1.2 The Time-Dependent Schrödinger Equation

using the state vector notation we get

$$
i \hbar \frac{\partial}{\partial t}|\Psi(t)\rangle=H|\Psi(t)\rangle
$$

the initial value of the state vector is $\left|\Psi_{0}\right\rangle \equiv\left|\Psi\left(t_{0}\right)\right\rangle$;
if the Hamiltonian is time-independent a formal solution is given by

$$
|\Psi(t)\rangle=e^{-i H\left(t-t_{0}\right) / \hbar}\left|\Psi_{0}\right\rangle
$$

introduction of the time-evolution operator

$$
U\left(t, t_{0}\right) \equiv U\left(t-t_{0}\right)=e^{-i H\left(t-t_{0}\right) / \hbar}
$$

$U\left(t, t_{0}\right)$ is unitary and obeys the following equation of motion

$$
i \hbar \frac{\partial}{\partial t} U\left(t, t_{0}\right)=H U\left(t, t_{0}\right)
$$

with the initial condition $U\left(t_{0}, t_{0}\right)=1$;
the time-evolution operator has the important property that it can be decomposed as

$$
U\left(t, t_{0}\right)=U\left(t, t_{N-1}\right) U\left(t_{N-1}, t_{N-2}\right) \ldots U\left(t_{2}, t_{1}\right) U\left(t_{1}, t_{0}\right)
$$

where $t_{1} \leq t_{2} \ldots \leq t_{N-1}$ are arbitrary times in the interval $\left[t_{0}, t\right]$;
if the solution of the stationary Schrödinger equation

$$
H|\lambda\rangle=E_{\lambda}|\lambda\rangle
$$

with eigenstates $|\lambda\rangle$ and eigenvalues E_{λ} is known, on can solve the time-dependent Schrödinger equation via an expansion with respect to the states $|\lambda\rangle$

$$
\begin{gathered}
|\Psi(t)\rangle=\sum_{\lambda} c_{\lambda}(t)|\lambda\rangle . \\
c_{\lambda}(t)=\langle\lambda| e^{-i E_{\lambda}\left(t-t_{0}\right) / \hbar}\left|\Psi_{0}\right\rangle=e^{-i E_{\lambda}\left(t-t_{0}\right) / \hbar} c_{\lambda}\left(t_{0}\right), \\
|\Psi(t)\rangle=\sum_{\lambda} c_{\lambda}\left(t_{0}\right) e^{-i E_{\lambda}\left(t-t_{0}\right) / \hbar}|\lambda\rangle
\end{gathered}
$$

the superposition state is known as a wave packet; since the state vector $|\Psi(t)\rangle$ is given here as a superposition of (time-dependent) states $c_{\lambda}(t)|\lambda\rangle$, it is alternatively called coherent superposition state;
let us calculate the time-dependent expectation value of the operator \hat{O} :

$$
O(t)=\langle\Psi(t)| \hat{O}|\Psi(t)\rangle=\sum_{\lambda, \kappa} c_{\lambda}^{*}\left(t_{0}\right) c_{\kappa}\left(t_{0}\right)\langle\lambda| \hat{O}|\kappa\rangle e^{i\left(E_{\lambda}-E_{\kappa}\right)\left(t-t_{0}\right) / \hbar}
$$

the different time-dependent contributions are determined by transition frequencies $\omega_{\lambda \kappa}=\left(E_{\lambda}-E_{\kappa}\right) / \hbar ;$

1.2.1 The Interaction Representation

we assume

$$
H=H_{0}+V
$$

where V represents a small perturbation of the dynamics given by H_{0}; a perturbation expansion with respect to V can be performed; the solution of the timedependent Schrödinger equation reads

$$
|\Psi(t)\rangle=U\left(t, t_{0}\right)\left|\Psi\left(t_{0}\right)\right\rangle
$$

is conveniently written as

$$
|\Psi(t)\rangle=U_{0}\left(t, t_{0}\right)\left|\Psi^{(\mathrm{I})}(t)\right\rangle
$$

this representation makes use of the formal solution which is available for the unperturbed time-dependent Schrödinger equation for H_{0}, i.e.

$$
U_{0}\left(t, t_{0}\right)=e^{-i H_{0}\left(t-t_{0}\right) / \hbar}
$$

the new state vector $\left|\Psi^{(\mathrm{I})}(t)\right\rangle$ is called the state vector in the interaction representation; since $U\left(t_{0}, t_{0}\right)=1$ we have

$$
\left|\Psi^{(\mathrm{I})}\left(t_{0}\right)\right\rangle=\left|\Psi\left(t_{0}\right)\right\rangle
$$

the equation of motion for the state vector in the interaction representation follows directly from the original time-dependent Schrödinger equation,

$$
i \hbar \frac{\partial}{\partial t}|\Psi(t)\rangle=U_{0}\left(t, t_{0}\right)\left(H_{0}\left|\Psi^{(\mathrm{I})}(t)\right\rangle+i \hbar \frac{\partial}{\partial t}\left|\Psi^{(\mathrm{I})}(t)\right\rangle\right)=H|\Psi(t)\rangle
$$

after some rearrangement we get (note that $U^{-1}=U^{+}$)

$$
i \hbar \frac{\partial}{\partial t}\left|\Psi^{(\mathrm{I})}(t)\right\rangle=U_{0}^{+}\left(t, t_{0}\right) V U_{0}\left(t, t_{0}\right)\left|\Psi^{(\mathrm{I})}(t)\right\rangle \equiv V^{(\mathrm{I})}(t)\left|\Psi^{(\mathrm{I})}(t)\right\rangle
$$

the quantity $V^{(\mathrm{I})}(t)$ is the interaction representation of the perturbational part of the Hamiltonian;
the formal solution is obtained by introducing the so-called S-operator (the scattering matrix)

$$
\left|\Psi^{(\mathrm{I})}(t)\right\rangle=S\left(t, t_{0}\right)\left|\Psi^{(\mathrm{I})}\left(t_{0}\right)\right\rangle \equiv S\left(t, t_{0}\right)\left|\Psi\left(t_{0}\right)\right\rangle
$$

it follows

$$
U\left(t, t_{0}\right)=U_{0}\left(t, t_{0}\right) S\left(t, t_{0}\right)
$$

the S-operator can be determined by the iterative solution of the equation of motion; formal time-integration gives

$$
\left|\Psi^{(\mathrm{I})}(t)\right\rangle=\left|\Psi^{(\mathrm{I})}\left(t_{0}\right)\right\rangle-\frac{i}{\hbar} \int_{t_{0}}^{t} d \tau V^{(\mathrm{I})}(\tau)\left|\Psi^{(\mathrm{I})}(\tau)\right\rangle
$$

this equation is suited to develop a perturbation expansion with respect to $V^{(\mathrm{I})}$. If there is no interaction one gets

$$
\left|\Psi^{(\mathrm{I}, 0)}(t)\right\rangle=\left|\Psi^{(\mathrm{I})}\left(t_{0}\right)\right\rangle
$$

next we get the state vector in the interaction representation, which is the first-order correction to $\left|\Psi^{(\mathrm{I}, 0)}(t)\right\rangle$ in the presence of a perturbation,

$$
\left|\Psi^{(\mathrm{I}, 1)}(t)\right\rangle=-\frac{i}{\hbar} \int_{t_{0}}^{t} d \tau_{1} V^{(\mathrm{I})}\left(\tau_{1}\right)\left|\Psi^{(\mathrm{I}, 0)}\left(\tau_{1}\right)\right\rangle
$$

upon further iteration of this procedure one obtains the n th-order correction as

$$
\left|\Psi^{(\mathrm{I}, n)}(t)\right\rangle=-\frac{i}{\hbar} \int_{t_{0}}^{t} d \tau_{n} V^{(\mathrm{I})}\left(\tau_{n}\right)\left|\Psi^{(\mathrm{I}, n-1)}\left(\tau_{n}\right)\right\rangle
$$

the total formally exact state vector in the interaction representation is

$$
\left|\Psi^{(\mathrm{I})}(t)\right\rangle=\sum_{n=0}^{\infty}\left|\Psi^{(\mathrm{I}, n)}(t)\right\rangle
$$

let us consider the total wave function containing the effect of the interaction up to the order n

$$
\begin{aligned}
& \left|\Psi^{(\mathrm{I}, n)}(t)\right\rangle=\left(-\frac{i}{\hbar}\right)^{n} \int_{t_{0}}^{t} d \tau_{n} V^{(\mathrm{I})}\left(\tau_{n}\right) \int_{t_{0}}^{\tau_{n}} d \tau_{n-1} V^{(\mathrm{I})}\left(\tau_{n-1}\right) \times \ldots \\
& \ldots \times \int_{t_{0}}^{\tau_{2}} d \tau_{1} V^{(\mathrm{I})}\left(\tau_{1}\right)\left|\Psi^{(\mathrm{I})}\left(t_{0}\right)\right\rangle \\
& =\left(-\frac{i}{\hbar}\right)^{n} \frac{1}{n!} \hat{T} \int_{t_{0}}^{t} d \tau_{n} \ldots d \tau_{1} V^{(\mathrm{I})}\left(\tau_{n}\right) \ldots V^{(\mathrm{I})}\left(\tau_{1}\right)\left|\Psi^{(\mathrm{I})}\left(t_{0}\right)\right\rangle
\end{aligned}
$$

in the last part of this expression all integrals are carried out to the upper limit t; double counting is compensated for by the factor $1 / n!$; in order to account for the fact that the time-dependent operators $V^{(\mathrm{I})}$ do not commute for different time arguments the time ordering operator \hat{T} has been introduced; it orders time-dependent operators from the right to the left with increasing time arguments, i.e., if $t_{1}>t_{2}, \hat{T}\left[V^{(\mathrm{I})}\left(t_{2}\right) V^{(\mathrm{I})}\left(t_{1}\right)\right]=$ $V^{(\mathrm{I})}\left(t_{1}\right) V^{(\mathrm{I})}\left(t_{2}\right)$;
this formal rearrangement enables us to write for the exact state vector in the interaction representation

$$
\left|\Psi^{(\mathrm{I})}(t)\right\rangle=\hat{T} \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{k=1}^{n}\left(-\frac{i}{\hbar} \int_{t_{0}}^{t} d \tau_{k} V^{(\mathrm{I})}\left(\tau_{k}\right)\right)\left|\Psi^{(\mathrm{I})}\left(t_{0}\right)\right\rangle .
$$

the summation on the right-hand side is formally identical to the expansion of the exponential function

$$
S\left(t, t_{0}\right)=\hat{T} \exp \left\{-\frac{i}{\hbar} \int_{t_{0}}^{t} d \tau V^{(\mathrm{I})}(\tau)\right\}
$$

1.3 Golden Rule Rate Formula

the Golden Rule rate formula offers a simple way to determine the transition rate between different quantum states of some zeroth-order Hamiltonians in the presence of a small coupling;
basic assumption is that the transitions are irreversible (transition into a macroscopic number of final states);
mutual interferences among the final states and with the initial state preclude any recurrence of probability back into the initial state;
recurrences are additionally suppressed when the coupling between the initial and final states is sufficiently weak;
irreversible transition can also be found if a fast relaxation from the final state to further additional states is possible; the final state itself may be discrete, but there is a coupling to another continuum of states;
the rate of internal conversion (IC) between an excited electronic state ϕ_{e} and the electronic ground-state ϕ_{g} will be considered as an example;
electronic excitation energy is distributed among the different vibrational degrees of freedom; since the radiation field does not take part in this type transition, it is also called radiationless transition; often the internal conversion is slow compared to the time scale of vibrational relaxation within an electronic state and therefore it can be characterized by a transition rate; (for stronger nonadiabatic coupling one cannot assume complete vibrational equilibrium for every step of the transition; if vibrational relaxation can be completely neglected a description in terms of wave functions becomes possible)
the respective Hamiltonian in the electron vibrational state representation reads

$$
H_{\mathrm{IC}}=\sum_{a=e, g} \sum_{\mu} E_{a \mu}\left|\Psi_{a \mu}\right\rangle\left\langle\Psi_{a \mu}\right|+\sum_{\mu, \nu}\left(\Theta_{e \mu, g \nu}\left|\Psi_{e \mu}\right\rangle\left\langle\Psi_{g \nu}\right|+\text { H.c. }\right)
$$

1.3.1 Transition from a Single State into a Continuum

we consider quantum transitions between the single state $\left|\Psi_{e \mu}\right\rangle$ into the continuum of states $\left|\Psi_{g \nu}\right\rangle$;
the related transfer of occupation probability can be characterized by looking at the population of state $\left|\Psi_{e \mu}\right\rangle$ (survival probability) which reads

$$
\left.P_{e \mu}(t)=\left|\left\langle\Psi_{e \mu}\right| U(t)\right| \Psi_{e \mu}\right\rangle\left.\right|^{2}
$$

to get this quantity let us derive equations of motion for general matrix elements of the time-evolution operator (transition amplitude)

$$
A_{\alpha \beta}(t)=\theta(t)\left\langle\Psi_{\alpha}\right| U(t)\left|\Psi_{\beta}\right\rangle
$$

the unit-step function $\theta(t)$ has been introduced to restrict non-zero values of $A_{\alpha \beta}(t)$ to times larger than zero;
the equations of motion for the transition amplitudes read

$$
i \hbar \frac{\partial}{\partial t} A_{\alpha \beta}=i \hbar \delta(t) \delta_{\alpha, \beta}+\sum_{\gamma}\left\langle\Psi_{\alpha}\right| H_{\mathrm{IC}}\left|\Psi_{\gamma}\right\rangle A_{\gamma \beta}
$$

in order to solve this equation we introduce the Fourier transform of the transition amplitudes

$$
A_{\alpha \beta}(\omega)=\int d t e^{i \omega t} A_{\alpha \beta}(t)
$$

we obtain for the transition amplitudes the following equations

$$
\hbar \omega A_{\alpha \beta}(\omega)=i \hbar \delta_{\alpha, \beta}+\sum_{\gamma}\left\langle\Psi_{\alpha}\right| H_{\mathrm{IC}}\left|\Psi_{\gamma}\right\rangle A_{\gamma \beta}(\omega)
$$

in particular for $\alpha=\beta=e \mu$ this gives

$$
\hbar \omega A_{e \mu, e \mu}(\omega)=i \hbar+E_{e \mu} A_{e \mu, e \mu}(\omega)+\sum_{\nu} \Theta_{e \mu, g \nu} A_{g \nu, e \mu}(\omega)
$$

the off-diagonal elements, $A_{g \nu, e \mu}(\omega)$, can be obtained from

$$
\hbar \omega A_{g \nu, e \mu}(\omega)=E_{g \nu} A_{g \nu, e \mu}(\omega)+\Theta_{g \nu, e \mu} A_{e \mu, e \mu}(\omega)
$$

note the restriction to the single vibrational state in the excited electronic state, i.e. we set

$$
\sum_{\kappa} \Theta_{g \nu, e \kappa} A_{\text {eк }, e \mu}(\omega) \approx \Theta_{g \nu, e \mu} A_{e \mu, e \mu}(\omega)
$$

in a more general frame this approximation corresponds to the case of a weak nonadiabatic coupling (higher order contributions are neglected);
inserting the solution of this equation into the equation for $A_{e \mu, e \mu}$ yields a closed equation for this quantity which can be solved to give

$$
A_{e \mu, e \mu}(\omega)=i \hbar\left(\hbar \omega-E_{e \mu}-\sum_{\nu} \frac{\left|\Theta_{e \mu, g \nu}\right|^{2}}{\hbar \omega-E_{g \nu}+i \varepsilon}+i \varepsilon\right)^{-1}
$$

here, ε has to be understood as a small and positive number which we will let go to zero at the end of the calculation;
the contributions in the denominator of $A_{e \mu, e \mu}(\omega)$, which are proportional to the square of the coupling matrix, result in a complicated frequency dependence of $A_{e \mu, e \mu}(\omega)$; one effect is apparent: the coupling to the continuum shifts the energy $E_{e \mu}$ of the initial state to a new value; this shift, which is in general a complex quantity, is commonly called self-energy

$$
\Sigma_{e \mu}(\omega)=\sum_{\nu} \frac{\left|\Theta_{e \mu, g \nu}\right|^{2}}{\hbar \omega-E_{g \nu}+i \varepsilon}
$$

the separation into a real and imaginary part gives

$$
\Sigma_{e \mu}(\omega) \equiv \hbar \Delta \Omega_{e \mu}(\omega)-i \hbar \Gamma_{e \mu}(\omega)=\sum_{\nu} \mathcal{P} \frac{\left|\Theta_{e \mu, g \nu}\right|^{2}}{\hbar \omega-E_{g \nu}}-i \pi \sum_{\nu}\left|\Theta_{e \mu, g \nu}\right|^{2} \delta\left(\hbar \omega-E_{g \nu}\right)
$$

if the coupling matrix does not strongly depend on the vibrational quantum number ν, the variation of the self-energy in the region where $\hbar \omega \approx E_{g \nu}$ can be expected to be rather weak; this means that the frequency dependence of $A_{e \mu, e \mu}(\omega)$ is dominated by the resonance at $\hbar \omega=E_{e \mu}$; since this will give the major contribution to the inverse Fourier transform we can approximately replace $\hbar \omega$ in $\Sigma_{e \mu}(\omega)$ by $E_{e \mu}$;
to carry out the inverse Fourier transformation we replace the quantity $\Sigma_{e \mu}(\omega)$ by the
frequency-independent value $\Sigma\left(E_{e \mu} / \hbar\right)$ and obtain the desired state population $P_{e \mu}(t)$ as

$$
P_{e \mu}(t)=\left|\int \frac{d \omega}{2 \pi} e^{-i \omega t} \frac{i \hbar}{\hbar \omega-\left(E_{e \mu}+\hbar \Delta \Omega\left(E_{e \mu} / \hbar\right)\right)+i \hbar \Gamma\left(E_{e \mu} / \hbar\right)}\right|^{2}=\theta(t) e^{-2 \Gamma\left(E_{e \mu} / \hbar\right) t}
$$

the integral has been calculated using the residue theorem of the theory of complex functions; we may close the ω-integral in the complex plane; to guarantee convergence via $\exp -i \omega t$ and at positive time-arguments this has to be done in the lower half-plane

$$
\begin{gathered}
\frac{1}{2 \pi} \oint d \omega e^{-i \omega t} \frac{i \hbar}{\hbar \omega-\left(E_{e \mu}+\hbar \Delta \Omega\left(E_{e \mu} / \hbar\right)\right)+i \hbar \Gamma\left(E_{e \mu} / \hbar\right)} \\
\left.=-\frac{1}{2 \pi i} \theta(t)(-2 \pi i) \exp \left(-i\left[E_{e \mu}+\hbar \Delta \Omega\left(E_{e \mu} / \hbar\right)\right)-i \hbar \Gamma\left(E_{e \mu} / \hbar\right)\right] t / \hbar\right)
\end{gathered}
$$

the absolute square of the expression gives the result already quoted above;
as expected the occupation probability of the initially occupied state $|e \mu\rangle$ decreases in time due to transitions into the manifold of states $|g \nu\rangle$;
the rate of change of the survival probability is defined as

$$
k_{e \mu}=2 \Gamma_{e \mu}=\frac{2 \pi}{\hbar} \sum_{\nu}\left|\Theta_{e \mu, g \nu}\right|^{2} \delta\left(E_{e \mu}-E_{g \nu}\right)
$$

this type of expression is known as the Golden Rule of quantum mechanics;
the delta function appearing in the rate expression can be interpreted as the energy conservation law for the transition; only those transitions from $\left|\Psi_{e \mu}\right\rangle$ to $\left|\Psi_{g \nu}\right\rangle$ are possible for which the energy of the initial state $E_{e \mu}$ matches some energy $E_{g \nu}$ of the final states;

1.3.2 Transition Rate for a Thermal Ensemble

we consider an ensemble of $N_{\text {mol }}$ independent but identical molecules (with a weak intramolecular nonadiabatic coupling); in this case the initially prepared state $\left|\Psi_{e \mu}\right\rangle$ may be different for each member of the ensemble;
all molecules are counted by the additional index m; the population $P_{m e \mu}(t)$ gives the probability the molecule m is in the particular electron-vibrational state; its timedependence follows as

$$
P_{m e \mu}(t)=\theta(t) e^{-k_{e \mu} t} P_{m e \mu}(0)
$$

where $P_{\text {me }}(0)$ defines the probability to have molecule m initially in the particular electron-vibrational state;
since different molecules are in different vibrational states it makes sense to introduce the quantity

$$
P_{m e}(t)=\sum_{\mu} P_{m e \mu}(t)
$$

it gives the probability to have molecule m in the electronic state independent on the actual vibrational state; it represents a reduced probability; often observables measured in the experiment are only determined by this quantity; in the following we will focus on its computation;
we assume that initially all molecules have been in the excited electronic state, then, we get

$$
\sum_{m} P_{m e}(0)=N_{\mathrm{mol}}
$$

it is suitable, to introduce the probability $P_{e \mu}(t)$ to have the state $\left|\Psi_{e \mu}\right\rangle$ realized in the ensemble

$$
P_{e \mu}(t)=\frac{1}{N_{\mathrm{mol}}} \sum_{m} P_{m e \mu}(t)
$$

if we assume that the ensemble stays initially in thermal equilibrium with some environment at temperature T we can write

$$
P_{e \mu}(0)=f_{e \mu}
$$

where we introduced the quantum statistical equilibrium distribution

$$
f_{e \mu}=\frac{\exp \left(-E_{e \mu} / k_{\mathrm{B}} T\right)}{\sum_{\nu} \exp \left(-E_{e \nu} / k_{\mathrm{B}} T\right)}
$$

to discuss this case where a finite coupling to the environment is present, two characteristic times will be introduced; first, we have the time scale $\tau_{\text {S-R }}$ which characterizes the coupling of the different members of the ensemble to the thermal reservoir; second, the nonadiabatic coupling introduces a time scale given by $1 / k_{e \mu}$;
now we can distinguish the cases $\tau_{\mathrm{S}-\mathrm{R}} \gg 1 / k_{e \mu}$ (slow thermalization compared to the transition), $\tau_{\mathrm{S}-\mathrm{R}} \ll 1 / k_{e \mu}$ (fast thermalization), and $\tau_{\mathrm{S}-\mathrm{R}} \approx 1 / k_{e \mu}$ (intermediate case); Case $\tau_{\mathrm{S}-\mathrm{R}} \gg 1 / k_{e \mu}$:
we suppose that the interaction with an external field promotes the ensemble into the state manifold $\left\{\left|\Psi_{e \mu}\right\rangle\right\}$, where each state occurs $N_{e \mu}$ times in the ensemble; since the interaction with the environment is weak compared to the state coupling the population will evolve according to

$$
P_{e}(t)=\sum_{\mu} \frac{N_{e \mu}}{N_{\mathrm{mol}}} \exp \left(-k_{e \mu} t\right)
$$

as stated above (absence of thermalization on the time-scale of the transfer).
Case $\tau_{\text {S-R }} \ll 1 / k_{e \mu}$:
thermalization proceeds at every time-step of the transfer; to derive the appropriate equations typical for thermalization let us introduce the time-step $\Delta t \approx \tau_{\mathrm{S}-\mathrm{R}}$; usually we will be interested in the time evolution of the system on time scales much longer than Δt such that we can consider Δt to be a continuous quantity on the time scale of observation (coarse graining of the time axis);
at the initial time the population of the manifold $\left\{\left|\Psi_{e \mu}\right\rangle\right\}$ is thermalized; starting at $t=0$ we get for $t=\Delta t$

$$
P_{e \mu}(\Delta t) \simeq\left(1-k_{e \mu} \Delta t\right) P_{e \mu}(0)=\left(1-k_{e \mu} \Delta t\right) f_{e \mu}
$$

we note

$$
1=P_{e}(0)=\sum_{\mu} f_{e \mu}
$$

and obtain for the total electronic state population

$$
P_{e}(\Delta t) \approx 1-\sum_{\mu} k_{e \mu} f_{e \mu} \Delta t=P_{e}(0)-\sum_{\mu} k_{e \mu} f_{e \mu} P_{e}(0) \Delta t
$$

because we are using a course-grained time axis where the state population $P_{e \mu}(t)$ is thermalized within the time step Δt we can generalize this expression and obtain for each t

$$
P_{e}(t+\Delta t) \approx P_{e}(t)-\sum_{\mu} k_{e \mu} f_{e \mu} P_{e}(t) \Delta t
$$

since Δt has been assumed to be very small we can rewrite the expression for the total population as

$$
\frac{P_{e}(t+\Delta t)-P_{e}(t)}{\Delta t} \approx \frac{\partial}{\partial t} P_{e}(t)=-k_{e \rightarrow g} P_{e}(t),
$$

where we introduced the rate for transitions from a thermalized state manifold

$$
k_{e \rightarrow g}=\sum_{\mu} f_{e \mu} k_{e \mu}=\frac{2 \pi}{\hbar} \sum_{\mu, \nu} f_{e \mu}\left|\Theta_{e \mu, g \nu}\right|^{2} \delta\left(E_{e \mu}-E_{g \nu}\right)
$$

the strong coupling of the system of interest to a thermal reservoir leads to a thermalization which is fast compared to the transfer, i.e., every step of probability transfer from the manifold of initial states to the manifold of final states starts from a thermalized initial state population;
Case $\tau_{\mathrm{S}-\mathrm{R}} \approx 1 / k_{a}$:
in this case one can no longer make a separation of time scales and the reasoning used in the previous two cases breaks down; a more general description of the simultaneous influence of the interstate coupling and the coupling to the reservoir is necessary; this more general approach is offered by the density matrix theory;

1.3.3 Consideration of the Transition Rate

Principle of Detailed Balance

up to now our discussion has been concentrated on the transitions from the states $\left|\Psi_{e \mu}\right\rangle$ (the initial states) to the states $\left|\Psi_{g \nu}\right\rangle$ (the final states); of course, one can consider also the reverse process along the same line of arguments; we expect that the reverse rate $k_{g \rightarrow e}$ follows by interchanging $E_{e \mu}$ with $E_{g \nu}$ in the thermal distribution (transfer starts from the thermalized distribution at the state manifold $\left|\Psi_{g \nu}\right\rangle$)

$$
k_{g \rightarrow e}=\frac{2 \pi}{\hbar} \sum_{\nu, \mu} f_{g \nu}\left|\Theta_{g \nu, e \mu}\right|^{2} \delta\left(E_{g \nu}-E_{e \mu}\right)
$$

we relate both rates to each other; noting the presence of the δ-function we may replace in $k_{g \rightarrow e}$ the distribution $f_{g \nu}$ by the new distribution

$$
\tilde{f}_{e \mu}=\frac{\exp \left(-E_{e \mu} / k_{\mathrm{B}} T\right)}{\sum_{\kappa} \exp \left(-E_{g \kappa} / k_{\mathrm{B}} T\right)}=\frac{\sum_{\lambda} \exp \left(-E_{e \lambda} / k_{\mathrm{B}} T\right)}{\sum_{\kappa} \exp \left(-E_{g \kappa} / k_{\mathrm{B}} T\right)} \times f_{e \mu}
$$

this already gives

$$
k_{g \rightarrow e}=\frac{\sum_{\lambda} \exp \left(-E_{e \lambda} / k_{\mathrm{B}} T\right)}{\sum_{\kappa} \exp \left(-E_{g \kappa} / k_{\mathrm{B}} T\right)} k_{e \rightarrow g}=k_{e \rightarrow g} \exp \left(-\left[E_{e}-E_{g}\right] / k_{\mathrm{B}} T\right) \frac{\sum_{\lambda} \exp \left(-\Delta E_{e \lambda} / k_{\mathrm{B}} T\right)}{\sum_{\kappa} \exp \left(-\Delta E_{g \kappa} / k_{\mathrm{B}} T\right)}
$$

we introduced electronic reference energies E_{a} including the zero point energy of the molecular vibrations according to

$$
E_{a \mu}=E_{a}+\Delta E_{a \mu}
$$

we further assume

$$
\sum_{\lambda} \exp \left(-\Delta E_{e \lambda} / k_{\mathrm{B}} T\right)=\sum_{\kappa} \exp \left(-\Delta E_{g \kappa} / k_{\mathrm{B}} T\right)
$$

and arrive at the detailed balance principle ($\Delta E=E_{e}-E_{g}$)

$$
k_{g \rightarrow e}=e^{-\Delta E / k_{\mathrm{B}} T} k_{e \rightarrow g}
$$

in the case of IC, ΔE amounts values of $1 \ldots 3 \mathrm{eV}$; it is much larger than thermal energy (at room temperature) and thus $k_{g \rightarrow e} \approx 0$

Representation of the Rate by a Correlation Function

next we present an alternative notation which takes into account the structure of the molecular states; to stay simple we neglect the operator character of $\Theta_{a b}$ and consider it as a simple complex valued matrix element

$$
\begin{gathered}
\Theta_{e \mu, g \nu}=\left\langle\chi_{e \mu}\right| \hat{\Theta}_{e g}\left|\chi_{g \nu}\right\rangle=\left\langle\chi_{e \mu}\right|\left(\left\langle\phi_{e}\right|\left[T_{\mathrm{nuc}}\left|\phi_{g}\right\rangle\right]+\sum_{n} \frac{1}{M_{n}}\left\langle\phi_{e}\right|\left[\mathbf{P}_{n}\left|\phi_{g}\right\rangle\right] \mathbf{P}_{n}\right)\left|\chi_{g \nu}\right\rangle \\
\\
\approx \Theta_{e g}\left\langle\chi_{e \mu} \mid \chi_{g \nu}\right\rangle
\end{gathered}
$$

moreover, the δ-function is replaced by a time integral; altogether results in

$$
\begin{gathered}
k_{e \rightarrow g}=\frac{2 \pi\left|\Theta_{e g}\right|^{2}}{\hbar} \sum_{\mu, \nu} f_{e \mu}\left|\left\langle\chi_{e \mu} \mid \chi_{g \nu}\right\rangle\right|^{2} \int \frac{d t}{2 \pi \hbar} e^{i\left(E_{e \mu}-E_{g \nu}\right) t / \hbar} \\
=\frac{\left|\Theta_{e g}\right|^{2}}{\hbar^{2}} \int d t \sum_{\mu, \nu} f_{e \mu}\left\langle\chi_{e \mu}\right| e^{i E_{e \mu} t / \hbar} e^{-i E_{g \nu} t / \hbar}\left|\chi_{g \nu}\right\rangle\left\langle\chi_{g \nu} \mid \chi_{e \mu}\right\rangle \\
=\frac{\left|\Theta_{e g}\right|^{2}}{\hbar^{2}} \int d t \operatorname{tr}_{\mathrm{vib}}\left\{\hat{R}_{e} e^{i H_{e} t / \hbar} e^{-i H_{g} t / \hbar}\right\}
\end{gathered}
$$

we used the definition of the trace with respect to the vibrational states

$$
\operatorname{tr}_{\mathrm{vib}}\{\ldots\}=\sum_{\mu}\left\langle\chi_{e \mu}\right| \ldots\left|\chi_{e \mu}\right\rangle
$$

and introduced the equilibrium statistical operator according to

$$
\left\langle\chi_{e \mu}\right| f_{e \mu}=\left\langle\chi_{e \mu}\right| \hat{R}_{e}
$$

consequently it has the structure

$$
\hat{R}_{e}=\frac{\exp \left(-H_{e} / k_{\mathrm{B}} T\right)}{\operatorname{tr}_{\mathrm{vib}}\left\{\exp \left(-H_{e} / k_{\mathrm{B}} T\right)\right\}}
$$

Estimate of the Rate

finally we present an estimate of the rate for the case that only a single vibrational coordinate defines the vibrational states (diatomic molecule, or only a single normal mode vibration of a polyatomic molecules changes strongly upon electronic transitions); according to the derivation of the rate formula this case of discrete final state energies requires the introduction of additional decay processes of the electronic ground-state vibrational states; it might be possible be introducing a finite life time τ of these states; the vibrational energies are written as

$$
E_{a \mu}=E_{a}+\hbar \omega_{\mathrm{vib}} \mu
$$

the energy E_{a} defines the electronic energy plus zero-point energy of the harmonic vibrations; the respective vibrational energy quantum $\hbar \omega_{\text {vib }}$ is considered to be identical for both electronic states; moreover we take the approximation

$$
\Theta_{e \mu, g \nu} \approx \Theta_{e g}\left\langle\chi_{e \mu} \mid \chi_{g \nu}\right\rangle
$$

and consider the zero-temperature case; then, the rate takes the form

$$
k_{e \rightarrow g}=\frac{2 \pi\left|\Theta_{e g}\right|^{2}}{\hbar} \sum_{\nu=0}^{\infty}\left|\left\langle\chi_{e \mu} \mid \chi_{g \nu}\right\rangle\right|^{2} \delta\left(E_{e}-E_{g}-\hbar \omega_{\mathrm{vib}} \nu\right)
$$

the formula indicates that strict coincidence of initial and final state energy of the transition is necessary; the divergent behavior indicates that for the present case no meaningful rate can be defined;
we change to a δ-function which has been broadened by the inverse life time of vibrational states

$$
\begin{equation*}
\delta\left(E_{e}-E_{g}-\hbar \omega_{\mathrm{vib}} \nu\right) \rightarrow \frac{1 / \pi \tau}{\left(E_{e}-E_{g}-\hbar \omega_{\mathrm{vib}} \nu\right)^{2}+(1 / \tau)^{2}} \tag{1.1}
\end{equation*}
$$

if $E_{e}=E_{g}+\hbar \omega_{\text {vib }} \nu$ this gives the rate as

$$
k_{e \rightarrow g} \approx \frac{2 \tau\left|\Theta_{e g}\right|^{2}}{\hbar}\left|\left\langle\chi_{e \mu} \mid \chi_{g \nu}\right\rangle\right|^{2}
$$

it is mainly determined by the vibrational overlap expressions $\left\langle\chi_{e \mu} \mid \chi_{g \nu}\right\rangle$

1.3.4 Rate Equations for Internal Conversion

if we account for the back transfer we have to set

$$
\frac{\partial}{\partial t} P_{e}(t)=-k_{e \rightarrow g} P_{e}(t)+k_{g \rightarrow e} P_{g}(t)
$$

however, the single rate equation for $P_{e}(t)$ has to be completed by that for $P_{g}(t)$

$$
\frac{\partial}{\partial t} P_{g}(t)=-k_{g \rightarrow e} P_{g}(t)+k_{e \rightarrow g} P_{e}(t)
$$

we obtained the Pauli Master Equations;
it is easy to find the solution of the above given coupled rate equations; because conservation of probability $P_{e}(t)+P_{g}(t)=1$ holds, the two equations can be transformed
to a single one for $P_{e}(t)-P_{g}(t)$; taking as the initial condition $P_{e}(0)=1$ the solutions read (note $K=k_{e \rightarrow g}+k_{g \rightarrow e}$)

$$
\begin{gathered}
P_{e}(t)=\frac{1}{K}\left(k_{e \rightarrow g} e^{-K t}+k_{g \rightarrow e}\right) \\
P_{g}(t)=\frac{k_{e \rightarrow g}}{K}\left(1-e^{-K t}\right) .
\end{gathered}
$$

It is instructive to put both solutions ($a=g, e$) into the form

$$
P_{a}(t)=P_{a}(\infty)+\left(P_{a}(0)-P_{a}(\infty)\right) e^{-K t}
$$

with $P_{e}(\infty)=k_{g \rightarrow e} / K$ and $P_{g}(\infty)=k_{e \rightarrow g} / K$;
as it has to be expected the result indicates a complete depletion of the initial state if there is no back-transfer $\left(k_{g \rightarrow e}=0\right)$; otherwise both manifolds remain populated;
a generalization of the Pauli Master Equation to a larger set of different states is straightforward; to obtain a general solution of the related rate equations we denote the right-hand side as $-\sum_{b} K_{a b} P_{b}$ with the general rate-matrix $K_{a b}=\delta_{a b} \sum_{c \neq a} k_{a \rightarrow c}$ $-\left(1-\delta_{a b}\right) k_{b \rightarrow a}$; given the eigenvalues $\kappa(\eta)$ and (normalized) eigenvectors $e_{a}(\eta)$ of $K_{a b}$, the general solution for the population of state $|a\rangle$ reads as (η counts the rate-matrix eigenvalues)

$$
P_{a}(t)=\sum_{\eta} c(\eta) e_{a}(\eta) \exp (-\kappa(\eta) t)
$$

the additional factors $c(\eta)$ are determined from the initial conditions; the decay of the various populations is multi-exponential; since the smallest $\kappa(\eta)$ equals zero the respective term in $P_{a}(t)$ fixes $P_{a}(\infty)$; it is obvious that the given solution (except some special examples) can be only achieved by numerical computations;

