pole moments of the 12 Chl. Instead, two orien-
tations are possible for each Chl. In [40,41]
extensive exciton simulations of global features of
polarized absorption spectra and energy transfer
kinetics could be used to reduce the number of
possible dipole configurations from 212 to 9 (for
original Chl assignment of K€uuhlbrandt et al. [37])
or 15 (for a modified K€uuhlbrandt model in which
Chla6 changes its identity with b5, see Fig. 9).
We used the above two models for a simulation

of the temperature dependence of linear absorp-
tion [42]. Within both structural models a rea-
sonable fit of the linear absorption spectrum can
be obtained as it is shown in Fig. 10 [43]. The fit of
the 77 K circular dichroism spectrum which is
shown in Fig. 11 could be used to discriminate
between the above two structural models. In the
light of the aforementioned mutation studies it is,
however, possible that also the structural model
which our simulation favors does not include the
ultimate assignment of pigments. It can be ex-
pected that the fit of the CD signal shown in

Fig. 11 can be improved further when there will be
higher resolution structural data of the LHC-II
available.
It is our goal in the following to see what gen-

eral information can be obtained from our fit of
the linear absorption which will not change upon
future refinement of the structural model. To keep
the number of adjustable parameters as small as
possible we assumed the same inhomogeneous
width of the distribution function for the site en-
ergies. The determined value of 140 cm�1 can be
expected to be useful for future simulations. The
resulting inhomogeneous width of the lowest ex-
citon transition (which is smaller than the above
value because of motional narrowing) was calcu-
lated as 85 cm�1 which is in reasonable agreement
with a width of 70 cm�1 determined in hole
burning experiments [44].
The dynamic disorder of the site energies was

characterized by the Huang Rhys factors Sa ¼ 0:95
assumed equal for all Chla and Sb ¼ 0:75 for Chlb.
These values have been obtained also from the fit
of the absorption spectra. The shape jðxÞ of the
spectral density JmðxÞ ¼ SmjðxÞ (m ¼ Chla or

Fig. 9. Schematic cross-section view on the LHC-II monomer

according to K€uuhlbrandt et al. [37]. The mutual position of the

5 Chla and 7 Chlb (shown by their tetrapyrrole ring only) is
drawn together with the three a-helices spanning the mem-
brane. Graphics prepared using MOLSCRIPT (P.J. Kraulis, J.

Appl. Crystall. 24 (1991) 946).

Fig. 10. Linear absorption of the LHC-II for three different

temperatures within two structural models. Dashed line:

K€uuhlbrandt model. Solid line: modified K€uuhlbrandt model

ðChla6 $ b5Þ. Circles give the experimental values of [50]. The
sharp features in the 40 K spectra are due to the finite ensemble

size (1000) used for the statistical average.

346 J. Sch€uutze et al. / Chemical Physics 275 (2002) 333–354



Chlb) was estimated from the low-temperature
fluorescence band [35]. The normalized function
jðxÞ is of the type jðxÞ � x expf�ðx=xcÞpg, with
p ¼ 0:5 and �hxc ¼ 6 cm�1, which puts the maxi-
mum of the spectral density at �hx ¼ 24 cm�1. This
local exciton–vibrational coupling leads to aHuang
Rhys factor of 0.8 for the lowest exciton state [42]
in agreement with hole burning experiments [44].

5.2. Exciton life-times

In the following it shall be investigated which
exciton life-times can be predicted from the above
obtained homogeneous and inhomogeneous line
width of LHC-II exciton transitions. Within the
Markov approximation the life time Ta of the ex-
citon state a is obtained from the real part of the
exciton–vibrational correlation function, Eq. (C.9)

sa ¼ 2
X

b

Re ~CCab;baðxabÞ
 !�1

: ð40Þ

In the presence of static disorder a probability
density psðxÞ to find at a given frequency (for ex-
ample in a photon echo experiment) a certain life
time may be defined as

psðxÞ ¼

P
a

dðs � saÞdðx � XaÞ
	 


dis

hdðx � XaÞidis
: ð41Þ

The probability Pxðs1; s2Þ to find at a frequency x
a lifetime s in an interval s1 < s < s2 is then easily
derived via a respective time-integration. The
probabilities of life times for the LHC-II obtained
from the parameters determined from the linear
absorption spectrum are shown in Fig. 12. The
center of the spectrum is determined by sub-pico-
second exciton life-times. At high energies there
appear life times on a few picosecond. On the red
side, in addition, very long life times (larger than
10 ps) are obtained. The latter are caused by the
fact that the lowest exciton state can only be de-
populated by thermal activation. If the energy gap
to the next higher exciton state is large compared
to the thermal energy (a temperature of 77 K was
assumed) a long life time results for the lowest
exciton state. The life times found in the center and
in the blue part of the spectrum are in agreement
with time resolved pump-probe spectra measured
at 77 K by Visser et al. [45]. In this experiment it
was found that the exciton relaxation from high to
low energies occurs with transfer times of 300 fs
(40%), 600 fs (40%) and 4–9 ps (20%). The multi-
exponentiality of the transfer can be assumed to
arise from heterogeneity and static disorder. For
the red part of the spectrum life times of 400 fs
(around 672 nm), 2.4 ps (around 661 nm) and a
slow component in the 10–20 ps range were found
in [45]. These components are also present in

Fig. 11. 77 K circular dichroism spectra within the two models

described in Fig. 10 (solid and dashed lines) compared to ex-

perimental values of [51] (circles).

Fig. 12. Exciton life-times obtained at different wavelengths at

77 K for LHC-II monomers.
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Fig. 12. A detailed comparison of theory and ex-
periment would require to simulate the pump-
probe spectra. Such a detailed simulation awaits,
however, higher resolution structural data of the
LHC-II complex.

5.3. Exciton–vibrational coupling

We want to finish with some more general
considerations of the exciton–vibrational coupling
in the LHC-II which might prove useful for the
development of theory for the description of linear
absorption spectra. The introduction of the func-
tion KabðRcÞ in Eq. (C.12) makes it possible to
compare the magnitudes of the off-diagonal ele-
ments of the exciton–vibrational coupling (con-
tained in Kaa) with the magnitude of the diagonal
elements (contained in Kab for a 6¼ b). In Fig. 13
the disorder averaged function KabðRcÞ is shown
for two different values of the correlation radius
Rc. As is seen in this figure the off-diagonal ele-
ments are smaller by at least a factor of three. The

reason of this difference lies in the different site
energies assumed for the pigments and in the static
disorder which both tend to localize the exciton
wavefunction. This result provides a direct moti-
vation for the introduction of excitonic potential
energy surfaces and the perturbative treatment of
the inter-PES coupling as it was done in Appendix
B. We note that this theory allows to treat the
diagonal part of the exciton vibrational coupling
non-perturbatively.

6. Conclusion

To achieve a detailed understanding of chro-
mophore complex absorption spectra the method
of the reduced density operator combined with a
time-dependent formulation of the absorption has
been applied. Within this approach it could be
shown that a certain approximation carried out
with respect to the density operator equation is
translated to an approximation of the absorption

Fig. 13. Comparison of the diagonal elements of the exciton vibrational coupling with the off-diagonal coupling elements by means of

the function KabðRcÞ defined in Eq. (C.14) for two different values of the correlation radius Rc ¼ 1; 30 �AA. The x-axis on the left-hand
side contains the number a of the exciton state, whereas the number on the x-axis on the right-hand side is a combination of the
numbers a and b. The function KabðRcÞ has been obtained from an average over 1000 randomly chosen configurations of disorder in
site energies.
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coefficient. The obtained approximation accounts
for the formation of delocalized exciton states as
well as for the exciton–vibrational coupling. The
usefulness of the approximation could be under-
lined in applying it to the pigment protein complex
LHC-II of the light harvesting system belonging to
the photosystem 2 of higher plants. And, we have
been able to demonstrate for this example that a
sufficient sophisticated computation of absorption
spectra may lead one to interesting conclusions on
the underlying microscopic structure. Further-
more, the density matrix approximation has been
related to other descriptions of chromophore
complex absorption spectra based on a systematic
expansion with respect to vibrational satellites of
increasing order.
The latter type of description has been used to

investigate the influence of static and dynamic
disorder on (compact) phenylacetylene dendri-
mers. Using static disorder of the site energies in-
creasing from the inner to the outer part of the
dendrimeric molecule measured absorption spectra
could be reproduced in a satisfactory manner.
Vibrational satellites have been also studied.
As an outlook we presented preliminary results

on the computation of chromophore complex ab-
sorption spectra based on an exclusive expansion
with respect to the part of the exciton vibrational
coupling being off-diagonal with respect to the
exciton quantum numbers. The obtained result
looks promising and will be investigated in more
detail in the near future.

Acknowledgements

This research was supported by the DFG
through project Ma 1356/7. B. B. acknowledges it
with thanks. T.R. would like to acknowledge
support from the Alexander von Humboldt Foun-
dation via a Lynen Research Fellowship.

Appendix A. Expansion with respect to the exciton–

vibrational coupling

The expansion with respect to the whole cou-
pling matrix gnða; bÞ represents a standard ap-

proach mainly used to compute vibrational
satellites accompanying the basic (0–0) transition
into the exciton levels. To have a compact notation
of the whole perturbation series we split off the
time-evolution operator in Eq. (2) (the dipole–di-
pole correlation function) into a free part and a
part given by the exciton–vibrational coupling.
The latter comprises the S-operator

Sðt; 0Þ ¼ T exp
�
� i
�h

Z t

0

dsH ðIÞ
ex–vibðsÞÞ

�
ðA:1Þ

with the exciton–vibrational coupling in the in-
teraction representation

H ðIÞ
ex–vibðsÞ ¼

X
a;b

e�iXabs
X

n

�hxngnðabÞQnðsÞjaihbj:

ðA:2Þ
Note the abbreviation Xab ¼ Xa � Xb and the
time-dependence of the Qn originating from the
vibrational Hamiltonian, Eq. (13). With the in-
troduced S-operator the dipole–dipole correlation
function, Eq. (2) is obtained as

Cd–dðtÞ ¼
X
ab

d�adbe
�iXattrvibfR̂ReqhajSðt; 0Þjbig;

ðA:3Þ
including the vibrational equilibrium statistical
operator R̂Req. Expanding the S-operator in powers
of H ðIÞ

ex–vib introduces vibrational satellites to the
pure excitonic absorption spectrum. We do not
give details here but refer to Section 3.1 where a
somewhat more general approach including life-
time broadening of the exciton levels will be in-
troduced.
The pure excitonic absorption spectrum, Eq. (5)

is simply derived if one neglects any coupling to
the vibrational DOF of the CC (approximation of
a rigid CC). We neglect the related S-operator
which reduces the trace in Eq. (A.3) to da;b and
finally obtain the absorption coefficient according
to Eq. (5). The absorption spectrum is given as a
set of sharp lines corresponding to transitions into
the various states of the exciton spectrum. Obvi-
ously this approach is disadvantegously from the
conceptual point of view since any homogeneous
line-broadening is absent. Furthermore, it is
cumbersome task to carry out the perturbation
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expansion of Eq. (A.3). As it is well known rea-
sonable summations can only be obtained for the
coupling of the exciton levels to a single (effective)
vibrational mode. This difficulty is somewhat
overcome if one uses the concept of excitonic PES,
Eq. (15) to reformulate the perturbation formula,
Eq. (A.3).

Appendix B. Expansion with respect to the off-

diagonal part of the exciton–vibrational coupling

As mentioned at the end of Section 2 one can
introduce PES which refer to the various exciton
levels a and which are incorporated in the vibra-
tional Hamiltonian, Eq. (15). Then, in similarity to
the foregoing section it becomes possible to carry
out an perturbation expansion with resect to the
off-diagonal exciton–vibrational coupling. Now,
instead of Eq. (A.3) we obtain (note the replace-
ment of Xa by ea)

Cd–dðtÞ¼
X
ab

d�adbe
�ieat

� trvibfR̂ReqUþ
0 ðtÞUaðtÞhajSðt;0Þjbig: ðB:1Þ

The time-evolution operator Uþ
0 ðtÞ has been de-

fined by the ground-state CC Hamiltonian, Eq. (7)
and we have set

UaðtÞ ¼ expð�iDHat=�hÞ ðB:2Þ
with DHaðQÞ from Eq. (15). The S-operator reads

Sðt; 0Þ ¼ T exp
�
� i
�h

Z t

0

dsHðIÞ
ex–vibðsÞ

�
: ðB:3Þ

It incorporates the off-diagonal part of the exci-
ton–vibrational coupling (in the interaction rep-
resentation)

H
ðIÞ
ex–vibðsÞ ¼

X
a 6¼b

e�ieabs
X

n

�hxngnðabÞUþ
a

�ðsÞQnðsÞUbðsÞjaihbj: ðB:4Þ

The time-dependence of the Qn follows from the
vibrational Hamiltonian, Eq. (13). Formula (B.1)
gives the possibility to carry out a perturbational
expansion with respect to the off-diagonal exciton–
vibrational coupling. But a partial summation
with respect to the diagonal part is already incor-
porated via the time-evolution operators defined

by DHa. Consequently, it would be of interest to
study the case where the S-operator has been ne-
glected in Eq. (B.1). It follows:

Cd–dðtÞ ¼
X

a

jdaj2e�ieattrvibfR̂ReqUþ
0 ðtÞUaðtÞg: ðB:5Þ

The trace with respect to the contributions of the
excitonic PES reads

trvibfR̂ReqUþ
0 ðtÞUaðtÞg ¼ expð�sað0Þ þ saðtÞÞ; ðB:6Þ

where the line-shape function is given as

saðtÞ� saa;aaðtÞ

¼
Z
dxe�ixtð1þnðxÞÞ Jaa;aaðxÞð � Jaa;aað�xÞÞ:

ðB:7Þ
The excitonic spectral density can be found in
Appendix C. The absorption cross section follows
as:

IðxÞ ¼
X

a

jdaj2e�sað0Þ
Z
dt expðiðx � eaÞt þ saðtÞÞ:

ðB:8Þ

This formula is similar to Eq. (3) but includes a
partial summation with respect to the inter-chro-
mophore Coulombic interaction and to all diago-
nal coupling matrix elements gnða; aÞ. Every
excitonic level contributes independently from the
other. But in contrast to the approximation of the
rigid aggregate the absorption lines are broadened
due to the inclusion of the vibrational DOF.
An expansion with respect to the off-diagonal

exciton vibrational coupling is demonstrated in
what follows. Although the concept of separating
the exciton–vibrational coupling into a diagonal
and off-diagonal part has been used elsewhere [46],
it is not yet clear in the literature whether this
approach is really useful or only represents a nice
theoretical arabesque. In any case it has to be
guaranteed that gnða; aÞijgnða; bÞj; a 6¼ b. That
such a relation can be fulfilled is demonstrated for
the CC of photosynthetic antenna systems in
Section 5.
For the following the interaction between dif-

ferent PES will be treated in first-order perturba-
tion theory leading to a separation of the
correlation function according to
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Cd–dðsÞ ¼ Cð0Þ
d–dðsÞ þ Cð1Þ

d–dðsÞ: ðB:9Þ
Here Cð0Þ

d–d is given in Eq. (B.5) and the first-order
correction with respect to the off-diagonal exciton–
vibrational coupling reads

Cð1Þ
d–dðtÞ ¼ �i

X
a6¼b

Z t

0

dsd�adbe
�ieateieabs

� trvibfR̂ReqUþ
0 ðtÞUaðt � sÞUabUbðsÞg:

ðB:10Þ
Note the abbreviation

Uab ¼
X

n

xngnðabÞQn: ðB:11Þ

Introducing the displacement operator

Dþ
a ¼ exp

X
n

gnða; aÞðCn

(
� Cþ

n Þ
)
; ðB:12Þ

we get the trace in Eq. (B.10) as

trvibf	 	 	g ¼ trvibfR̂ReqUþ
0 ðtÞDþ

a U0ðt � sÞ
� DaUabDþ

a DaDþ
bU0ðsÞDbg: ðB:13Þ

Furthermore, it holds

DjUabDþ
j ¼ Uab � 2habðjÞ ðB:14Þ

with the quantity

habðjÞ ¼
X

n

xngnða; bÞgnðj; jÞ; ðB:15Þ

resembling a reorganization energy. Next, we in-
troduce the function [47]

F ðkÞ ¼ �2habðaÞtrvib
� fR̂ReqDþ

a ðtÞe�kUabðsÞ=2habðaÞDabðsÞDbg
ðB:16Þ

which reduces to expression (B.13) when ex-
panded with respect to k up to linear terms and
setting k ¼ 1. The time-dependence of the dis-
placement operators has been defined according
to

DaðtÞ ¼ Uþ
0 ðtÞDaU0ðtÞ

¼ exp
X

n

gnða; aÞðCne
�ixnt

(
� Cþ

n e
ixntÞ

)

ðB:17Þ

and that of the coupling operator Uab in the same
manner. The combined displacement operator Dab

is defined as DaDþ
b . The following properties of

Bose operators are needed:

eAeB ¼ exp
X

n

ða1n

(
þ a3nÞCn þ ða2n þ a4nÞCþ

n

)

� exp 1

2

X
n

ða1na4n

(
� a2na3nÞ

)
; ðB:18Þ

where A¼
P

n ða1nCn þa2nCþ
n Þ and B¼

P
n ða3nCn þ

a4nCþ
n Þ. A second-order cumulant expansion which

is exact for harmonic oscillators gives for the
thermal average

trvib R̂Req exp
X

n

ða1nCn

 (
þ a2nCþ

n Þ
!)

¼ exp 1

2

X
n

a1na2nð1
 

þ 2nðxnÞÞ
!
; ðB:19Þ

where the Bose–Einstein distribution function of
vibrational quanta nðxÞ was introduced. By ap-
plying the above properties the correlation func-
tions can be calculated. The first-order results for
the absorption cross section reads

I ðIÞðxÞ ¼
X
a 6¼b

d�adbIm

Z 1

0

dt
Z t

0

ds expfiðx � XbÞt

� iXabs þ Sabðt; sÞ � Sabð0; 0Þg
� ðrbb;bbðt � sÞ þ rab;aaðsÞ � Eab=�hÞ:

ðB:20Þ

The newly introduced functions read

Sabðt; sÞ ¼ saa;bbðtÞ þ sbb;bbðt � sÞ � saa;bbðt � sÞ
þ saa;aaðsÞ � saa;bbðsÞ; ðB:21Þ

where the line shape function has been introduced
in Eq. (B.7). Furthermore, we defined

rab;jdðtÞ ¼
Z
dxe�ixtð1þ nðxÞÞðJab;jdðxÞ

þ Jab;jdð�xÞÞ: ðB:22Þ

The quantity Eab represents a certain form of a
reorganization energy

Eab ¼
Z
dx�hxðJaa;abðxÞ þ Jbb;abðxÞÞ: ðB:23Þ
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This result demonstrates the general ability of the
approach to give corrections proportional to
powers of the off-diagonal exciton–vibrational
coupling functions. Concrete numerical results will
be given elsewhere.

Appendix C. The quantum master equation

To fix the notation we shortly quote the
Quantum Master Equation (QME) which repre-
sents a non-Markovian equation of motion gov-
erning the reduced density operator. This type of
density operator equation accounts for the cou-
pling to the reservoir DOF in the second order of
perturbation theory and represents the standard
equation for all cases where the active system
couples weakly or with intermediate strength to
the reservoir (see, e.g. [48,49]). According to the
notation of [2] it is written as

o

ot
q̂qðtÞ ¼ � i

�h
ðHS; q̂qðtÞÞ�

�
X
u;v

Z t�t0

0

dsfCuvðsÞðKu;USðsÞKv

� q̂qðt � sÞUþ
S ðsÞÞ� � CvuðsÞðKu;USðsÞ

� q̂qðt � sÞKvUþ
S ðsÞÞ�g: ðC:1Þ

HS has to be understood as the Hamiltonian of the
active system, and the system–reservoir coupling
has been used in the general form

HS–R ¼ �h
X
u

KuUu; ðC:2Þ

with operators Ku and Uu acting exclusively in the
state-space of system and reservoir states, respec-
tively. The correlation function in Eq. (C.1) is the
equilibrium correlation of the reservoir DOF, i.e.,

CuvðsÞ ¼ trRfR̂ReqeiHRs=�hUuðsÞe�iHRs=�hUvg: ðC:3Þ

Here we identify the active-system Hamiltonian by
the electronic ground-state of the CC (with pro-
jection operator P̂P0) and the exciton states (with
projection operator P̂P1). Therefore, we write
HS ¼ E0P0 þ HexP1 (compare Eq. (6), a generaliza-
tion including high-frequency vibrational DOF
has been given in Section 3.2). As already noted
the ground-state energy E0 is set equal to zero. The

system–reservoir coupling HS–R has to be identified
with the exciton–vibrational interaction, Eq. (11)
restricted to the excited states. Hence, we can
identify the index u with the pair ab and have

Kab ¼ jaihbj � KabP̂P1 ðC:4Þ
and

Uab ¼
X

n

xngnðabÞQn: ðC:5Þ

If the vibrational DOF are described by indepen-
dent harmonic oscillators the correlation function,
Eq. (C.3) can be written as

CabjdðtÞ ¼
Z
dxe�ixtx2ð1þ nðxÞÞðJab;jdðxÞ

� Jab;jdð�xÞÞ; ðC:6Þ

where the spectral density is defined as

Jab;jdðxÞ ¼
X

n

gnða; bÞgnðj; dÞdðx � xnÞ: ðC:7Þ

The frequency dependent correlation function
CabjdðxÞ can be directly deduced from Eq. (C.6),
whereas the half-sided Fourier-transform ~CC can be
obtained from

~CCabjdðxÞ ¼ �
Z
d �xx
2pi

Cabjdð �xxÞ
x � �xx þ ie : ðC:8Þ

The real part simply follows as:

Re ~CCab;baðxÞ ¼ px2ð1þ nðxÞÞðJabbaðxÞ
� Jabbað�xÞÞ ðC:9Þ

and the imaginary part can be deduced from the
real part via a Kramers–Kronig like relation

Im ~CCab;baðxÞ ¼ 1
p
P

Z
d �xx
ReCab;bað �xxÞ

x � �xx
: ðC:10Þ

The spectral density JabbaðxÞ, Eq. (C.7) is related
to the local exciton–vibrational coupling via the
local representation of the excitonic coupling
constants gnða;bÞ (see, Eq. (12))

JabbaðxÞ ¼
X
m;n

C�
aðmÞCbðmÞC�

bðnÞCaðnÞ

�
X

n

g2nðmÞg2nðnÞdðx � xnÞ: ðC:11Þ

If one introduces a correlation radius of the vib-
rational degrees of freedom as it was done in [18]
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the above expression for the spectral density can
be simplified to

JabbaðxÞ ¼ KabðRcÞJðxÞ: ðC:12Þ
Here a local spectral density JðxÞwas introduced as
JðxÞ ¼

X
n

g2ndðx � xnÞ; ðC:13Þ

common to all sites (chromophores) in the CC.
The function

KabðRcÞ ¼
X
m;n

C�
aðmÞCbðmÞC�

bðnÞCaðnÞe�Rmn=Rc

ðC:14Þ
contains the exciton coefficients, the correlation
radius Rc of the vibrational degrees of freedom as
well as the inter-chromophore distances Rmn.
Since the density operator being of interest here

is off-diagonal, i.e., is given as the coherence be-
tween the electronic ground-state and the first ex-
cited electronic CC-state we can simplify the
QME, Eq. (C.1) to get

o

ot
P̂P1q̂qðtÞP̂P0 ¼ � i

�h
ðH1P̂P1q̂qðtÞP̂P0 � P̂P1q̂qðtÞP̂P0H0Þ

�
X
u;v

Z t�t0

0

dsCuvðsÞKuU1ðsÞKvP̂P1

� q̂qðt � sÞP̂P0Uþ
0 ðsÞ: ðC:15Þ

Changing to the (off-diagonal) matrix elements

qa0ðtÞ ¼ hajq̂qðtÞj0i ðC:16Þ
it follows:

o

ot
qa0ðtÞ ¼ �iXaqa0ðtÞ

�
X
b;j

Z t�t0

0

dse�iXbsCabbjðsÞqj0ðt � sÞ:

ðC:17Þ
Obviously, qa0 can be identified with the quantity
Ba, Eq. (21). The dissipative part reduces to simple
dephasing if one neglects contributions with j 6¼ a
and carries out the Markov limits. To this end one
replaces qa0ðt � sÞ by expðiXasÞqa0ðtÞ and extends
the time-integral up to infinity. It follows:

oqa0ðtÞ
ot

� �
diss

¼ �Caqa0ðtÞ; ðC:18Þ

where the dephasing rate reads

Ca ¼ p
X

b

X2ab ð1


þ nðXabÞÞJab;baðXabÞ

þ nðXbaÞJab;baðXbaÞ
�
: ðC:19Þ
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