2.4 Heterogeneous Electron Transfer

we will consider two types of transfer reactions: charge transfer from the metal surface
into the molecule (formation of a molecular anion)

Mol + El — Mol + EI* |

and charge transfer from the molecule into the metal electrode (formation of a molecu-
lar cation)
Mol + El — Mol™ 4+ El™ ;

the latter process includes as a special case the electron transfer from a molecule into
a semiconductor;

we considered single—electron transfer leading in the first case to the anionic state of
the molecule and in the second case to a molecular cationic state;

since the metal electrons form a Fermi—sea with Fermi energy Er the second reaction
is possible if the extra electron is put above the Fermi energy Er; ET from the metal
into the molecule requires the jump of an electron out of the Fermi—sea,

the metal will be described by quasi—particle states with energy:
By = hey ;

these energies should be spin—degenerated; at T = 0 the quasi—particles form a
Fermi—sea of completely occupied states

o) = [ a0}

|k|<kp,s

in the bulk case electrons form Bloch—states which are occupied up to the Fermi—vector
kr defined by
Er = Ejxj=iyp ;

considering a metal surface, k covers bulk and surface states;

since the metal surface — the electrode — represents a macroscopic system a grand—
canonical statistical description becomes necessary; at finite temperatures the electron
distribution is given by the Fermi—distribution

1
fo (B — p) = (B /kaT 4 1’

1 is the chemical potential of the metal,
it is useful to introduce a notation which directly accounts for the continuous electronic
energy levels of the electrode; therefore the electrode density of states (DOS)

N(©Q) =) 5(Q-eay)
k
is introduced; the DOS gives the number of energy levels per frequency interval and

we get
/dQ N(Q) = Zl == Nstates ;
k
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we note for an arbitrary function Fy = F(ey)
Y Ro= /dQ N(Q)F(Q);
k

when discussing the electronic states of the molecule we have to consider the neutral
molecule as well as different charged states (presence of excess electrons) with

N=41,42 ...

excess electrons (holes); if N = 0 we consider the neutral molecule; the related total
electronic energy is written as El; it refers to the electronic ground—state at the pres-
ence of N excess electrons;

let us consider the transfer of a single electron from the electrode into the molecule
being so far in a neutral state; such an ET becomes possible if the following energy
balance relation is fulfilled:

> Ex+Ey= Y FEx—Eq+E;

K| <k s k| <k s

here the quasi—wavevector has to fulfill q < kr since only occupied states contribute;
if Vo1 is the number of electrons in the electrode and if £, (N,)) is the respective energy
we may write:

Eq(Ne) — Ea(Na — 1) > Ey — Ey ;

in a grand—canonical description it reads

Eel(Ne) - Eel(Nel - 1) aFjel _
Nel - (Nel - ]—) 8]\/vel

the chemical potential ;. of the electrode should be equal or larger than the change of
the molecular energy upon charging with a single electron, i.e. if 4 > E; — E,, there
are electrons in the electrode which have energy identical to £, — E, and the molecule
becomes singly charged; sometimes E; — E, is named charging energy;

if the molecule is in a N — 1-fold charged state N—fold charging is possible:

> En—En_1;
ET out of the neutral molecule becomes possible if
< FEyg—F_q;

so far we assumed that E gives the total electronic energy of the molecule in the
N—fold charged state but for the case that it is completely isolated from the metal
surface; however, it is necessary to account for polarization effects of the Fermi—sea
if the molecule is charged and for the back—reaction; hence for a realistic evaluation if
ET is possible the Ey have to be re—interpreted as energies formed if the molecule is
at the metal surface;

18



2.4.1 Electron Transfer from the Electrode into the Molecule

in the following we concentrate on the ET:
Mol + El — Mol™ + EIT ,

it becomes possible if
w=Ey— Ep;

the description of ET will be done in an effective single electron picture (the charging
energy is taken as a single electron energy);

in the initial state the electron to be transferred is in the electrode with energy fAcy; in the
final state it occupies the molecular level with energy e, corresponding to the anionic
(singly charged) state; the initial and final state have to be extended by the vibrational
Hamiltonian H, and H,, respectively; the neutral ground—state before charge transfer
IS ¢ and that afterwards is ¢1;

accordingly the related Hamiltonian is separated into a molecular part, the electrode
contribution, and a respective coupling

H= Hmol + Hel + Helfmol ;
for the Hamiltonian H ., we get
Hyo1 = (Ber + Hy)|o1) (]

here,
Hy =Ty + Uy

denotes the vibrational Hamiltonian which belongs to the state ; for notational con-
venience we separate the energy

hey = U + AE™

i.e. we split off the minimum of the complete potential energy surface Ul(o) together with
the zero—point energy of the vibrations; therefore, the vibrational spectrum fw; ), starts
at zero energy; the related vibrational wave functions read y1,,; consequently we have

Hl‘X1M> = hwlM‘X1M> )

the Hamiltonian which describes the vibrational dynamics of the neutral molecule (if
the excess electron is absent) is written as H, and defines

Ho|xon) = Pwonr|xonr)
it will be combined with the band energies
By = hey ;

consequently, the electrode Hamiltonian reads

Ha =) (haw + Ho)lpw) (il ;
k
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finally we give the coupling Hamiltonian between the molecule and the electrode

He_mol = Z Vilox) (1] + Hee. ;
Kk

when introducing the DOS N/ (2) of the metal electrode it becomes possible to replace
the electrode—molecule coupling matrix element by V' (Q);

the whole Hamiltonian represents a special realization of our general Hamiltonian for a
DBA system;

note that the model introduced so far has neglected any Coulomb interaction between
the anionic state of the molecule and the Fermi—sea of metal electrons; the correct
description represents a complicated many—particle problem;

a simple approximate attempt is given by the mirror charge approach of macroscopic
electrostatics; let us assume that the electrode fills the half space for x < 0; moreover
the excess electron should be completely localized within the molecule and positioned
at x = d,y = 0,z = 0; than the respective electrostatic potential formed by the excess
electron and the polarized metal electrons reads

e e

Ppai(r) = v —de,| |r+ de, ;

the interaction energy follows as —¢?/4d; below, however, we will neglect this effect;

ET into the Molecule: Second-Order Rate Expression

to characterize the transfer of an electron from the metal electrode into the molecule we
have to calculate the basic transition—rate ki_.;; it includes the transition of an electron
of the metal Fermi—sea with energy hey at the presence of various possible molecular
vibrational energies hwy), into an anionic level he; of the molecule at the vibrational
energies hwiy;

we will assume that the transfer is irreversible; this would be the case if the coupling Vi
is weak and if the transfer is accompanied by fast relaxation of the transfered electron;
than ky_.; can be determined in the second-order with respect to Vj;

once ky_,; has been computed the overall rate follows as

kgr = Z fr(Ex — p)kk—
K

since a single—electron theory is used the appearance of the Fermi—distribution cannot
be deduced from a more general formula;
let us calculate the second-order rate

2
kk—)l — “2{2‘ /dt ei(sk_el)ttrvib{éoeiHOt/he_iHlt/h}
A 2
= | th Dy1(ex — €1) ;

note the introduction of the combined DOS for the molecular transition

Do1(w) = /dt ei“}ttrvib{IfioeiHot/he—iHlt/h} :
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before further considering this expression we denote the overall rate by introducing the
DOS:

kpr = /dQ N(Q) fe (A — )k ()
1%
E/dQN( ) fr (RS2 )‘ %2)‘ Do1(Q2 — &) ;
we introduce the electrode—molecule coupling function (spectral density)

(@) = o) A0 = 5 X o0 -

the so—called broad—band approximation is obtained if one neglects any frequency de-

pendency of N () and of V(€2) and replaces both quantities by averaged (frequency—
independent) expressions A/ and of V, respectively; it follows

_|V|?
['(Q) ~ N% ;
this approximation is valid if the frequency range contributing to I'(2) is far away from

the metal conduction—band edges;
with the definition of I'(Q2) we arrive at

@T:/ﬁnﬁmw—mmemm—ay

we first give an estimate by considering the high temperature case with respect to the
combined molecular DOS

Dor( — 1) = L [ (0 —he - B
0t f1) = 47T]€BTE>\ P 4E>\]€BT ’

next we consider the case valid for all temperatures; the trace can be calculated by
introducing the vibrational states x(x; and iy of the neutral molecule and of the state
with a single excess electron, respectively:

Dyo(t) = trvib{RoeiHot/ﬁe—iHat/ﬁ}

= ZfOM XOM’ew()MtZ Ixan) (xanle ™™ [xonr)
M

= Z f0M|<X0M|X1N>|261(WOM—w1N)t ;
M,N

here, A
Jorr = (xonm|RolXxonr)

is the thermal distribution with respect to the vibrational states (of the neutral molecule);
if inserted into the overall rate we get

kpr =27 Z foMKXOM‘XlNH2
M,N

« / 4 i (B — )T Q)5(2 + wonr — 2 — win)
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after taking the Q—integral it follows

kgr =27 Z Foar| Oxone a2 fe(Bler + win — won] — )T (g1 + win — wonr)
M.N

concentrating on a simple model with a single vibrational coordinate (the set of vibra-
tional quantum numbers M and N reduces to single numbers) and on kT < hwy,

(forr = dar0) We get

ket = 27TZ | (xoolxan) |* fr(Rler + win] — )L (g1 + win)
N

Some Estimations
lets undertake an estimate for kgr; we will concentrate on a situation where fr = 1 and
where the frequency dependency of I" is weak; it results

N |V |? 103 (107%eV)? 10 10 1
kgr =~ 27" = 2n——— =~ 27— = = =
BT m "5 h eV 6.5 10-1%eVs s ps  100fs

accordingly the ET time is about 100 fs;
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2.5 Sequential Charge Transmission through
Single Molecules

formula for the current:
electric current = amount of charge which moves per time through a given conductor
cross section AQ v
I=—=GV =—;
At R’

current through the left contact (terminal) of the molecule

0
[ = —‘€’aNL )

the number of electrons in the left electrode are denoted by Ny ;
if N, /0t < 0: charge flow from L to R
— [ > 0;

an estimation:
typical value of I if a current flows through a single molecule: 1 nA

residence time: 19 A
1.610~ 3

to compute IV—characteristics for charge transmission we will consider sequential ET
through a molecule using the rate equation approach;

ET starts at the left electrode states ¢\, goes through the molecular level ¢, and ends
up in the right electrode states ¢r,; of course, the reverse process takes also place;
the respective Hamiltonian reads:

H = Hmol + Hel + Hel—mol ;
the molecular part is given by that one introduced in the foregoing section

Hpol = (hgl + H1)|901><901| )

with
Hy|x1m) = b Xim) ;
note wy—o = 0; the part of the electrodes covers two contributions with X = L, R

Hy = Z(ﬁé‘Xk + Ho)|oxk) (oxxl ;

Xk

the vibrational Hamiltonian H, of the neutral molecule obeys

H0|XOM> = hWOM|X0M> )
note again wyy—o = 0; the electrode—molecule coupling takes the following form
Hel-mol = Z Vxklexk) (1] + hec.;
Xk
the standard rate equation to be used in the following reads

0
—Pp== (kmonPrm — knmPr) -
ot~ " Z< " )

n

23



we specify it for the considered ET and get

0
EPLk( ) = —krk—1 Prx(t) + ki k Pi(t)

2131 (Z ki + Z k1HRq> Py(t

+ Z krx—a1Prx(t) + Z krq—1Prq(t)
K a

and 3
5 ralt) = —krg—1Pra(t) + kira P1(t) 5
the rates appearing in these rate—equations will be specified later;

the current from electrode X = L, R into the molecule follows as

stationary conditions [ = I, = —Iy;

assumptions necessary to get the current are:

electrodes are macroscopic systems, staying in equilibrium; therefore the electrode
populations on the right-hand side of the rate equations can be replaced by Fermi—
distributions abbreviated here as

fxx = fF(hé‘Xk - ,UX)

since stationary conditions are chosen P, is time—independent;

the formation of a vibrational equilibrium in the molecule is fast compared to the time
of charge transmission;

therefore it is possible to introduce the rates

kx_1 = Z kak:Xk—d ;
k

to get the correct reverse rates which account for the filled and empty states in the
electrodes we have to include the Fermi—blocking

Fix =0 (1= fra) ki
k

this is a particular consequence of the used single—electron theory;
from the rate equations we may deduce (for example at the left electrode)

I/|€| =k — kP
P, follows from the balance equation
0=—(ki—r +ki—r)Pr + k-1 + kg1 ;
this results in

I/|€’ _ kL—>1k1—>R - kR—>1k1—>L X
kip+ kg ’
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the expression contains contributions to the forward current (from left to right) propor-
tional to k;,_.1k1_r/ (k11 + k1 r) and respective contributions to the backward current;
in the given expression k;_.; + k1 _.r represents the overall rate of a charge to leave the
molecule (into the left or right electrode); the rate of forward charge motion through the
molecule follows by the combined rate k;_.,k;_ for the left—electrode molecule and
molecule right—electrode transition divided by the rate of overall charge outflow from
the molecule;

the respective rates have been already calculated; since fast vibrational relaxation has
been assumed electron transfer into as well as out of the molecule starts from an vi-
brational equilibrium distribution;

as a consequence we use the following rate expression for electron transfer into the
molecule

kx_1 =27 Z Forr| Oxone XA Frermi (Ble1 + win — wonr] — pix)
M,N
xI'x(e1 +win —wonm) ;

note the introduction of the electrode—molecule coupling function

(@) = (@)

the rate for electron transfer out of the molecule takes the following form:

ki_x =27 Z f1M|<X1M|XON>|2<1 — frermi(R[e1 + winr — won] — MX))
M,N

er<€1 +wim — wON)

note the inclusion of the chemical potentials 1. x; if we provide a symmetrically applied
voltage they read
pr = Er + |e[V/2,

and
pur = Ep —|e|V/2;

Example

we consider a molecule with a single vibrational mode with fw.;, > kgT; moreover,
the energy dependence of the single coupling function I" should be weak; then, the
transition rates read

kx_q =2nT Z |<X00|X1N>‘2fFermi<h[51 + w1N] - MX) )
N

and
kiox = QTFZ ‘(XlO‘X0N>‘2<1 — frermi(Rle1 — won] — MX)) ;
N

to calculate the vibrational overlap expression we assume a simple parabolic PES for

the neutral molecular level )
W hwvib 9
U — vib 2 =
0 2 q 4 Q 9
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and for the presence of a single excess electron

wz‘ hu}vi
U = == Ag)* = =2 (Q+209)%

note that the vibrational frequency is the same for both states; accordingly the overlap
reads

(Xoo|x1nv) = (0] D*(Ag)|N)
where we introduced the N’th excited state of a harmonic oscillator

C+N
VN! 0

|N) = )
and the shift operator
D*(Ag) = exp (AgC — h.c.> :

we further note

(0] exp (AgC’ - AgC+> IN) = e29°/2(0] exp < — AgC’*) exp (AgC) |N)

—Ag2 (AQC)N N V N!
= e 0= V) = e AN S
SO we arrive at A2V
g A2
’<X00’X1N>’2: NI e 2 ;
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