2.3 Nonadiabatic Electron Transfer in a Donor-Acceptor Complex

nonadiabatic ET is understood as the charge transition process for which the vibrational motion is much faster than the motion of the transferred electron; bridge mediated long-range ET usually proceeds in the this limit;
for the following we introduce a convinient notation of the DA-Hamiltonian

$$
H_{D A}=\left(U_{D}^{(0)}+H_{D}\right)|D\rangle\langle D|+\left(U_{A}^{(0)}+H_{A}\right)|A\rangle\langle A|+\left(V_{A D}|A\rangle\langle D|+\text { h.c. }\right) ;
$$

the difference

$$
\Delta E=U_{D}^{(0)}-U_{A}^{(0)}
$$

is known as the driving force of the ET;
the transfer coupling between the donor and the acceptor will be accounted for in lowest order of perturbation theory ;
general rate formula

$$
k_{\mathrm{ET}}=\frac{2 \pi}{\hbar} \sum_{M, N} f_{D M}\left|V_{D M, A N}\right|^{2} \delta\left(E_{D M}-E_{A N}\right)
$$

we neglect any dependence of the transfer integral $V_{D A}$ on the vibrational coordinates (Condon-like approximation) and may write

$$
k_{\mathrm{ET}}=\frac{2 \pi}{\hbar}\left|V_{D A}\right|^{2} \mathcal{D}_{\mathrm{ET}}
$$

note the introduction of

$$
\mathcal{D}_{\mathrm{ET}}=\sum_{M, N} f_{D M}\left|\left\langle\chi_{D M} \mid \chi_{A N}\right\rangle\right|^{2} \delta\left(E_{D M}-E_{A N}\right)
$$

this expression can be understood as combined thermal averaged and Franck-Condon weighted density of states (DOS);

2.3.1 High-Temperature Case

high-temperature limit: $k_{\mathrm{B}} T \gg \hbar \omega_{\xi}$;
if this relation holds for all vibrational modes ξ, it is possible to describe the vibrational dynamics in the framework of classical physics;
use of the PES $U_{m}(q)\left(q \equiv\left\{q_{\xi}\right\}\right)$ for the electron at the donor or acceptor site ($m=$ D, A;
in standard experimental situations only an average with respect to a large number of identical DA complexes is of interest;
it is replaced by an ensemble average with respect to the thermal equilibrium distribution function;
the following rate expression is obtained:

$$
k_{\mathrm{ET}}=\frac{2 \pi}{\hbar} \int d q f_{D}(q)\left|V_{D A}\right|^{2} \delta\left(U_{D}(q)-U_{A}(q)\right)
$$

in the δ-function the kinetic energy cancels and the distribution function reduces to

$$
f_{D}(q)=\frac{1}{\mathcal{Z}} e^{-U_{D}(q) / k_{\mathrm{B}} T} ;
$$

if parabolic PES are used, an analytical expression for the ET rate can be obtained; case of a single coordinate q oscillating with frequency $\omega_{\text {vib }}$;

$$
\begin{aligned}
U_{D}(q) & -U_{A}(q)=U_{D}^{(0)}-U_{A}^{(0)}+\frac{\omega_{\mathrm{vib}}^{2}}{2}\left(\left(q-q^{(D)}\right)^{2}-\left(q-q^{(A)}\right)^{2}\right) \\
& =\Delta E-\omega_{\mathrm{vib}}^{2}\left(q^{(D)}-q^{(A)}\right) q+\frac{\omega_{\mathrm{vib}}^{2}}{2}\left(q^{(D) 2}-q^{(A) 2}\right) ;
\end{aligned}
$$

the argument of the delta function is linear with respect to q and vanishes at

$$
q^{*}=\frac{\Delta E+\frac{\omega_{\mathrm{vib}}^{2}}{2}\left(q^{(D) 2}-q^{(A) 2}\right)}{\omega_{\mathrm{vib}}^{2}\left(q^{(D)}-q^{(A)}\right)} ;
$$

this value of q defines the crossing point of both PES;
thermal distribution reads

$$
f_{D}(q)=\sqrt{\frac{\omega_{\mathrm{vib}}^{2}}{2 \pi k_{\mathrm{B}} T}} \exp \left\{-\frac{\omega_{\mathrm{vib}}^{2}\left(q-q^{(D)}\right)^{2}}{2 k_{\mathrm{B}} T}\right\} ;
$$

the q-integration results in

$$
k_{\mathrm{ET}}=\frac{2 \pi}{\hbar} \frac{\left|V_{D A}\right|^{2}}{\sqrt{2 \pi k_{\mathrm{B}} T \omega_{\mathrm{vib}}^{2}\left(q^{(D)}-q^{(A)}\right)^{2}}} \exp \left\{-\frac{\omega_{\mathrm{vib}}^{2}\left(q^{*}-q^{(D)}\right)^{2}}{2 k_{\mathrm{B}} T}\right\} ;
$$

rate formula represents the activation law for reaching the crossing point $q=q^{*}$ between the donor and the acceptor PES;
activation energy is given by

$$
E_{\mathrm{act}}=\frac{1}{2} \omega_{\mathrm{vib}}^{2}\left(q^{*}-q^{(D)}\right)^{2} ;
$$

this expression can be rewritten to give

$$
E_{\mathrm{act}}=\frac{\left(\Delta E-E_{\lambda}\right)^{2}}{4 E_{\lambda}} ;
$$

the quantity

$$
E_{\lambda}=\frac{\omega_{\mathrm{vib}}^{2}}{2}\left(q^{(D)}-q^{(A)}\right)^{2} ;
$$

is the potential energy of the vibrational coordinate which corresponds to the following situation: initially the electron is at the donor and the vibrational coordinate has the value $q=q^{(D)}$; then a sudden change of the electronic state occurs; in order to reorganize the vibrational coordinate (nuclear configuration) to the new equilibrium value $q^{(A)}$ the energy E_{λ} has to be removed from the system; this energy is usually called reorganization energy; the name polarization energy is also common;
rate expression which follows upon introducing E_{λ} is usually named after R. A. Marcus, who pioneered the theory of ET reactions starting in the 1950s:

$$
k_{\mathrm{ET}}=\left|V_{D A}\right|^{2} \sqrt{\frac{\pi}{\hbar^{2} k_{\mathrm{B}} T E_{\lambda}}} \exp \left\{-\frac{\left(\Delta E-E_{\lambda}\right)^{2}}{4 E_{\lambda} k_{\mathrm{B}} T}\right\} ;
$$

expression is valid if we consider not a single but a large number of vibrational coordinates;
the only change concerns the reorganization energy:

$$
E_{\lambda}=\sum_{\xi} \frac{\omega_{\xi}^{2}}{2}\left(q_{\xi}^{(D)}-q_{\xi}^{(A)}\right)^{2} ;
$$

main advantage of the Marcus formula is the description of the complex vibrational dynamics accompanying the electronic transition by a small number of parameters: the transfer coupling $V_{D A}$, the driving force ΔE, and the reorganization energy E_{λ};
the rate for the back transfer from the acceptor to the donor follows by the interchange of the donor and the acceptor index leading to a change of the sign of ΔE :

$$
k_{A D}=k_{D A}(-\Delta E)=e^{-\Delta E / k_{\mathrm{B}} T} k_{D A}(\Delta E) ;
$$

the ratio of the backward and forward rate is given by $\exp \left\{-\Delta E / k_{\mathrm{B}} T\right\}$ (detailed balance condition);
let us consider the ET rate in dependence on the driving force ΔE of the reaction at a given value of $V_{D A}$ and E_{λ}; three regions of ET appear:
normal region of ET;
activationless case (increasing $\Delta E, q^{*}$ moves to the left until the activation energy becomes zero (this regime of ET is observed in the experiment if the rate becomes independent of temperature);
inverted region (strong overlap of vibrational wave functions; nuclear tunneling may become important instead of the thermally activated transfer);

ET in the inverted region has been originally proposed by R. A. Marcus in the 1950s, but it could be verified experimentally only in the late 1980s;

2.3.2 Low-Temperature Case: Nuclear Tunneling

we suppose that $k_{\mathrm{B}} T<\hbar \omega_{\xi}$ holds for all vibrational degrees of freedom participating in the ET reaction;
a quantum mechanical description becomes necessary;
we consider the combined thermally averaged and Franck-Condon weighted density of states and rearrange this formula by replacing the δ-function by a time-integral

$$
\mathcal{D}_{\mathrm{ET}}=\frac{1}{2 \pi \hbar} \int d t \sum_{M, N} f_{D M}\left\langle\chi_{D M} \mid \chi_{A N}\right\rangle\left\langle\chi_{A N} \mid \chi_{D M}\right\rangle e^{i\left(E_{D M}-E_{A N}\right) t / \hbar}
$$

this may be rerarranged as

$$
\mathcal{D}_{\mathrm{ET}}(\Delta E / \hbar)=\frac{1}{2 \pi \hbar} \int d t e^{i \Delta E t / \hbar} \sum_{M, N}\left\langle\chi_{D M}\right| \hat{R}_{D} e^{i H_{D} t / \hbar} e^{-i H_{A} t / \hbar}\left|\chi_{A N}\right\rangle\left\langle\chi_{A N} \mid \chi_{D M}\right\rangle
$$

$$
=\frac{1}{2 \pi \hbar} \int d t e^{i \Delta E t / \hbar_{\operatorname{tr}}} \operatorname{tr}_{\mathrm{vib}}\left\{\hat{R}_{D} e^{i H_{D} t / \hbar} e^{-i H_{A} t / \hbar}\right\}
$$

here we introduced the trace

$$
\operatorname{tr}_{\text {vib }}\{\ldots\}=\sum_{M}\left\langle\chi_{D M}\right| \ldots\left|\chi_{D M}\right\rangle
$$

and the equilibrium vibrational statistical operator

$$
\hat{R}_{D}=e^{-H_{D} / k_{\mathrm{B}} T} / \operatorname{tr}_{\mathrm{vib}}\left\{e^{-H_{D} / k_{\mathrm{B}} T}\right\}
$$

ET Rate for Harmonic Potential Energy Surfaces

we compute $\mathcal{D}_{\mathrm{ET}}$, if the two vibrational Hamiltonians H_{D} and H_{A} describe independent harmonic oscillators (normal mode vibrations); we use the displacement operator

$$
D_{m}^{+}=\exp \left\{\sum_{\xi} g_{m}(\xi)\left(C_{\xi}-C_{\xi}^{+}\right)\right\} \equiv \prod_{\xi} D_{\xi}^{+}\left(g_{m}(\xi)\right) ;
$$

the two vibrational Hamiltonian can be generated from the Hamiltonian of a non-shifted oscillator

$$
H_{m}=U_{m}^{(0)}+D_{m}^{+} H_{\mathrm{vib}} D_{m}
$$

with

$$
H_{\mathrm{vib}}=\sum_{\xi} \hbar \omega_{\xi}\left(C_{\xi}^{+} C_{\xi}+1 / 2\right) ;
$$

the trace formula introduced in $\mathcal{D}_{\text {ET }}$ can be rewritten as

$$
\begin{gathered}
\operatorname{tr}_{\mathrm{vib}}\left\{\hat{R}_{D} e^{i H_{D} t / \hbar} e^{-i H_{A} t / \hbar}\right\} \\
=e^{i \omega_{D A} t} \operatorname{tr}_{\mathrm{vib}}\left\{D_{D} D_{D}^{+} \hat{R}_{\mathrm{vib}} D_{D} D_{D}^{+} e^{i H_{\mathrm{vib}} t / \hbar} D_{D} D_{A}^{+} e^{-i H_{\mathrm{vib}} t / \hbar} D_{A} D_{D}^{+}\right\} \\
=e^{i \omega_{D A} t} \times \operatorname{tr}_{\mathrm{vib}}\left\{\hat{R}_{\mathrm{vib}} e^{i H_{\mathrm{vib}} t / \hbar} D_{D} D_{A}^{+} e^{-i H_{\mathrm{vib}} t / \hbar} D_{A} D_{D}^{+}\right\} \\
=e^{i \omega_{D A} t} \operatorname{tr}_{\mathrm{vib}}\left\{\hat{R}_{\mathrm{vib}} e^{i H_{\mathrm{vib}} t / \hbar} D_{D A} e^{-i H_{\mathrm{vib}} t / \hbar} D_{D A}^{+}\right\} ;
\end{gathered}
$$

we introduced the combined displacement operator

$$
D_{D A}=D_{D} D_{A}^{+}
$$

using the Heisenberg representation of $D_{D A}$ which is given by

$$
D_{D A}(t)=e^{i H_{\mathrm{vi}} t / \hbar} D_{D A} e^{-i H_{\mathrm{vi}} t / \hbar},
$$

the trace formula becomes

$$
T(t)=\operatorname{tr}_{\mathrm{vib}}\left\{\hat{R}_{D} e^{i H_{D} t / \hbar} e^{-i H_{A} t / \hbar}\right\}=e^{i \omega_{D A} t} \operatorname{tr}_{\mathrm{vib}}\left\{\hat{R}_{\mathrm{vib}} D_{D A}(t) D_{D A}^{+}(0)\right\} ;
$$

this is the autocorrelation function of the combined displacement operators taken with respect to the equilibrium of the non-displaced reference oscillators;
there is no coupling among the modes; the vibrational Hamiltonian $H_{\text {vib }}$ is additive with
respect to the mode index ξ and the vibrational state $|N\rangle$ factorizes into the single oscillator states $\left|N_{\xi}\right\rangle$; the trace factorizes into single mode traces

$$
T(t)=e^{i \omega_{D A} t} \prod_{\xi} T_{\xi}(t)
$$

to simplify the notation the mode index ξ will be dropped, and ω_{ξ} is replaced by $\omega_{\text {vib }}$;

$$
D_{D A}=D\left(g_{D}\right) D^{+}\left(g_{A}\right)=D\left(g_{D}-g_{A}\right)=D(\Delta g),
$$

where $\Delta g=g_{D}-g_{A}$;
the time-dependent displacement operator (the single-mode contribution to it) can be written as

$$
\begin{aligned}
& D_{D A}(t)=D(\Delta g ; t)=e^{i \omega_{\text {vib }} C^{+} C t} D(\Delta g) e^{-i \omega_{\text {vib }} C^{+} C t} \\
& \quad=\exp \left\{-\Delta g\left(C e^{-i \omega_{\text {vib }} t}-C^{+} e^{i \omega_{\text {vib }} t}\right)\right\} ;
\end{aligned}
$$

the single-mode contribution to the trace reads (\mathcal{Z} is the single-mode partition function)

$$
T_{\xi}(t)=\frac{1}{\mathcal{Z}} \sum_{N}\langle N| e^{-\hbar \omega_{\mathrm{vib}} N / k_{\mathrm{B}} T} D(\Delta g ; t) D^{+}(\Delta g ; 0)|N\rangle ;
$$

before proceeding further we calculate the vibrational overlap expression for two arbitrary electronic states

$$
\left\langle\chi_{m M} \mid \chi_{n N}\right\rangle=\langle M| D\left(g_{m}\right) D^{+}\left(g_{n}\right)|N\rangle ;
$$

$|N\rangle$ and $|M\rangle$ are the non-shifted states; we make use of the operator identity

$$
e^{\alpha(A+B)}=e^{\alpha A} e^{\alpha B} e^{-\alpha^{2}[A, B] / 2}
$$

which holds if $[A, B]$ commutes with A and B (α is some parameter); we obtain

$$
D\left(g_{m}\right) D^{+}\left(g_{n}\right)=D\left(\Delta g_{m n}\right)=e^{\Delta g_{m n} C^{+}} e^{-\Delta g_{m n} C} e^{-\Delta g_{m n}^{2} / 2},
$$

with $\Delta g_{m n}=g_{m}-g_{n}$;
the action of the exponential operator on the oscillator states is calculated using a Taylor expansion

$$
e^{-\Delta g_{m n} C}|N\rangle=\sum_{n=0}^{N} \frac{\left(-\Delta g_{m n}\right)^{n}}{n!} C^{n}|N\rangle=\sum_{n=0}^{N} \frac{\left(-\Delta g_{m n}\right)^{n}}{n!} \sqrt{\frac{N!}{(N-n)!}}|N-n\rangle ;
$$

the matrix elements follow as

$$
\begin{gathered}
\left\langle\chi_{m M} \mid \chi_{n N}\right\rangle=e^{-\left(\Delta g_{m n}\right)^{2} / 2} \sum_{i=0}^{M} \sum_{j=0}^{N} \frac{(-1)^{j}\left(\Delta g_{m n}\right)^{i+j}}{i!j!} \\
\quad \times \sqrt{\frac{M!N!}{(M-i)!(N-j)!}} \delta_{M-i, N-j} ;
\end{gathered}
$$

the elements which are diagonal in the vibrational quantum number can be further simplified

$$
\left\langle\chi_{m N} \mid \chi_{m N}\right\rangle=e^{-\left(\Delta g_{m n}\right)^{2} / 2} \sum_{j=0}^{N} \frac{(-1)^{j}\left(\Delta g_{m n}\right)^{2 j}}{j!^{2}} \frac{N!}{(N-j)!}
$$

$$
=e^{-\left(\Delta g_{m n}\right)^{2} / 2} L_{N}\left(\left(\Delta g_{m n}\right)^{2}\right),
$$

where $L_{N}(x)$ is a Laguerre polynomial;
now let us further calculate the trace expression; we introduce

$$
\mathcal{M}(N)=\langle N| D(\Delta g ; t) D^{+}(\Delta g ; 0)|N\rangle=\langle N| e^{-\alpha(t) C+\alpha^{*}(t) C^{+}} e^{\alpha(0) C-\alpha^{*}(0) C^{+}}|N\rangle
$$

with

$$
\alpha(t)=\Delta g \exp \left(-i \omega_{\mathrm{vib}} t\right) ;
$$

we can write

$$
\begin{gathered}
\mathcal{M}(N)=\langle N| e^{-|\alpha(t)|^{2} / 2} e^{\alpha^{*}(t) C^{+}} e^{-\alpha(t) C} e^{-|\alpha(0)|^{2} / 2} e^{-\alpha^{*}(0) C^{+}} e^{\alpha(0) C}|N\rangle \\
=e^{-\frac{1}{2}\left(\left.\alpha(t)\right|^{2}+|\alpha(0)|^{2}\right)} \times\langle N| e^{\alpha^{*}(t) C^{+}} e^{\alpha(t) \alpha^{*}(0)} e^{-\alpha^{*}(0) C^{+}} e^{-\alpha(t) C} e^{\alpha(0) C}|N\rangle \\
=e^{-\frac{1}{2}\left(|\alpha(t)|^{2}+|\alpha(0)|^{2}-2 \alpha(t) \alpha^{*}(0)\right)} \times\langle N| e^{\left(\alpha^{*}(t)-\alpha^{*}(0)\right) C^{+}} e^{-(\alpha(t)-\alpha(0)) C}|N\rangle ;
\end{gathered}
$$

we introduce the abbreviation

$$
\Delta \alpha(t)=\alpha(t)-\alpha(0)=\Delta g\left(\exp \left(-i \omega_{\mathrm{vib}} t\right)-1\right)
$$

and take into account that

$$
|\alpha(t)|^{2}+|\alpha(0)|^{2}-2 \alpha(t) \alpha^{*}(0)=|\Delta \alpha(t)|^{2}-2 i \operatorname{Im}\left(\alpha(t) \alpha^{*}(0)\right) ;
$$

we obtain the normal ordering of the original matrix elements in the trace formula $\langle N| D(\Delta g ; t) D^{+}(\Delta g ; 0)|N\rangle=\exp \left\{-|\Delta \alpha|^{2} / 2-i \operatorname{Im}\left(\alpha^{*}(t) \alpha(0)\right)\right\}\langle N| e^{\Delta \alpha^{*} C^{+}} e^{-\Delta \alpha C}|N\rangle ;$ it gives

$$
T_{\xi}(t)=\left(1-e^{-\hbar \omega_{\mathrm{vi}} / k_{\mathrm{B}} T}\right) e^{-z / 2-i \operatorname{Im}\left(\alpha^{*}(t) \alpha(0)\right)} \sum_{N=0}^{\infty} e^{-\hbar \omega_{\mathrm{vib}} N / k_{\mathrm{B}} T} L_{N}(z)
$$

note the introduction of $z=|\Delta \alpha(t)|^{2}$;
the relation between the Laguerre polynomials and their generating function reads

$$
\sum_{N=0}^{\infty} \lambda^{N} L_{N}(z)=\frac{1}{1-\lambda} e^{-\lambda z /(1-\lambda)} \quad(|\lambda|<1)
$$

it results in

$$
T_{\xi}(t)=\exp E_{\xi}(t),
$$

with

$$
E_{\xi}(t)=-z / 2-i \operatorname{Im}\left(\alpha^{*}(t) \alpha(0)\right)-\frac{e^{-\hbar \omega_{\mathrm{vi}} / k_{\mathrm{B}} T}}{1-e^{-\hbar \omega_{\mathrm{vib}} / k_{\mathrm{B}} T}} z ;
$$

the Bose-Einstein distribution $n\left(\omega_{\text {vib }}\right)$ allows us to rewrite the last term of the exponent

$$
\begin{gathered}
E_{\xi}(t)=-z / 2-i \operatorname{Im} \alpha^{*}(t) \alpha(0)-n\left(\omega_{\mathrm{vib}}\right) z \\
=-\frac{1}{2}\left(1+2 n\left(\omega_{\mathrm{vib}}\right)\right) \Delta g^{2}\left(2-e^{i \omega_{\mathrm{vib}} t}-e^{-i \omega_{\mathrm{vib}} t}\right)-\frac{1}{2} \Delta g^{2}\left(e^{i \omega_{\mathrm{vib}} t}-e^{-i \omega_{\mathrm{vib}} t}\right)
\end{gathered}
$$

$$
=\frac{\Delta g^{2}}{2}\left(2\left(1+n\left(\omega_{\mathrm{vib}}\right)\right)\left(e^{-i \omega_{\mathrm{vib}} t}-1\right)+2 n\left(\omega_{\mathrm{vib}}\right)\left(e^{i \omega_{\mathrm{vib}} t}-1\right)\right) ;
$$

the result will be denoted by $E_{\xi}(t)=-G_{\xi}(0)+G_{\xi}(t)$ with

$$
G_{\xi}(t)=\Delta g^{2}(\xi)\left[e^{-i \omega_{\xi} t}\left(1+n\left(\omega_{\xi}\right)\right)+e^{i \omega_{\xi} t} n\left(\omega_{\xi}\right)\right]
$$

the complete trace is the product with respect to the various single-mode contributions $T_{\xi}(t)$

$$
G(t)=\sum_{\xi} G_{\xi}(t)
$$

this exact result is used in the definition of the density of states

$$
\mathcal{D}_{\mathrm{ET}}(\Delta E / \hbar)=\frac{1}{2 \pi \hbar} \int d t e^{i \Delta E t / \hbar-G(0)+G(t)} ;
$$

again with

$$
G(t)=\sum_{\xi}\left(g_{A}(\xi)-g_{D}(\xi)\right)^{2}\left[e^{-i \omega_{\xi} t}\left(1+n\left(\omega_{\xi}\right)\right)+e^{i \omega_{\xi} t} n\left(\omega_{\xi}\right)\right] ;
$$

ET Rate for the Case of a Single Harmonic Coordinate

once the function $G(t)$ is given, a single time integration generates the complete ET rate; to achieve a better understanding of this expression we discuss the limit where only a single vibrational mode with frequency $\omega_{\text {vib }}$ couples to the electronic transition

$$
G(t)=\Delta g^{2}\left(e^{-i \omega_{\text {vib }} t}\left(1+n\left(\omega_{\text {vib }}\right)\right)+e^{i \omega_{\text {vib }} t} n\left(\omega_{\text {vib }}\right)\right)
$$

expanding the exponential function yields

$$
\exp \{G(t)\}=\sum_{M=0}^{\infty} \frac{1}{M!}\left[\Delta g^{2}\left(1+n\left(\omega_{\mathrm{vib}}\right)\right)\right]^{M} e^{-i M \omega_{\mathrm{vib}} t} \sum_{N=0}^{\infty} \frac{1}{N!}\left[\Delta g^{2} n\left(\omega_{\mathrm{vib}}\right)\right]^{N} e^{i N \omega_{\mathrm{vib}} t} ;
$$

inserting this result into the expression of the combined DOS allows to carry out the time integration for every contribution in the double sum

$$
\begin{gathered}
\mathcal{D}_{\mathrm{ET}}(\Delta E / \hbar)=\frac{1}{\hbar} e^{-\Delta g^{2}\left(1+2 n\left(\omega_{\mathrm{vib}}\right)\right)} \sum_{M, N=0}^{\infty} \frac{1}{M!}\left[\Delta g^{2}\left(1+n\left(\omega_{\mathrm{vib}}\right)\right)\right]^{M} \\
\times \frac{1}{N!}\left[\Delta g^{2} n\left(\omega_{\mathrm{vib}}\right)\right]^{N} \delta\left(\Delta E / \hbar-(M-N) \omega_{\mathrm{vib}}\right)
\end{gathered}
$$

we consider the zero-temperature case

$$
\left.\mathcal{D}_{\mathrm{ET}}(\Delta E / \hbar)\right|_{T=0}=\frac{1}{\hbar} e^{-\Delta g^{2}} \sum_{M=0}^{\infty} \frac{\Delta g^{2 M}}{M!} \delta\left(\Delta E / \hbar-M \omega_{\mathrm{vib}}\right) ;
$$

the ET rate covers a sequence of sharp transitions at $\Delta E / \hbar-M \omega_{\text {vib }}$ with weighting factors

$$
w_{M}=e^{-\Delta g^{2}} \frac{\Delta g^{2 M}}{M!}
$$

the weighting factors follow from a so-called Poisson distribution;
they become maximal at $M \approx \Delta g^{2}$ or, in terms of energies, at $M \hbar \omega_{\text {vib }} \approx \hbar \omega_{\text {vib }} \Delta g^{2}$;

Introduction of the Spectral Density

if many vibrational modes couple to the electronic transition, we expect a quasi-continuous spectrum of vibrational frequencies; for such a case it is convenient to introduce the spectral density

$$
J_{D A}(\omega)=\sum_{\xi}\left(g_{A}(\xi)-g_{D}(\xi)\right)^{2} \delta\left(\omega-\omega_{\xi}\right) ;
$$

we assume that the following representation becomes possible

$$
\left(g_{A}(\xi)-g_{D}(\xi)\right)^{2}=\kappa\left(\omega_{\xi}\right),
$$

and we note the definition of the density of normal-mode oscillations

$$
\mathcal{N}(\omega)=\sum_{\xi} \delta\left(\omega-\omega_{\xi}\right)
$$

accordingly, the spectral density can be written as the coupling-strength weighted density of states

$$
J_{D A}(\omega)=\kappa(\omega) \mathcal{N}(\omega) ;
$$

the introduction of the spectral density results in

$$
G(t)=\int_{0}^{\infty} d \omega\left[(1+n(\omega)) e^{-i \omega t}+n(\omega) e^{i \omega t}\right] J_{D A}(\omega)
$$

the reorganization energy can be expressed via the spectral density as

$$
E_{\lambda}=\hbar \sum_{\xi} \omega_{\xi}\left(g_{D}(\xi)-g_{A}(\xi)\right)^{2}=\hbar \int_{0}^{\infty} d \omega \omega J_{\mathrm{DA}}(\omega) ;
$$

let us introduce the real and imaginary part of the function $G(t)$

$$
G(t)=G_{1}(t)-i G_{2}(t),
$$

where

$$
G_{1}(t)=\int_{0}^{\infty} d \omega \cos (\omega t)[1+2 n(\omega)] J_{D A}(\omega),
$$

and

$$
G_{2}(t)=\int_{0}^{\infty} d \omega \sin (\omega t) J_{D A}(\omega)
$$

according to this separation of $G(t)$ the density of states reads

$$
\mathcal{D}_{\mathrm{ET}}(\Delta E / \hbar)=\frac{1}{2 \pi \hbar} \int d t e^{i\left[\Delta E t / \hbar-G_{2}(t)\right]+G_{1}(t)-G_{1}(0)} ;
$$

the imaginary part of $G(t)$ introduces a shift of the driving force whereas the real part ensures integrability;
at this point it is useful to clarify what approximations will lead to the rate formula of the high-temperature limit; to this end we note that irrespective of the actual frequency
dependence, the spectral density rapidly goes to zero beyond a certain cut-off frequency ω_{c}; hence in the high-temperature limit we have $k_{\mathrm{B}} T \gg \hbar \omega_{\mathrm{c}}$; this enables us to introduce for all frequencies less than ω_{c} the approximation

$$
1+2 n(\omega) \approx 2 k_{\mathrm{B}} T / \hbar \omega \gg 1 ;
$$

to utilize this inequality next we use the separation of $G(t)$ into its real and imaginary part; if $\omega_{\mathrm{c}}|t| \ll \pi / 2$, the quantity $\exp \{G(t)-G(0)\}$ rapidly approaches zero since the expression $\cos \omega t-1$, which appears in the exponent, is negative; but for $\omega_{\mathrm{c}}|t|>\pi / 2$ the different contributions to the time integral may interfere destructively; consequently, it is possible to approximate $G(t)$ in the exponent by the leading expansion terms of the sine and cosine functions (this is known as the short-time expansion); using the definition of the spectral density gives

$$
G(t) \approx-\int_{0}^{\infty} d \omega \frac{(\omega t)^{2}}{2} 2 \frac{k_{\mathrm{B}} T}{\hbar \omega} J_{D A}(\omega)-i \int_{0}^{\infty} d \omega \omega t J_{D A}(\omega) ;
$$

both frequency integrals define the reorganization energy, and the combined density of states determining the ET rate follows as

$$
\mathcal{D}_{\mathrm{ET}}(\Delta E / \hbar)=\int \frac{d t}{2 \pi \hbar} \exp \left\{i \frac{\left(\Delta E-E_{\lambda}\right) t}{\hbar}\right\} \exp \left\{-\frac{k_{\mathrm{B}} T E_{\lambda} t^{2}}{\hbar^{2}}\right\} ;
$$

the remaining integral is easily calculated as

$$
\mathcal{D}_{\mathrm{ET}}(\Delta E / \hbar)=\frac{1}{\sqrt{4 \pi k_{\mathrm{B}} T E_{\lambda}}} \exp \left\{-\frac{\left(\Delta E-E_{\lambda}\right)^{2}}{4 E_{\lambda} k_{\mathrm{B}} T}\right\} .
$$

the classical (high-temperature) limit of the consequent quantum description of nonadiabatic ET reactions reproduces the Marcus formula;

2.3.3 The Mixed Quantum-Classical Case

we consider the case that the ET is coupled to high-frequency intramolecular (quantum) modes and to low-frequency (classical) modes; assuming a decoupling of both types of DOF the vibrational energies of the quantum modes E_{μ} are supplemented by the vibrational Hamiltonian function $H_{m}(q)$ of lowfrequency normal modes $q \equiv\left\{q_{\xi}\right\}$:

$$
H_{\mathrm{DA}}=\sum_{\mu \nu}\left(\delta_{\mu \nu}\left(E_{\mu}+H_{m}(q)\right)+\left(1-\delta_{m n}\right) V_{\mu \nu}\right)\left|\Psi_{\mu}\right\rangle\left\langle\Psi_{\nu}\right| ;
$$

the ET rate describes transitions from a manifold of donor states $\left|\phi_{D}\right\rangle\left|\chi_{D M}\right\rangle$ to many acceptor states $\left|\phi_{A}\right\rangle\left|\chi_{A N}\right\rangle$

$$
k_{\mathrm{ET}}=\frac{2 \pi}{\hbar} \sum_{M, N} \int d q f_{D M} f_{D}(q)\left|V_{D M, A N}\right|^{2} \delta\left(E_{D M}+U_{D}(q)-E_{A N}-U_{A}(q)\right) ;
$$

it follows the multi-channel generalization of the Marcus formula

$$
k_{\mathrm{ET}}=\sum_{M, N} f_{D M} k_{D M \rightarrow A N},
$$

with

$$
k_{D M \rightarrow A N}=\sqrt{\frac{\pi}{\hbar^{2} k_{\mathrm{B}} T E_{\lambda}}}\left|V_{D M, A N}\right|^{2} \exp \left\{-\frac{\left(\Delta E_{D M, A N}-E_{\lambda}\right)^{2}}{4 E_{\lambda} k_{\mathrm{B}} T}\right\} ;
$$

and with the driving forces

$$
\Delta E_{D M, A N}=E_{D M}-E_{A N}
$$

we discuss the special case where only the vibrational ground state of the quantum mode is occupied in the reactant state, and we concentrate on a single high-frequency normal mode, i.e., $E_{A N}=E_{A}+\hbar \omega_{\text {intra }}\left(N+\frac{1}{2}\right) \equiv E_{A 0}+\hbar \omega_{\text {intra }} N$;
the rate follows as

$$
k_{\mathrm{ET}}=\sqrt{\frac{\pi}{\hbar^{2} k_{\mathrm{B}} T E_{\lambda}}}\left|V_{D A}\right|^{2} \sum_{N=0}^{\infty}\left|\left\langle\chi_{D 0} \mid \chi_{A N}\right\rangle\right|^{2} \exp \left\{-\frac{\left(\Delta E-\hbar \omega_{\text {intra }} N-E_{\lambda}\right)^{2}}{4 E_{\lambda} k_{\mathrm{B}} T}\right\} ;
$$

here, the reference driving force $\Delta E \equiv E_{D 0}-E_{A 0}$ has been introduced; we rewrite the rate using a more explicit expression for the Franck-Condon factor

$$
\left\langle\chi_{D 0} \mid \chi_{A N}\right\rangle=\frac{1}{\sqrt{N!}} g_{D A}^{N} e^{-g_{D A}^{2} / 2} ;
$$

furthermore, we replace the shift $g_{D A}$ of the PES of the intramolecular vibration by $E_{\lambda}^{(\text {intra })} / \hbar \omega_{\text {intra }}$:

$$
\left|\left\langle\chi_{D 0} \mid \chi_{A N}\right\rangle\right|^{2}=\frac{1}{N!}\left(\frac{E_{\lambda}^{(\text {intra })}}{\hbar \omega_{\text {intra }}}\right)^{N} \exp \left\{-\frac{E_{\lambda}^{(\text {intra })}}{\hbar \omega_{\text {intra }}}\right\}
$$

the final rate expression reads

$$
\begin{gathered}
k_{\mathrm{ET}}=\sqrt{\frac{\pi}{\hbar^{2} k_{\mathrm{B}} T E_{\lambda}}}\left|V_{D A}\right|^{2} \sum_{N=0}^{\infty} \frac{1}{N!}\left(\frac{E_{\lambda}^{(\text {intra })}}{\hbar \omega_{\text {intra }}}\right)^{N} \exp \left\{-\frac{E_{\lambda}^{(\text {intra })}}{\hbar \omega_{\text {intra }}}\right\} \\
\exp \left\{-\frac{\left(\Delta E-\hbar \omega_{\text {intra }} N-E_{\lambda}\right)^{2}}{4 E_{\lambda} k_{\mathrm{B}} T}\right\}
\end{gathered}
$$

