
2.4 Heterogeneous Electron Transfer

we will consider two types of transfer reactions: charge transfer from the metal surface
into the molecule (formation of a molecular anion)

Mol + El → Mol− + El+ ,

and charge transfer from the molecule into the metal electrode (formation of a molecu-
lar cation)

Mol + El → Mol+ + El− ;

the latter process includes as a special case the electron transfer from a molecule into
a semiconductor;
we considered single–electron transfer leading in the first case to the anionic state of
the molecule and in the second case to a molecular cationic state;
since the metal electrons form a Fermi–sea with Fermi energy EF the second reaction
is possible if the extra electron is put above the Fermi energy EF; ET from the metal
into the molecule requires the jump of an electron out of the Fermi–sea;

the metal will be described by quasi–particle states with energy:

Ek = ~εk ;

these energies should be spin–degenerated; at T = 0 the quasi–particles form a
Fermi–sea of completely occupied states

|φF〉 =
∏

|k|≤kF,s

a+
k,s|0〉 ;

in the bulk case electrons form Bloch–states which are occupied up to the Fermi–vector
kF defined by

EF = E|k|=kF
;

considering a metal surface, k covers bulk and surface states;
since the metal surface – the electrode – represents a macroscopic system a grand–
canonical statistical description becomes necessary; at finite temperatures the electron
distribution is given by the Fermi–distribution

fF(Ek − µ) =
1

e(Ek−µ)/kBT + 1
;

µ is the chemical potential of the metal;
it is useful to introduce a notation which directly accounts for the continuous electronic
energy levels of the electrode; therefore the electrode density of states (DOS)

N (Ω) =
∑

k

δ(Ω − εk)

is introduced; the DOS gives the number of energy levels per frequency interval and
we get

∫

dΩ N (Ω) =
∑

k

1 = Nstates ;
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we note for an arbitrary function Fk ≡ F (εk)

∑

k

Fk =

∫

dΩ N (Ω)F (Ω) ;

when discussing the electronic states of the molecule we have to consider the neutral
molecule as well as different charged states (presence of excess electrons) with

N = ±1,±2, ....

excess electrons (holes); if N = 0 we consider the neutral molecule; the related total
electronic energy is written as EN ; it refers to the electronic ground–state at the pres-
ence of N excess electrons;

let us consider the transfer of a single electron from the electrode into the molecule
being so far in a neutral state; such an ET becomes possible if the following energy
balance relation is fulfilled:

∑

|k|≤kF,s

Ek + E0 =
∑

|k|≤kF,s

Ek − Eq + E1 ;

here the quasi–wavevector has to fulfill q < kF since only occupied states contribute;
if Nel is the number of electrons in the electrode and if Eel(Nel) is the respective energy
we may write:

Eel(Nel) − Eel(Nel − 1) ≥ E1 − E0 ;

in a grand–canonical description it reads

Eel(Nel) − Eel(Nel − 1)

Nel − (Nel − 1)
≡ ∂Eel

∂Nel

= µ ≥ E1 − E0 ;

the chemical potential µ of the electrode should be equal or larger than the change of
the molecular energy upon charging with a single electron, i.e. if µ ≥ E1 − E0, there
are electrons in the electrode which have energy identical to E1 −E0 and the molecule
becomes singly charged; sometimes E1 − E0 is named charging energy;
if the molecule is in a N − 1–fold charged state N–fold charging is possible:

µ ≥ EN − EN−1 ;

ET out of the neutral molecule becomes possible if

µ ≤ E0 − E−1 ;

so far we assumed that EN gives the total electronic energy of the molecule in the
N–fold charged state but for the case that it is completely isolated from the metal
surface; however, it is necessary to account for polarization effects of the Fermi–sea
if the molecule is charged and for the back–reaction; hence for a realistic evaluation if
ET is possible the EN have to be re–interpreted as energies formed if the molecule is
at the metal surface;
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2.4.1 Electron Transfer from the Electrode into the Molecule

in the following we concentrate on the ET:

Mol + El → Mol− + El+ ,

it becomes possible if
µ ≥ E1 − E0 ;

the description of ET will be done in an effective single electron picture (the charging
energy is taken as a single electron energy);
in the initial state the electron to be transferred is in the electrode with energy ~εk; in the
final state it occupies the molecular level with energy ~ε1 corresponding to the anionic
(singly charged) state; the initial and final state have to be extended by the vibrational
Hamiltonian H0 and H1, respectively; the neutral ground–state before charge transfer
is ϕ0 and that afterwards is ϕ1;
accordingly the related Hamiltonian is separated into a molecular part, the electrode
contribution, and a respective coupling

H = Hmol + Hel + Hel−mol ;

for the Hamiltonian Hmol we get

Hmol = (~ε1 + H1)|ϕ1〉〈ϕ1| ;

here,
H1 = Tvib + U1

denotes the vibrational Hamiltonian which belongs to the state ϕ1; for notational con-
venience we separate the energy

~ε1 ≡ U
(0)
1 + ∆E

(zp)
1 ,

i.e. we split off the minimum of the complete potential energy surface U
(0)
1 together with

the zero–point energy of the vibrations; therefore, the vibrational spectrum ~ω1M starts
at zero energy; the related vibrational wave functions read χ1M ; consequently we have

H1|χ1M〉 = ~ω1M |χ1M〉 ;

the Hamiltonian which describes the vibrational dynamics of the neutral molecule (if
the excess electron is absent) is written as H0 and defines

H0|χ0M〉 = ~ω0M |χ0M〉 ;

it will be combined with the band energies

Ek ≡ ~εk ;

consequently, the electrode Hamiltonian reads

Hel =
∑

k

(~εk + H0)|ϕk〉〈ϕk| ;
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finally we give the coupling Hamiltonian between the molecule and the electrode

Hel−mol =
∑

k

Vk|ϕk〉〈ϕ1| + H.c. ;

when introducing the DOS N (Ω) of the metal electrode it becomes possible to replace
the electrode–molecule coupling matrix element by V (Ω);
the whole Hamiltonian represents a special realization of our general Hamiltonian for a
DBA system;
note that the model introduced so far has neglected any Coulomb interaction between
the anionic state of the molecule and the Fermi–sea of metal electrons; the correct
description represents a complicated many–particle problem;
a simple approximate attempt is given by the mirror charge approach of macroscopic
electrostatics; let us assume that the electrode fills the half space for x < 0; moreover
the excess electron should be completely localized within the molecule and positioned
at x = d, y = 0, z = 0; than the respective electrostatic potential formed by the excess
electron and the polarized metal electrons reads

φpol(r) =
e

|r − dex|
− e

|r + dex|
;

the interaction energy follows as −e2/4d; below, however, we will neglect this effect;

ET into the Molecule: Second–Order Rate Expression

to characterize the transfer of an electron from the metal electrode into the molecule we
have to calculate the basic transition–rate kk→1; it includes the transition of an electron
of the metal Fermi–sea with energy ~εk at the presence of various possible molecular
vibrational energies ~ω0M into an anionic level ~ε1 of the molecule at the vibrational
energies ~ω1N ;
we will assume that the transfer is irreversible; this would be the case if the coupling Vk

is weak and if the transfer is accompanied by fast relaxation of the transfered electron;
than kk→1 can be determined in the second–order with respect to Vk;
once kk→1 has been computed the overall rate follows as

kET =
∑

k

fF(Ek − µ)kk→1

since a single–electron theory is used the appearance of the Fermi–distribution cannot
be deduced from a more general formula;
let us calculate the second–order rate

kk→1 =
|Vk|2
~2

∫

dt ei(εk−ε1)ttrvib{R̂0e
iH0t/~e−iH1t/~}

≡ |Vk|2
~2

D0 1(εk − ε1) ;

note the introduction of the combined DOS for the molecular transition

D0 1(ω) =

∫

dt eiωttrvib{R̂0e
iH0t/~e−iH1t/~} ;
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before further considering this expression we denote the overall rate by introducing the
DOS:

kET =

∫

dΩ N (Ω)fF(~Ω − µ)k1(Ω)

≡
∫

dΩ N (Ω)fF(~Ω − µ)
|V (Ω)|2

~2
D0 1(Ω − ε1) ;

we introduce the electrode–molecule coupling function (spectral density)

Γ(Ω) = N (Ω)
|V (Ω)|2

~2
≡ 1

~2

∑

k

|Vk|2δ(Ω − εk) ;

the so–called broad–band approximation is obtained if one neglects any frequency de-
pendency of N (Ω) and of V (Ω) and replaces both quantities by averaged (frequency–
independent) expressions N̄ and of V̄ , respectively; it follows

Γ(Ω) ≈ N̄ |V̄ |2
~2

;

this approximation is valid if the frequency range contributing to Γ(Ω) is far away from
the metal conduction–band edges;
with the definition of Γ(Ω) we arrive at

kET =

∫

dΩ fF(~Ω − µ)Γ(Ω)D0 1(Ω − ε1) ;

we first give an estimate by considering the high temperature case with respect to the
combined molecular DOS

D0 1(Ω − ε1) =
1√

4πkBTEλ

exp

{

−(~Ω − ~ε1 − Eλ)
2

4EλkBT

}

;

next we consider the case valid for all temperatures; the trace can be calculated by
introducing the vibrational states χ0M and χ1N of the neutral molecule and of the state
with a single excess electron, respectively:

D0 a(t) ≡ trvib{R̂0e
iH0t/~e−iHat/~}

=
∑

M

f0M〈χ0M |eiω0M t
∑

N

|χ1N〉〈χ1N |e−iω1N t|χ0M〉

=
∑

M,N

f0M |〈χ0M |χ1N〉|2ei(ω0M−ω1N )t ;

here,
f0M = 〈χ0M |R̂0|χ0M〉

is the thermal distribution with respect to the vibrational states (of the neutral molecule);
if inserted into the overall rate we get

kET = 2π
∑

M,N

f0M |〈χ0M |χ1N〉|2

×
∫

dΩ fF(~Ω − µ)Γa(Ω)δ(Ω + ω0M − εa − ω1N)
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after taking the Ω–integral it follows

kET = 2π
∑

M,N

f0M |〈χ0M |χ1N〉|2fF(~[ε1 + ω1N − ω0M ] − µ)Γ(ε1 + ω1N − ω0M)

concentrating on a simple model with a single vibrational coordinate (the set of vibra-
tional quantum numbers M and N reduces to single numbers) and on kBT ≪ ~ωvib

(f0M = δM,0) we get

kET = 2π
∑

N

|〈χ00|χ1N〉|2fF(~[ε1 + ω1N ] − µ)Γ(ε1 + ω1N)

Some Estimations
lets undertake an estimate for kET; we will concentrate on a situation where fF = 1 and
where the frequency dependency of Γ is weak; it results

kET ≈ 2πΓ = 2π
N̄
~

|V̄ |2
~

≈ 2π
103

eV

(10−3eV)2

6.5 10−16eVs
≈ 1013

s
=

10

ps
≡ 1

100fs

accordingly the ET time is about 100 fs;
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2.5 Sequential Charge Transmission through
Single Molecules

formula for the current:
electric current = amount of charge which moves per time through a given conductor
cross section

I =
∆Q

∆t
= GV =

V

R
;

current through the left contact (terminal) of the molecule

I = −|e| ∂

∂t
NL ;

the number of electrons in the left electrode are denoted by NL;
if ∂NL/∂t < 0: charge flow from L to R
=⇒ I > 0;

an estimation:
typical value of I if a current flows through a single molecule: 1 nA
residence time:

∆t =
|e|
I

=
1.6 10−19 As

10−9A
≈ 10−10 s = 100 ps ;

to compute IV–characteristics for charge transmission we will consider sequential ET
through a molecule using the rate equation approach;
ET starts at the left electrode states ϕLk, goes through the molecular level ϕ1 and ends
up in the right electrode states ϕRq; of course, the reverse process takes also place;
the respective Hamiltonian reads:

H = Hmol + Hel + Hel−mol ;

the molecular part is given by that one introduced in the foregoing section

Hmol = (~ε1 + H1)|ϕ1〉〈ϕ1| ,

with
H1|χ1M〉 = ~ω1M |χ1M〉 ;

note ω1M=0 = 0; the part of the electrodes covers two contributions with X = L,R

Hel =
∑

X,k

(~εXk + H0)|ϕXk〉〈ϕXk| ;

the vibrational Hamiltonian H0 of the neutral molecule obeys

H0|χ0M〉 = ~ω0M |χ0M〉 ;

note again ω0M=0 = 0; the electrode–molecule coupling takes the following form

Hel−mol =
∑

X,k

VXk|ϕXk〉〈ϕ1| + h.c. ;

the standard rate equation to be used in the following reads

∂

∂t
Pm = −

∑

n

(km→nPm − kn→mPn) .
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we specify it for the considered ET and get

∂

∂t
PLk(t) = −kLk→1PLk(t) + k1→LkP1(t) ,

∂

∂t
P1(t) = −

(

∑

k

k1→Lk +
∑

q

k1→Rq

)

P1(t)

+
∑

k

kLk→1PLk(t) +
∑

q

kRq→1PRq(t) ,

and
∂

∂t
PRq(t) = −kRq→1PRq(t) + k1→RqP1(t) ;

the rates appearing in these rate–equations will be specified later;
the current from electrode X = L,R into the molecule follows as

IX = −|e| ∂

∂t

∑

k

PXk(t)

stationary conditions I = IL = −IR;
assumptions necessary to get the current are:
electrodes are macroscopic systems, staying in equilibrium; therefore the electrode
populations on the right–hand side of the rate equations can be replaced by Fermi–
distributions abbreviated here as

fXk = fF(~εXk − µX)

since stationary conditions are chosen P1 is time–independent;
the formation of a vibrational equilibrium in the molecule is fast compared to the time
of charge transmission;
therefore it is possible to introduce the rates

kX→1 =
∑

k

fXkkXk→1 ;

to get the correct reverse rates which account for the filled and empty states in the
electrodes we have to include the Fermi–blocking

k1→X =
∑

k

(

1 − fXk

)

k1→Xk ,

this is a particular consequence of the used single–electron theory;
from the rate equations we may deduce (for example at the left electrode)

I/|e| = kL→1 − k1→LP1 ;

P1 follows from the balance equation

0 = −(k1→L + k1→R)P1 + kL→1 + kR→1 ;

this results in

I/|e| =
kL→1k1→R − kR→1k1→L

k1→L + k1→R

;
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the expression contains contributions to the forward current (from left to right) propor-
tional to kL→1k1→R/(k1→L +k1→R) and respective contributions to the backward current;
in the given expression k1→L +k1→R represents the overall rate of a charge to leave the
molecule (into the left or right electrode); the rate of forward charge motion through the
molecule follows by the combined rate kL→1k1→R for the left–electrode molecule and
molecule right–electrode transition divided by the rate of overall charge outflow from
the molecule;

the respective rates have been already calculated; since fast vibrational relaxation has
been assumed electron transfer into as well as out of the molecule starts from an vi-
brational equilibrium distribution;
as a consequence we use the following rate expression for electron transfer into the
molecule

kX→1 = 2π
∑

M,N

f0M |〈χ0M |χ1N〉|2fFermi(~[ε1 + ω1N − ω0M ] − µX)

×ΓX(ε1 + ω1N − ω0M) ;

note the introduction of the electrode–molecule coupling function

ΓX(Ω) = NX(Ω)
|VX(Ω)|2

~2
;

the rate for electron transfer out of the molecule takes the following form:

k1→X = 2π
∑

M,N

f1M |〈χ1M |χ0N〉|2
(

1 − fFermi(~[ε1 + ω1M − ω0N ] − µX)
)

×ΓX(ε1 + ω1M − ω0N)

note the inclusion of the chemical potentials µX ; if we provide a symmetrically applied
voltage they read

µL = EF + |e|V/2 ,

and
µR = EF − |e|V/2 ;

Example

we consider a molecule with a single vibrational mode with ~ωvib > kBT ; moreover,
the energy dependence of the single coupling function Γ should be weak; then, the
transition rates read

kX→1 = 2πΓ
∑

N

|〈χ00|χ1N〉|2fFermi(~[ε1 + ω1N ] − µX) ,

and
k1→X = 2πΓ

∑

N

|〈χ10|χ0N〉|2
(

1 − fFermi(~[ε1 − ω0N ] − µX)
)

;

to calculate the vibrational overlap expression we assume a simple parabolic PES for
the neutral molecular level

U0 =
ω2

vib

2
q2 ≡ ~ωvib

4
Q2 ,
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and for the presence of a single excess electron

U1 =
ω2

vib

2
(q − ∆q)2 ≡ ~ωvib

4
(Q + 2∆g)2 ;

note that the vibrational frequency is the same for both states; accordingly the overlap
reads

〈χ00|χ1N〉 = 〈0|D+(∆g)|N〉
where we introduced the N ’th excited state of a harmonic oscillator

|N〉 =
C+N

√
N !

|0〉 ,

and the shift operator
D+(∆g) = exp

(

∆gC − h.c.
)

;

we further note

〈0| exp
(

∆gC − ∆gC+
)

|N〉 = e−∆g2/2〈0| exp
(

− ∆gC+
)

exp
(

∆gC
)

|N〉

= e−∆g2/2〈0|(∆gC)N

N !
|N〉 = e−∆g2/2∆gN

√
N !

N !
;

so we arrive at

|〈χ00|χ1N〉|2 =
∆g2N

N !
e−∆g2

;
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