
Chapter 2

Electron Transfer

2.1 Introduction

electron transfer (ET) – one of the basic types of chemical processes (initial step of a
number of reactions like the making and breaking of chemical bonds or the change of
molecular conformations)
corrosion is caused by the ET between some metal surface and oxygen
in biological systems ET reactions are a basic step of enzymatic activity in the living
cells of bacteria, plants and animals
ET in proteins or protein complexes plays an important role in the cell metabolism and
energy balance
photosynthesis - a transmembrane potential is created which acts as a proton pump to
produce ATP

ET – a spontaneous charge redistribution between an initially prepared reactant state
and a well defined product state
transferred electron remains in a bound state with respect to the particular molecule or
molecular system – ET reactions occur as tunneling processes
in many reactions the change of the electronic charge density corresponds to the
change induced by a single electron; sufficient to discuss ET as the result of the tran-
sition of a single electron;

change of the electronic charge distribution during an ET reaction → internal elec-
trostatic field of the molecular complex is modified → new equilibrium positions of the
nuclei;
in the case of ET there exists a coupling V between the reactant and the product state;
if V is small, one is in the limit of nonadiabatic ET; in the reactant state the transferred
electron is localized at the electron donor part; then, it moves to the acceptor region;
if V is large, one is in the limit of adiabatic transfer; it is not connected with a charac-
teristic spatial redistribution of charge; the internal energy of the reaction (or if entropic
effects are important, the free energy) is considered in dependence on a reaction co-
ordinate; the metastable initial (reactant) state and the stable final (product) state are
separated by a potential barrier along this reaction coordinate; to overcome this barrier
the reaction requires thermal activation, or a tunneling transition through the barrier is
possible;
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we introduce the donor (D) and acceptor (A) states of a molecular system; common
structure formed by the D and A is called donor–acceptor (DA) complex;
the ET reaction is most simply characterized by the following scheme (ET of an excess
electron)

D−A → DA− ;

donor and acceptor belong to the same molecule → intramolecular ET or alternatively
unimolecular ET
donor and acceptor belong to different molecules →intermolecular ET or bimolecular
ET

photoinduced ET
D∗A → D+A− ;

an unexcited electron may move in the opposite direction from the acceptor HOMO to
the donor HOMO, this so–called hole transfer:

D∗A → D−A+ .

bimolecular ET in solution → formation of the DA complex, the so–called encounter
complex

D− − R + R′ − A → D− − R · · ·R′ − A → D − R · · ·R′ − A− → D − R + R′ − A− ;

if the ET is influenced mainly by solvent molecules it is of outer–sphere type;
if intramolecular nuclear motions it is of inner–sphere type;

ET reactions which proceed directly from the donor to the acceptor, although some
bridging units are separating them, are called through–space transfer (DA distances
less than 20 Å);
if some LUMOs of the bridge participate in the ET, the reaction is called through–bond
transfer = bridge–assisted ET → long–range ET

D−BA → DB−A → DBA− .

electron moves from the donor to the acceptor via different bridge molecules (B) =
spacers (fix the donor and the acceptor at a particular distance one from another);
two distinct mechanisms for bridge–mediated ET:
superexchange ET (bridge units provide a means for delocalization of the donor state
wave function across the whole bridge);
sequential or hopping transfer (charge jumps stepwise from one part to the other of the
whole DBA chain);

2.2 Theoretical Model for Donor–Acceptor Electron
Transfer

2.2.1 The Single–Electron Hamiltonian of a Donor–Acceptor
Complex

ET comes along with the modification of many molecular orbitals;
we will proceed with a simple and intuitive picture of the motion of a single excess
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electron injected from the outside into the DA complex;
an effective potential experienced by the excess electron after entering the DA complex
is introduced

V (r) =
∑

m

Vm(r) ;

Vm(r) belongs to the donor, the acceptor, or to some bridging molecules; it can be
understood as a so–called pseudo–potential; the electronic part of the DA–Hamiltonian
takes the form

H
(DBA)
el = Tel + V (r) ;

the single–electron Schrödinger equation which determines the single–particle ener-
gies Em and wave functions ϕm(r) reads as:

(Tel + Vm(r)) ϕm(r) = Emϕm(r) ;

only the lowest eigenvalue Em is of interest;
since the Em correspond to different sites in the complex they are usually called site
energies;
in general, the set of states ϕm does not form a normalized and orthogonal basis; how-
ever, we will assume that this is valid in an approximate form: 〈ϕn|ϕm〉 ≈ δnm;

an expansion of the electronic part of the DA–Hamiltonian gives

H
(DBA)
el =

∑

m,n

〈ϕm|H
(DBA)
el |ϕn〉|ϕm〉〈ϕn| ,

with the matrix elements

〈ϕm|H
(DBA)
el |ϕn〉 = δm,n

(

Em +
∑

k 6=m

〈ϕm|Vk|ϕm〉
)

+ (1 − δm,n)〈ϕm|Tel +
∑

k

Vk|ϕn〉 ;

we will introduce the approximations that all three–center integrals are neglected;
the two–center integrals of the type 〈ϕm|Vk|ϕm〉, introduce a shift of the site energies
Em;
two–center integrals 〈ϕn|Vn|ϕm〉 couple the state |ϕm〉 to the state |ϕn〉 via the tail of the
potential Vn at site m;
the matrix elements of H

(DBA)
el reduce to:

〈ϕm|H
(DBA)
el |ϕn〉 = δm,n

(

Em +
∑

k 6=m

〈ϕm|Vk|ϕm〉
)

+ (1 − δm,n)〈ϕm|Tel + Vm + Vn|ϕn〉 ;

the off–diagonal part can be rewritten as

〈ϕm|Tel + Vm + Vn|ϕn〉 =
1

2
〈ϕm|(Tel + Vm) + (Tel + Vn) + (Vm + Vn)|ϕn〉

=
1

2
〈ϕm|Em + En + (Vm + Vn)|ϕn〉 =

1

2
〈ϕm|Vm + Vn|ϕn〉 = Vmn ;

Vmn is called transfer integral or alternatively inter–state coupling; the term tunneling
matrix element is also common;
one can also write Vmn (m 6= n) in terms of the matrix element of the kinetic energy
operator:

Vmn = 〈ϕm|Tel + Vm + Tel + Vn − Tel|ϕn〉
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= 〈ϕm|Em + En − Tel|ϕn〉 = −〈ϕm|Tel|ϕn〉 ;

the complete electronic Hamiltonian for the DA complex reads (we included the diag-
onal matrix elements of the pseudo–potentials into the definition of the site energies
Em)

H
(DBA)
el =

∑

m

Em|ϕm〉〈ϕm| +
∑

m,n

Vmn|ϕm〉〈ϕn| ;

2.2.2 The Electron–Vibrational Hamiltonian of a Donor–Acceptor
Complex

one can distinguish between accepting modes which change their equilibrium configu-
ration if the electronic charge density changes, and promoting modes, which enter the
transfer integral and thus may accelerate the ET;
including the vibrational degrees of freedom, {Ru} ≡ R (note that we use the index u
instead of n), the complete Hamiltonian of the DA complex becomes

HDBA = H
(DBA)
el (R) + Tnuc + Vnuc−nuc(R)

=
∑

m

[

(

Tnuc + Em(R) + Vnuc−nuc(R)
)

+ Θmm

]

|ϕm〉〈ϕm| +
∑

m6=n

(Vmn(R) + Θmn)|ϕm〉〈ϕn| ;

we can introduce PES which relate to those state with the excess electron localized at
site m:

Um(R) = Em(R) + Vnuc−nuc(R) + Θmm ;

we neglect the nonadiabatic coupling and the total electron–vibrational Hamiltonian is
obtained as

HDBA =
∑

m

(

Tnuc + Um(R)
)

|ϕm〉〈ϕm| +
∑

m6=n

Vmn(R)|ϕm〉〈ϕn| ;

we introduce normal mode coordinates {qξ} ≡ q with a reference configuration for the
neutral DA complex; it is supposed to be characterized by the PES Ug(R) having the
equilibrium configuration at {R(g)

u } ≡ R(g);
we carry out an expansion of Ug(R) around R(g) up to the second order with respect to
the deviations ∆R

(g)
u = Ru − R

(g)
u and obtain

Ug(R) = U (0)
g +

1

2

∑

u,u′

κ
(g)
uu′∆R(g)

u ∆R
(g)
u′ ;

we used Ug(R
(g)) = U

(0)
g , and the κ

(g)
uu′ denote the second derivatives of the PES;

mass-weighted normal mode coordinates are introduced according to the linear trans-
formation

∆R(g)
u =

∑

ξ

M−1/2
u A

(g)
uξ qξ ;

it leads to a diagonalization of the vibrational Hamiltonian with the potential energy
given by

Ug(R) ≡ Ug(q) = U (0)
g +

1

2

∑

ξ

ω2
g,ξq

2
ξ ;
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we consider the PES Um(R) relevant if the excess electron is localized at site m; let us
suppose that this electronic state can be described by the same normal mode coordi-
nates; the expansion of the PES Um(R) reads

Um(R) = U (0)
m +

1

2

∑

u,u′

κ
(m)
uu′ ∆R(m)

u ∆R
(m)
u′ ;

with Um(R(m)) = U
(0)
m and ∆R

(m)
u = Ru − R

(m)
u ;

we note

∆R(m)
u = (Ru − R(g)

u ) − (R(m)
u − R(g)

u ) =
∑

ξ

M−1/2
u (A

(g)
uξ qξ − A

(g)
uξ q

(m)
ξ ) ,

q
(m)
ξ corresponds to the linear transformation of the difference R

(m)
u − R

(0)
u ; we get

Um(q) = U (0)
m +

1

2

∑

ξ

ω2
m,ξ(qξ − q

(m)
ξ )2 ;

this result reflects the assumption that the linear transformation used for the electronic
ground–state of the DBA–complex is also valid for those states where an excess elec-
tron is located at a particular site;
the related vibrational Hamiltonian reads

Hm(q) = Tvib + Um(q) = U (0)
m +

1

2

∑

ξ

{

p2
ξ + ω2

m,ξ

(

qξ − q
(m)
ξ

)2 }

;

in the general case the inter–site couplings Vmn also depend on the nuclear coordi-
nates; since the magnitude of Vmn is mainly determined by the overlap of the expo-
nential tail of the wave functions localized at sites m and n, we expect an exponential
dependence on the distance xmn between the two sites:

Vmn(R) = V (0)
mn exp

{

−βmn(xmn − x(0)
mn)

}

;

for further use we remove U
(0)
m from Hm and get the total Hamiltonian as

HDBA =
∑

m,n

{δmn(U (0)
m + Hm(q)) + (1 − δmn)Vmn}|ϕm〉〈ϕn| ;

since the vibrational dynamics are described via normal–mode harmonic oscillators we
introduce respective oscillator operators

c+
ξ =

√

ωξ

2 ~
qξ − i

1
√

2 ~ ωξ

pξ ,

cξ =

√

ωξ

2 ~
qξ + i

1
√

2 ~ ωξ

pξ ;

here we assumed that the normal–mode frequencies do not depend on the diabatic
state, i.e. ωmξ = ωξ;
the reverse relation reads

qξ =

√

~

2 ωξ

(cξ + c+
ξ ) ,
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pξ = −i

√

~ ωξ

2
(cξ − c+

ξ ) ;

introducing the dimensionless electron–vibrational coupling constant

gm(ξ) ≡ −

√

ωξ

2~
q
(m)
ξ

the vibrational Hamiltonians may be written as

Hm =
∑

ξ

~ωξ

(

(c+
ξ + gm(ξ))(cξ + gm(ξ)) +

1

2

)

;

it is useful to give a representation of the DA Hamiltonian using the complete diabatic
electron–vibrational basis defined by the states

|Ψµ〉 ≡ |ΨmM〉 ≡ |ϕm〉|χmM〉 ;

the vibrational states |χmM〉 which belong to the electronic states |ϕm〉 are the eigen-
states of the vibrational Hamiltonian:

Hm|χmM〉 = EmM |χmM〉 ;

the respective eigenvalues

EmM = U (0)
m +

∑

ξ

~ωmξ(Mξ + 1/2)

give the energy spectrum of the normal mode oscillators;
the Hamiltonian can be expanded in the diabatic electron–vibrational basis as follows

HDBA =
∑

µν

(

δµνEµ + Vµν

)

|Ψµ〉〈Ψν | .

if the transfer integral Vmn is coordinate independent the coupling matrix element fol-
lows as Vµν = Vmn〈χmM |χnN〉, where 〈χmM |χnN〉 is the overlap integral of the vibrational
wave functions belonging to different sites (Franck–Condon factor)
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