
Chapter 1

Introduction

1.1 Schr ödinger Equation for Molecules

we consider a molecule formed by Nnuc atoms which are counted by n = 1, 2, ... with
atomic numbers Z1, Z2, ...;
nuclear coordinates are denoted by Rn, and the whole set of coordinates by R = {Rn};
the total number of electrons is Nel; if we consider a neutral molecule we get Nel =
∑

n Zn;
electron coordinates are rj, and the whole set of coordinates is abbreviated by r = {rj};
the molecule has 3Nel + 3Nnuc spatial degrees of freedom; subtracted are the three de-
grees of freedom of translation and rotation of the total system;
Nel spin degrees of freedom have to be added; single electron spin–quantum number
is denoted as σj;
nuclear spins need not to be considered as dynamical variables;
the used Hamiltonian should represent a non–relativistic approximation; spin–orbit cou-
pling is neglected;
the Hamiltonian of a molecule contains the kinetic energy of the electrons Tel, the ki-
netic energy of the nuclei Tnuc, the repulsive interaction among all electrons Vel−el and
among all nuclei Vnuc−nuc and, finally, the attractive interaction between electrons and
nuclei Vel−nuc;

Hmol = Tel + Vel−el + Vel−nuc + Vnuc−nuc + Tnuc

Tel =
∑

j
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2
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the sum formulas exclude divergent terms;
stationary Schrödinger equation for the molecule reads:

HmolΨλ({rj, σj}, {Rn}) = EλΨλ({rj, σj}, {Rn})

since electrons are identical particles (with spin one half) the wave function has to be
antisymmetric with respect to an interchange of the electron coordinates rj, σj; this is
not valid for the nuclei (except some very special cases)
solution of the stationary Schrödinger equation fixes the energy spectrum Eλ and the
eigenfunctions Ψλ;
if Eλ < 0, the molecule as a bound state of atoms is stable;
for future use we write Ψ(r, σ,R) instead of Ψ({rj, σj}, {Rn})
stationary Schrödinger equation takes the form

HmolΨλ(r, σ,R) = EλΨλ(r, σ,R)

in the same manner we obtain the time–dependent Schrödinger equation as

i~
∂

∂t
Ψ(r, σ,R; t) = HmolΨ(r, σ,R; t)

the formal solution reads

Ψ(r, σ,R; t) = e−iHmol(t−t0)/~ Ψ(r, σ,R; t0)

the wave function Ψ(r, σ,R; t0) represents the initial value of the time–dependent wave
function Ψ(r, σ,R; t), and we introduced the time–evolution operator

e−iHmol(t−t0)/~ = Umol(t − t0)

The Electron Spin

while Ψ(r, σ,R) represents the molecular wave function for a particular spin configura-
tion the correct wave function should be an eigenstate of the total electron spin operator
and its z–component; a superposition of the Ψ(r, σ,R) for different spin configurations
may become necessary

|ΨS,Sz
(r, R)〉 =

∑

σ

Ψ(r, σ,R)|σ〉

the superposition is not necessary when the so–called closed shell configuration is
present; this is valid if the number of all electrons is even and Nel/2 electrons are in
a spin–up state and the same number in the spin–down state; the singlet state (zero
overall spin) may be written as

|ΨS=0,Sz=0(r, R)〉 = Ψ(r, R)
∑

σ

ζ(σ)|σ〉

the spatial electronic and nuclear degrees o freedom enter a single molecular wave
function Ψ(r, R) (the function ζ(σ) realizes the overall singlet spin configuration);
we will exclusively consider this case in the following;
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1.1.1 The Born–Oppenheimer Ansatz: Expansion with Respect to
Adiabatic Electronic States

when solving the molecular Schrödinger equation we may profit from the huge mass
difference between electrons and nuclei; the mass ratio reads: mel/Mn < 10−4;
we may assume that the electronic motion is much faster than that of the nuclei (semi–
classical argument since nuclear coordinates have a spatial uncertainty); nuclear mo-
tion induces an adiabatic change of the potential Vel−nuc;
general procedure: we, first, compute the electronic states (electron configuration) for
a fixed nuclear configuration; the resulting wave functions φa(r; R) and energies Ea(R)
parametrically depend on the nuclear configuration R; they should be a good start-
ing point for a solution of the molecular Schrödinger equation → Born–Oppenheimer
ansatz;

Ψ(r, R) = χ(R)φ(r; R)

Electronic Schr ödinger Equation

electronic Hamiltonian depends on the actual nuclear configuration R:

Hel = Tel + Vel−nuc + Vel−el = Hel(R)

related Schrödinger equation:

Hel(R)φa(r; R) = Ea(R)φa(r; R)

eigenvalues Ea(R) are known as adiabatic electron terms referring to adiabatic elec-
tronic wave functions φa(r; R) ;
it is the subject of Quantum Chemistry to solve the electronic Schrödinger equation
and to describe the energy spectrum and the wave functions in detail
the reference method is the Hartree–Fock approach, where the wave function is rep-
resented as an anti–symmetrized product of single electron wave functions; numerous
improvements have been introduced over the years (configuration interaction meth-
ods, coupled cluster approach, Moller–Plesset perturbation theory); a very different
approach is know as the density functional method;
adiabatic electronic wave functions form a complete set (for every nuclear configura-
tion); therefore we may expand the molecular wave function with respect to the elec-
tronic wave functions

Ψ(r, R) =
∑

a

χa(R)φa(r; R)

this reproduces the Born–Oppenheimer ansatz in a more involved version; the expan-
sion coefficients χa(R) depend on the nuclear configuration and obey the following
normalization condition (note the abbreviation of the integrals with respect to electronic
and nuclear coordinates):

∫

dr dR | Ψ |2=
∑

a

∫

dR | χa |2= 1
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Operator of Nonadiabatic Coupling

the expansion coefficients χa(R) can be obtained by inserting the expansion of the
molecular wave function into the molecular Schrödinger equation

HmolΨ = (Hel + Tnuc + Vnuc−nuc)
∑

a

χaφa

=
∑

a

(

Eaχaφa + (Tnuc + Vnuc−nuc)χaφa

)

= E
∑

a

χaφa

we multiply with φ∗

b from the left and carry out an integration with respect to all electronic
coordinates; it follows an equation for the expansion coefficients χa

〈φb|Hmol|Ψ〉 =

∫

dr φ∗

bHmolΨ

= (Eb + Vnuc−nuc)χb +
∑

a

〈φb|Tnuc|φa〉χa = Eχb

the dependence of the electronic wave function φa on the nuclear coordinates has to
be properly taken into account:

〈φb|Tnuc|φa〉χa =
∑

n

〈φb|
P2

n

2Mn

|φa〉χa

=
∑

n

1

2Mn

〈φb|
(

[P2
n|φa〉]χa + 2[Pn|φa〉]Pnχa + |φa〉P

2
nχa

)

the first two terms of this expression will be abbreviated by

Θ̂ba = 〈φb|[Tnuc|φa〉] +
∑

n

1

Mn

〈φb|[Pn|φa〉]Pn

they form the nonadiabaticity operator, the operator of nonadiabatic coupling;
the approach turned the total molecular Schrödinger equation into a Schrödinger equa-
tion which focuses on the nuclear motion (note the interchange of a and b)

Eχa = (Tnuc + Ea + Vnuc−nuc)χa +
∑

b

Θ̂abχb

supposition for a solution is the solution of the electronic Schrödinger equation (at all
nuclear configurations); respective quantum numbers of nuclear motion are λ;
total electronic spectrum determines the solution for a particular λ;
coupling between different functions χa realized by the operator Θ̂ab;
molecular wave function takes the form:

Ψλ(r, R) =
∑

a

χaλ(R)φa(r; R)

normalization
< Ψλ | Ψλ′ >=

∑

a

< χaλ | χaλ′ >= δλ,λ′
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Potential Energy Surfaces

repulsive potential between different nuclei plus the electronic eigenvalue with its para-
metric dependence on the nuclear coordinates forms an effective potential

Ua(R) = Ea(R) + Vnuc−nuc(R)

this potential determines the nuclear motion and is known as the Potential Energy Sur-
face (PES);
presence of Ea in the formula for Ua:
electron cloud around the nuclei of the molecule screens their mutual repulsive inter-
action; attraction becomes possible; formation of bound states;
if the electronic wave function is real the diagonal part of the Θ–operator becomes a
multiplication operator; it will be included into the definition of the PES

Ua = Ea + Vnuc−nuc + Θaa

if the nonadiabatic coupling is of less importance we arrive at

(Tnuc + Ua)χ
(adia)
aν = E (adia)

aν χ(adia)
aν

the solutions refer to a single adiabatic energy level Ea and are named adiabatic ap-
proximation of the electron–vibrational states; the ν are the quantum numbers of vibra-
tional motion and the respective energy spectrum is given by E

(adia)
aν ; the χ

(adia)
aν can be

considered as eigenstates of the vibrational Hamiltonian

Ha = Tnuc + Ua

the PES should have a minimum at R0; if φ is used at R = R0 we arrive at the simple
adiabatic approximation or the so–called Born–Oppenheimer approximation (Born and
Oppenheimer,1927);
detailed knowledge of the PES Ua(R) forms the basis for an understanding of vibra-
tional dynamics, conformational changes, formation and breaking of chemical bond
(dynamics of chemical reactions);
shape of the PES defines molecular structure, presence of tautomers, form of reaction
pathways;

Time–Dependent Nuclear Schr ödinger Equation

we use the expansion of the molecular wave function with respect to adiabatic elec-
tronic states in the case of a time–dependent molecular wave function

Ψ(r, R; t) =
∑

a

χa(R, t)φa(r; R)

the expansion coefficients χa(R, t) become time dependent, thus they form time–dependent
nuclear wave functions and obey the following Schrödinger equations

i~
∂

∂t
χa(R, t) = Haχa(R, t) +

∑

b

Θ̂abχb(R, t)

the motion of the wave function in the adiabatic electronic state φa is determined by the
vibrational Hamiltonian Ha; the nonadiabatic coupling operators Θ̂ab induce transitions
to other electronic states;
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Adiabatic Electronic State Representation of the Molecular H amiltonian

the φa(r; R) form a complete basis (for every nuclear configuration R); the single func-
tion can be considered as the coordinate representation of a state vector |φa(R)〉:

φa(r; R) = 〈r|φa(R)〉

notation of the completeness relation independent on the actual representation
∑

a

|φa(R)〉〈φa(R)| = 1

the adiabatic state representation of the molecular Hamiltonian is obtained as

Hmol =
∑

a,b

〈φa|Hel + Tnuc + Vnuc−nuc|φb〉|φa〉〈φb|

=
∑

a

Ha|φa〉〈φa| +
∑

a,b

Θ̂ab|φa〉〈φb|

the Hamiltonian does not depend on electronic coordinates; the coordinate represen-
tation is replaced by the electronic state representation; however, the description of
nuclear coordinates stays in the nuclear coordinate representation;
in this way an easy restriction to that part of the electronic spectrum becomes possible
which is of interest to understand a particular process (experiment);

Adiabatic Electron Vibrational State Representation of the Mo lecular Hamiltonian

to arrive at the respective expansion we change to the adiabatic electron–vibrational
state representation and introduce the following replacement

Ψ(adia)
aν (r, R) = φaχaν → |Ψaν〉

the expansion of Hmol results in the following matrix elements

〈Ψaν |Hel + Tnuc + Vnuc−nuc|Ψbµ〉 =

∫

drdR φ∗

aχ
∗

aν(Hel + Tnuc + Vnuc−nuc)φbχbµ

=

∫

dR
(

δa,bχ
∗

aν(Tnuc + Ua)χaµ + χ∗

aνΘ̂abχbµ

)

= δaν,bµE
(adia)
aν + Θaν,bµ

accordingly, the molecular Hamiltonian takes the form

Hmol =
∑

aµ

E (adia)
aν |Ψaν〉〈Ψaν | +

∑

aν,bµ

Θaν,bµ|Ψaν〉〈Ψbµ|

the operator of the nonadiabatic coupling turned to the electron vibrational matrix ele-
ments Θaν,bµ; they couple the different vibrational multilevel systems which refer to the
various adiabatic electronic states;
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1.1.2 Expansion with Respect to Diabatic Electronic States

we assume a separation of Hel into a part H0 (zero–order part) and a remaining part V
(perturbation);
the solution of the Schrödinger–equation which refers to H0 should be known (quantum
numbers are denoted by m,n, ...)

H0ϕm = Emϕm

solution of the total molecular Schrödinger–equation is expanded with respect to the
ϕm

Ψ(r; R) =
∑

m

χm(R)ϕm(r; R)

the resulting representation is known as the diabatic representation; since the separa-
tion of Hel into H0 and V is not unique this definition of a diabatic representation is also
not unique;
the equations for the nuclear wave functions take the form

Eχm = (Tnuc + Em + Vnuc−nuc)χm +
∑

n

(

Θ̂mn + Vmn

)

χn ;

we introduced the matrix elements

Vmn = 〈ϕm|V |ϕn〉 ; (1.1)

those are named static coupling; these couplings are added to the nonadiabatic cou-
plings;
since the nonadiabatic coupling follows from the matrix elements of the nuclear kinetic
energy operators it is also known as the dynamic coupling;
general observation when using a diabatic representation: the static coupling dom-
inates the dynamic coupling (the latter can be neglected); introduction of a diabatic
representation can be made unique if the definition requires a vanishing of the dy-
namic coupling;
PES in the diabatic representation

Um(R) = Em(R) + Vnuc−nuc(R) + Θmm(R) + Vmm
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