
2.3 Nonadiabatic Electron Transfer in a Donor–Acceptor
Complex

nonadiabatic ET is understood as the charge transition process for which the vibrational
motion is much faster than the motion of the transferred electron;
bridge mediated long–range ET usually proceeds in the this limit;
for the following we introduce a convinient notation of the DA–Hamiltonian

HDA = (U
(0)
D + HD)|D〉〈D| + (U

(0)
A + HA)|A〉〈A| + (VAD|A〉〈D| + h.c.) ;

the difference
∆E = U

(0)
D − U

(0)
A

is known as the driving force of the ET;
the transfer coupling between the donor and the acceptor will be accounted for in lowest
order of perturbation theory ;
general rate formula

kET =
2π

~

∑

M,N

fDM |VDM,AN |2δ(EDM − EAN) ;

we neglect any dependence of the transfer integral VDA on the vibrational coordinates
(Condon–like approximation) and may write

kET =
2π

~
|VDA|2DET ;

note the introduction of

DET =
∑

M,N

fDM |〈χDM |χAN〉|2δ(EDM − EAN) ;

this expression can be understood as combined thermal averaged and Franck–Condon
weighted density of states (DOS);

2.3.1 High–Temperature Case

high–temperature limit: kBT ≫ ~ωξ;
if this relation holds for all vibrational modes ξ, it is possible to describe the vibrational
dynamics in the framework of classical physics;
use of the PES Um(q) (q ≡ {qξ}) for the electron at the donor or acceptor site (m =
D,A);
in standard experimental situations only an average with respect to a large number of
identical DA complexes is of interest;
it is replaced by an ensemble average with respect to the thermal equilibrium distribu-
tion function;
the following rate expression is obtained:

kET =
2π

~

∫

dq fD(q)|VDA|2δ (UD(q) − UA(q)) ;
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in the δ-function the kinetic energy cancels and the distribution function reduces to

fD(q) =
1

Z e−UD(q)/kBT ;

if parabolic PES are used, an analytical expression for the ET rate can be obtained;
case of a single coordinate q oscillating with frequency ωvib;

UD(q) − UA(q) = U
(0)
D − U

(0)
A +

ω2
vib

2

(

(

q − q(D)
)2 −

(

q − q(A)
)2
)

= ∆E − ω2
vib(q

(D) − q(A))q +
ω2

vib

2
(q(D)2 − q(A)2) ;

the argument of the delta function is linear with respect to q and vanishes at

q∗ =
∆E +

ω2
vib

2

(

q(D)2 − q(A)2
)

ω2
vib(q

(D) − q(A))
;

this value of q defines the crossing point of both PES;
thermal distribution reads

fD(q) =

√

ω2
vib

2πkBT
exp

{

−ω2
vib(q − q(D))2

2kBT

}

;

the q–integration results in

kET =
2π

~

|VDA|2
√

2πkBTω2
vib (q(D) − q(A))

2
exp

{

−ω2
vib

(

q∗ − q(D)
)2

2kBT

}

;

rate formula represents the activation law for reaching the crossing point q = q∗ be-
tween the donor and the acceptor PES;
activation energy is given by

Eact =
1

2
ω2

vib

(

q∗ − q(D)
)2

;

this expression can be rewritten to give

Eact =
(∆E − Eλ)

2

4Eλ

;

the quantity

Eλ =
ω2

vib

2

(

q(D) − q(A)
)2

;

is the potential energy of the vibrational coordinate which corresponds to the following
situation: initially the electron is at the donor and the vibrational coordinate has the
value q = q(D); then a sudden change of the electronic state occurs; in order to reor-
ganize the vibrational coordinate (nuclear configuration) to the new equilibrium value
q(A) the energy Eλ has to be removed from the system; this energy is usually called
reorganization energy; the name polarization energy is also common;
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rate expression which follows upon introducing Eλ is usually named after R. A. Marcus,
who pioneered the theory of ET reactions starting in the 1950s:

kET = |VDA|2
√

π

~2kBTEλ

exp

{

−(∆E − Eλ)
2

4EλkBT

}

;

expression is valid if we consider not a single but a large number of vibrational coordi-
nates;
the only change concerns the reorganization energy:

Eλ =
∑

ξ

ω2
ξ

2

(

q
(D)
ξ − q

(A)
ξ

)2

;

main advantage of the Marcus formula is the description of the complex vibrational dy-
namics accompanying the electronic transition by a small number of parameters: the
transfer coupling VDA, the driving force ∆E, and the reorganization energy Eλ;

the rate for the back transfer from the acceptor to the donor follows by the interchange
of the donor and the acceptor index leading to a change of the sign of ∆E:

kAD = kDA(−∆E) = e−∆E/kBT kDA(∆E) ;

the ratio of the backward and forward rate is given by exp{−∆E/kBT} (detailed bal-
ance condition);

let us consider the ET rate in dependence on the driving force ∆E of the reaction
at a given value of VDA and Eλ; three regions of ET appear:
normal region of ET;
activationless case (increasing ∆E, q∗ moves to the left until the activation energy
becomes zero (this regime of ET is observed in the experiment if the rate becomes
independent of temperature);
inverted region (strong overlap of vibrational wave functions; nuclear tunneling may
become important instead of the thermally activated transfer);

ET in the inverted region has been originally proposed by R. A. Marcus in the 1950s,
but it could be verified experimentally only in the late 1980s;

2.3.2 Low–Temperature Case: Nuclear Tunneling

we suppose that kBT < ~ωξ holds for all vibrational degrees of freedom participating in
the ET reaction;
a quantum mechanical description becomes necessary;
we consider the combined thermally averaged and Franck–Condon weighted density
of states and rearrange this formula by replacing the δ–function by a time–integral

DET =
1

2π~

∫

dt
∑

M,N

fDM〈χDM |χAN〉〈χAN |χDM〉ei(EDM−EAN )t/~

this may be rerarranged as

DET(∆E/~) =
1

2π~

∫

dt ei∆Et/~
∑

M,N

〈χDM |R̂DeiHDt/~e−iHAt/~|χAN〉〈χAN |χDM〉
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=
1

2π~

∫

dt ei∆Et/~trvib{R̂DeiHDt/~e−iHAt/~}

here we introduced the trace

trvib{...} =
∑

M

〈χDM |...|χDM〉

and the equilibrium vibrational statistical operator

R̂D = e−HD/kBT /trvib{e−HD/kBT}

ET Rate for Harmonic Potential Energy Surfaces

we compute DET, if the two vibrational Hamiltonians HD and HA describe independent
harmonic oscillators (normal mode vibrations);
we use the displacement operator

D+
m = exp

{

∑

ξ

gm(ξ)(Cξ − C+
ξ )
}

≡
∏

ξ

D+
ξ (gm(ξ)) ;

the two vibrational Hamiltonian can be generated from the Hamiltonian of a non–shifted
oscillator

Hm = U (0)
m + D+

mHvibDm ,

with
Hvib =

∑

ξ

~ωξ(C
+
ξ Cξ + 1/2) ;

the trace formula introduced in DET can be rewritten as

trvib{R̂D eiHDt/~ e−iHAt/~}

= eiωDAt trvib{DD D+
D R̂vib DD D+

D eiHvibt/~DD D+
Ae−iHvibt/~DA D+

D}
= eiωDAt × trvib{R̂vib eiHvibt/~ DDD+

Ae−iHvibt/~DAD+
D}

= eiωDAt trvib{R̂vib eiHvibt/~ DDAe−iHvibt/~D+
DA} ;

we introduced the combined displacement operator

DDA = DDD+
A ;

using the Heisenberg representation of DDA which is given by

DDA(t) = eiHvibt/~ DDAe−iHvibt/~ ,

the trace formula becomes

T (t) = trvib{R̂D eiHDt/~ e−iHAt/~} = eiωDAt trvib{ R̂vib DDA(t)D+
DA(0)} ;

this is the autocorrelation function of the combined displacement operators taken with
respect to the equilibrium of the non–displaced reference oscillators;
there is no coupling among the modes; the vibrational Hamiltonian Hvib is additive with
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respect to the mode index ξ and the vibrational state |N〉 factorizes into the single
oscillator states |Nξ〉; the trace factorizes into single mode traces

T (t) = eiωDAt
∏

ξ

Tξ(t) ;

to simplify the notation the mode index ξ will be dropped, and ωξ is replaced by ωvib;

DDA = D(gD) D+(gA) = D(gD − gA) = D(∆g) ,

where ∆g = gD − gA;
the time–dependent displacement operator (the single–mode contribution to it) can be
written as

DDA(t) = D(∆g; t) = eiωvibC+Ct D(∆g) e−iωvib C+Ct

= exp
{

−∆g(Ce−iωvibt − C+eiωvibt)
}

;

the single–mode contribution to the trace reads (Z is the single–mode partition func-
tion)

Tξ(t) =
1

Z
∑

N

〈N | e−~ωvibN/kBT D(∆g; t) D+(∆g; 0)|N〉 ;

before proceeding further we calculate the vibrational overlap expression for two arbi-
trary electronic states

〈χmM |χnN〉 = 〈M |D(gm)D+(gn)|N〉 ;

|N〉 and |M〉 are the non–shifted states; we make use of the operator identity

eα(A+B) = eαAeαBe−α2[A,B]/2 ,

which holds if [A,B] commutes with A and B (α is some parameter);
we obtain

D(gm)D+(gn) = D(∆gmn) = e∆gmnC+

e−∆gmnCe−∆g2
mn/2 ,

with ∆gmn = gm − gn;
the action of the exponential operator on the oscillator states is calculated using a
Taylor expansion

e−∆gmnC |N〉 =
N
∑

n=0

(−∆gmn)n

n!
Cn|N〉 =

N
∑

n=0

(−∆gmn)n

n!

√

N !

(N − n)!
|N − n〉 ;

the matrix elements follow as

〈χmM |χnN〉 = e−(∆gmn)2/2

M
∑

i=0

N
∑

j=0

(−1)j(∆gmn)i+j

i!j!

×
√

M !N !

(M − i)!(N − j)!
δM−i,N−j ;

the elements which are diagonal in the vibrational quantum number can be further
simplified

〈χmN |χmN〉 = e−(∆gmn)2/2

N
∑

j=0

(−1)j(∆gmn)2j

j!2
N !

(N − j)!
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= e−(∆gmn)2/2LN((∆gmn)2) ,

where LN(x) is a Laguerre polynomial;

now let us further calculate the trace expression; we introduce

M(N) = 〈N |D(∆g; t) D+(∆g; 0) |N〉 = 〈N |e−α(t)C+α∗(t)C+

eα(0)C − α∗(0)C+|N〉 ,

with
α(t) = ∆g exp(−iωvibt) ;

we can write

M(N) = 〈N |e−|α(t)|2/2 eα∗(t) C+

e−α(t) C e−|α(0)|2/2 e−α∗(0) C+

eα(0) C |N〉

= e−
1

2
(α(t)|2 + |α(0)|2) × 〈N |eα∗(t) C+

eα(t) α∗(0) e−α∗(0) C+

e−α(t) C eα(0) C |N〉
= e−

1

2
(|α(t)|2 + |α(0)|2−2α(t)α∗(0)) × 〈N |e(α∗(t)−α∗(0))C+

e−(α(t)−α(0))C |N〉 ;

we introduce the abbreviation

∆α(t) = α(t) − α(0) = ∆g(exp(−iωvibt) − 1) ,

and take into account that

|α(t)|2 + |α(0)|2 − 2α(t) α∗(0) = |∆α(t)|2 − 2 i Im(α(t) α∗(0)) ;

we obtain the normal ordering of the original matrix elements in the trace formula

〈N |D(∆g; t) D+(∆g; 0)|N〉 = exp
{

−|∆α|2/2 − i Im(α∗(t) α(0))
}

〈N |e∆α∗C+

e−∆αC |N〉 ;

it gives

Tξ(t) = (1 − e−~ωvib/kBT ) e−z/2−iIm (α∗(t)α(0))

∞
∑

N=0

e−~ωvibN/kBT LN(z) ;

note the introduction of z = |∆α(t)|2;
the relation between the Laguerre polynomials and their generating function reads

∞
∑

N=0

λN LN(z) =
1

1 − λ
e−λz/(1−λ) (|λ| < 1) ;

it results in
Tξ(t) = exp Eξ(t) ,

with

Eξ(t) = −z/2 − iIm(α∗(t) α(0)) − e−~ωvib/kBT

1 − e−~ωvib/kBT
z ;

the Bose–Einstein distribution n(ωvib) allows us to rewrite the last term of the exponent

Eξ(t) = −z/2 − i Im α∗(t)α(0) − n(ωvib)z

= −1

2

(

1 + 2n(ωvib)
)

∆g2(2 − eiωvibt − e−iωvibt) − 1

2
∆g2 (eiωvibt − e−iωvibt)
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=
∆g2

2

(

2
(

1 + n(ωvib)
)

(e−iωvibt − 1) + 2n(ωvib)(e
iωvibt − 1)

)

;

the result will be denoted by Eξ(t) = −Gξ(0) + Gξ(t) with

Gξ(t) = ∆g2(ξ)
[

e−iωξt(1 + n(ωξ)) + eiωξtn(ωξ)
]

;

the complete trace is the product with respect to the various single–mode contributions
Tξ(t)

G(t) =
∑

ξ

Gξ(t) ;

this exact result is used in the definition of the density of states

DET(∆E/~) =
1

2π~

∫

dt ei∆Et/~−G(0)+G(t) ;

again with

G(t) =
∑

ξ

(gA(ξ) − gD(ξ))2
[

e−iωξt(1 + n(ωξ)) + eiωξtn(ωξ)
]

;

ET Rate for the Case of a Single Harmonic Coordinate

once the function G(t) is given, a single time integration generates the complete ET
rate; to achieve a better understanding of this expression we discuss the limit where
only a single vibrational mode with frequency ωvib couples to the electronic transition

G(t) = ∆g2
(

e−iωvibt(1 + n(ωvib)) + eiωvibtn(ωvib)
)

;

expanding the exponential function yields

exp{G(t)} =
∞
∑

M=0

1

M !

[

∆g2(1 + n(ωvib))
]M

e−iMωvibt

∞
∑

N=0

1

N !

[

∆g2 n(ωvib)
]N

eiNωvibt ;

inserting this result into the expression of the combined DOS allows to carry out the
time integration for every contribution in the double sum

DET(∆E/~) =
1

~
e−∆g2(1+2n(ωvib))

∞
∑

M,N=0

1

M !

[

∆g2(1 + n(ωvib))
]M

× 1

N !

[

∆g2n(ωvib)
]N

δ(∆E/~ − (M − N)ωvib) ;

we consider the zero–temperature case

DET(∆E/~)|T=0 =
1

~
e−∆g2

∞
∑

M=0

∆g2M

M !
δ(∆E/~ − Mωvib) ;

the ET rate covers a sequence of sharp transitions at ∆E/~ − Mωvib with weighting
factors

wM = e−∆g2 ∆g2M

M !
;

the weighting factors follow from a so–called Poisson distribution;
they become maximal at M ≈ ∆g2 or, in terms of energies, at M~ωvib ≈ ~ωvib∆g2;
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Introduction of the Spectral Density

if many vibrational modes couple to the electronic transition, we expect a quasi–continuous
spectrum of vibrational frequencies; for such a case it is convenient to introduce the
spectral density

JDA(ω) =
∑

ξ

(gA(ξ) − gD(ξ))2 δ(ω − ωξ) ;

we assume that the following representation becomes possible

(gA(ξ) − gD(ξ))2 = κ(ωξ) ,

and we note the definition of the density of normal–mode oscillations

N (ω) =
∑

ξ

δ(ω − ωξ) ;

accordingly, the spectral density can be written as the coupling–strength weighted den-
sity of states

JDA(ω) = κ(ω)N (ω) ;

the introduction of the spectral density results in

G(t) =

∞
∫

0

dω
[

(1 + n(ω))e−iωt + n(ω)eiωt
]

JDA(ω) ;

the reorganization energy can be expressed via the spectral density as

Eλ = ~

∑

ξ

ωξ (gD(ξ) − gA(ξ))2 = ~

∞
∫

0

dω ωJDA(ω) ;

let us introduce the real and imaginary part of the function G(t)

G(t) = G1(t) − iG2(t) ,

where

G1(t) =

∞
∫

0

dω cos(ωt)[1 + 2n(ω)]JDA(ω) ,

and

G2(t) =

∞
∫

0

dω sin(ωt)JDA(ω) ;

according to this separation of G(t) the density of states reads

DET(∆E/~) =
1

2π~

∫

dt ei[∆Et/~−G2(t)]+G1(t)−G1(0) ;

the imaginary part of G(t) introduces a shift of the driving force whereas the real part
ensures integrability;
at this point it is useful to clarify what approximations will lead to the rate formula of
the high–temperature limit; to this end we note that irrespective of the actual frequency
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dependence, the spectral density rapidly goes to zero beyond a certain cut–off fre-
quency ωc; hence in the high–temperature limit we have kBT ≫ ~ωc; this enables us to
introduce for all frequencies less than ωc the approximation

1 + 2n(ω) ≈ 2kBT/~ω ≫ 1 ;

to utilize this inequality next we use the separation of G(t) into its real and imaginary
part; if ωc|t| ≪ π/2, the quantity exp{G(t) − G(0)} rapidly approaches zero since the
expression cos ωt − 1, which appears in the exponent, is negative; but for ωc|t| > π/2
the different contributions to the time integral may interfere destructively; consequently,
it is possible to approximate G(t) in the exponent by the leading expansion terms of
the sine and cosine functions (this is known as the short–time expansion); using the
definition of the spectral density gives

G(t) ≈ −
∞
∫

0

dω
(ωt)2

2
2
kBT

~ω
JDA(ω) − i

∞
∫

0

dω ωtJDA(ω) ;

both frequency integrals define the reorganization energy, and the combined density of
states determining the ET rate follows as

DET(∆E/~) =

∫

dt

2π~
exp

{

i
(∆E − Eλ)t

~

}

exp

{

−kBTEλt
2

~2

}

;

the remaining integral is easily calculated as

DET(∆E/~) =
1√

4πkBTEλ

exp

{

−(∆E − Eλ)
2

4EλkBT

}

.

the classical (high–temperature) limit of the consequent quantum description of nona-
diabatic ET reactions reproduces the Marcus formula;

2.3.3 The Mixed Quantum–Classical Case

we consider the case that the ET is coupled to high–frequency intramolecular (quan-
tum) modes and to low–frequency (classical) modes;
assuming a decoupling of both types of DOF the vibrational energies of the quantum
modes Eµ are supplemented by the vibrational Hamiltonian function Hm(q) of low–
frequency normal modes q ≡ {qξ}:

HDA =
∑

µν

(

δµν

(

Eµ + Hm(q)
)

+ (1 − δmn)Vµν

)

|Ψµ〉〈Ψν | ;

the ET rate describes transitions from a manifold of donor states |φD〉|χDM〉 to many
acceptor states |φA〉|χAN〉

kET =
2π

~

∑

M,N

∫

dq fDMfD(q)|VDM,AN |2 δ (EDM + UD(q) − EAN − UA(q)) ;

it follows the multi–channel generalization of the Marcus formula

kET =
∑

M,N

fDM kDM→AN ,
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with

kDM→AN =

√

π

~
2kBTEλ

|VDM,AN |2 exp

{

−(∆EDM,AN − Eλ)
2

4EλkBT

}

;

and with the driving forces

∆EDM,AN = EDM − EAN ;

we discuss the special case where only the vibrational ground state of the quantum
mode is occupied in the reactant state, and we concentrate on a single high–frequency
normal mode, i.e., EAN = EA + ~ωintra(N + 1

2
) ≡ EA0 + ~ωintraN ;

the rate follows as

kET =

√

π

~
2kBTEλ

|VDA|2
∞
∑

N=0

|〈χD0|χAN〉|2 exp

{

−(∆E − ~ωintraN − Eλ)
2

4EλkBT

}

;

here, the reference driving force ∆E ≡ ED0 − EA0 has been introduced;
we rewrite the rate using a more explicit expression for the Franck–Condon factor

〈χD0|χAN〉 =
1√
N !

gN
DAe−g2

DA/2 ;

furthermore, we replace the shift gDA of the PES of the intramolecular vibration by
E

(intra)
λ /~ωintra:

|〈χD0|χAN〉|2 =
1

N !

(

E
(intra)
λ

~ωintra

)N

exp

{

−E
(intra)
λ

~ωintra

}

;

the final rate expression reads

kET =

√

π

~
2kBTEλ

|VDA|2
∞
∑

N=0

1

N !

(

E
(intra)
λ

~ωintra

)N

exp

{

−E
(intra)
λ

~ωintra

}

exp

{

−(∆E − ~ωintraN − Eλ)
2

4EλkBT

}

;
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