
Chapter 3

Excitation Energy Transfer

3.1 Introduction

we will discuss the electronic excitation energy transfer (EET) between two molecules
according to the general scheme

D∗ + A −→ D + A∗

the excitation energy donor is labeled by D and the excitation energy acceptor by A;
the starting point is a situation where the donor molecule has been excited (D∗), for in-
stance, by means of an external laser pulse, and the acceptor molecule is in its ground
state (A); then the Coulomb interaction between these molecules leads to a reaction
where the donor molecule is de–excited and the electrostatic energy is transferred to
the acceptor molecule which is excited;
since the de–excitation of the donor molecule reminds on the process of spontaneous
photon emission (fluorescence) the describe process of EET is often also named fluo-
rescence resonance energy transfer (FRET, the term ”resonance” reminds on the need
that the energy of the initial EET state should coincide with the energy of the final state);

the product state can be also reached via an electron exchange between the donor
and the acceptor molecule; the electron in the LUMO of the D moves to the LUMO of
the A and the hole in the HOMO of the D is filled by an electron of the HOMO of the A;
this process requires electronic wave function overlap between the D and the A, while
the former mentioned process (without electron exchange) may take place even if both
molecules are spatially well separated;

if the coupling responsible for EET becomes sufficiently large the state |D∗A〉 which
corresponds to the initial state of the EET and the state |DA∗〉 which describes the
result of the EET may form an quantum mechanical superposition state

|φ〉 = c1|D∗A〉 + c2|DA∗〉

if generalized to an arbitrary set of molecules this state is known as the Frenkel exci-
ton; to distinguish the Frenkel exciton from other types of excitons it can be considered
as an electron hole pair with both particles staying at the same molecule (the missing
single electron in the HOMO of an excited molecule is considered as the hole);

Frenkel excitons are encountered in associated and non–covalently bound complexes;
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examples are molecular crystals of aromatic compounds such as benzene or naphtha-
lene, for instance, and rare gases in the solid phase; another important class of sys-
tems forming Frenkel excitons are dye aggregates (for instance, isocyanine or pseudo–
isocyanine); upon aggregation which occurs in solution or in thin solid films, the dyes
form rod–like arrangements consisting of several hundreds of molecules; in the last two
decades also biological chromophore complexes attracted broad interest; the light–
harvesting complex of natural photosynthetic antenna systems represents one of the
most fascinating examples where the concept of Frenkel excitons could be applied; of
actual interest are also hybrid systems where molecules have been attached to semi-
conducting (or metallic) nano particles (quantum dots); EET is now possible between
the nano particle and the molecule;

the theoretical and experimental investigation of the behavior of excitons in molecu-
lar aggregates has a long tradition; early theoretical contributions by T. Förster and D. L.
Dexter were based on an incoherent rate equation approach; the variety of phenomena
highlighted in recent discussions ranges from cooperative radiative decay (superradi-
ance) and disorder–induced localization to nonlinear effects like exciton annihilation
and two–exciton state formation;

the case opposite to the Frenkel exciton, where electron and hole are separated by
a distance much larger than the spacing between neighboring molecules, is called
Wannier–Mott exciton; it occurs in systems with strong binding forces between con-
stituent molecules or atoms such as covalently bound semiconductors; frequently, also
an intermediate form, the charge transfer exciton, is discussed; here electrons and
holes reside on molecules which are not too far apart, this type of exciton appears if the
wave functions of the involved molecules are sufficiently overlapping, as is necessary
for an electron transfer reaction; charge transfer excitons can be found, for example, in
polymeric chains formed by silicon compounds (polysilanes);

we will focus on the description of Frenkel excitons in molecular aggregates; the term
“aggregate” is used to characterize a molecular system which consists, at least, of
some hundred non–covalently bound molecules; occasionally, we will also use the
term chromophore complex or supra–molecular complex;

the initial state relevant for the transfer process is often created by means of an ex-
ternal laser pulse resonant to the respective S0 → S1 transitions; in general, this
state is a superposition of eigenstates of the molecular system including the mutual
Coulomb interaction, i.e., it may contain contributions of all monomers; in terms of
the corresponding wave functions this implies a delocalization over the whole aggre-
gate (provided that the wavelength of the exciting light is large compared to the aggre-
gate size); the degree of delocalization and the type of motion initiated by the external
field depends crucially on the interaction between the exciton system with environmen-
tal DOF such as intramolecular nuclear motions; the ratio between the characteristic
times of intramolecular (vibrational) relaxation and intermolecular transitions decides
on the particular way the EET proceeds; two limiting cases can be distinguish; if the
intramolecular relaxation is fast (compared with the intermolecular transitions) then the
excitation remains localized and the EET is named incoherent; in the contrary case the
excitation may move as a delocalized state through the aggregate, i.e. the EET is a
coherent transfer
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3.2 Förster Theory of Incoherent Exciton Transfer

to deal with the main reference case we will consider the regime of incoherent transfer
where a localized excitation jumps from molecule to molecule; this can be achieved by
the rate equation for the state occupation probabilities, Pm(t) describing the presence
of a single excitation at molecule m;
the rate equations read

∂

∂t
Pm(t) = −

∑

n

(

km→nPm(t) − kn→mPn(t)
)

to calculate the transition rates we introduce two molecules one emitting the excitation
energy (the donor) and one accepting the energy (the acceptor); the adiabatic wave
functions for both molecules (m = D,A) read:

ΨmaM(rm; Rm) = ϕma(rm; Rm)χmaM(Rm)

the expression includes the electronic wave functions ϕma and the vibrational one
χmaM , where a = g, e (S0, S1); M denotes the set of vibrational quantum numbers;
rm are the electronic coordinates; the Rm comprise the intramolecular nuclear coordi-
nates;
the S0 → S1 transition energies are given by EmeM − EmgN ; accordingly the transfer
rate follows as

kD→A =
2π

~

∑

MD,ND

∑

MA,NA

fDeMD
fAgNA

× |〈ΨDeMD
, ΨAgNA

|VDA|ΨAeMA
, ΨDgND

〉|2

× δ(EDeMD
+ EAgNA

− EAeMA
− EDgND

)

the coupling potential VDA covers the complete Coulomb interaction between the D and
the A molecule; it separates into electronic and nuclear contributions

VDA = V
(el−el)
DA + V

(el−nuc)
DA + V

(nuc−el)
DA + V

(nuc−nuc)
DA

we first consider V
(el−el)
DA ; the Coulomb interaction is written in terms of the electronic

coordinates related to the center of masses, XD and XA, of the two molecules

V
(el−el)
DA =

∑

j,k

e2

|XDA + rj(D) − rk(A)|

we have introduced the intermolecular distance XDA = XD − XA, and rj(D) (rk(A))
denotes the coordinates of the jth (kth) electron at molecular excitation energy donor
(acceptor);
the electron–nuclei coupling reads (nuclear coordinates are also related to the center
of masses)

V
(el−nuc)
DA = −

∑

j,n

eZne

|XDA + rj(D) − Rn(A)|

there also exist a second form with electronic and nuclear coordinates interchanged;
the nuclei–nuclei coupling takes the form

V
(nuc−nuc)
DA =

∑

m,n

ZmeZne

|XDA + Rm(D) − Rn(A)|
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we compute the coupling matrix elements

〈ΨDeMD
, ΨAgNA

|VDA|ΨAeMA
, ΨDgND

〉 =

〈χDeMD
ϕDe, χAgNA

ϕAg|V (el−el)
DA + V

(el−nuc)
DA + V

(nuc−el)
DA + V

(nuc−nuc)
DA |χAeMA

ϕAe, χDgND
ϕDg〉

= 〈χDeMD
|χDgND

〉 〈χAgNA
|χAeMA

〉 × 〈ϕDe, ϕAg|V (el−el)
DA |ϕAe, ϕDg〉

it results a pure electronic coupling matrix element; the other contributions vanish be-
cause of the orthonormalization of the electronic wave functions; for example, when
considering the matrix element of the electron–nuclear coupling V

(el−nuc)
DA , the electronic

overlap expression 〈ϕAg|ϕAe〉 appears which vanishes (in a similar way the matrix ele-
ments with V

(nuc−el)
DA and V

(nuc−nuc)
DA do not contribute);

the pure electronic matrix element is written as

JDA = 〈ϕDe, ϕAg|V (el−el)
DA |ϕAe, ϕDg〉

≡
∑

j,k

∫

drDdrAϕ∗

De(rD)ϕ∗

Ag(rA)
e2

|XDA + rj(D) − rk(A)|ϕAe(rA)ϕDg(rD)

since the electronic wave functions are anti–symmetric with respect to an interchange
of the electronic coordinates we may introduce formal charge densities and express
the matrix element by an integration with respect to a single electron coordinate of the
D–molecule as well as of the A–molecule; we, first, note

ρDeg(rD) = eNe

∫

drDδ(rD − r1(D))ϕ∗

De(rD)ϕDg(rD)

this density is known as the transition density (relating the electronic ground–state to
the first excited state); in the same way one may introduce ρAeg(rA); it results a rather
simplified expression for the matrix element

JDA =

∫

dr3
Ddr3

A

ρDeg(rD)ρ∗

Aeg(rA)

|XDA + rD − rA|

it corresponds to the standard expression of electrostatics, however, the meaning of
the charge densities is completely quantum mechanically

3.2.1 Dipole–Dipole Coupling

if the two molecules interacting with each other are sufficiently far a part (no overlap of
the wave functions) we may remove the short–range contribution to the intermolecular
Coulomb interaction; this is achieved by employing a multi-pole expansion;
the multi-pole expansion in powers of |rD − rA|/|XAD| is performed up to the second–
order term; since rD and rA are defined with respect to the center of masses, in the
present case |rD − rA| can be considered to be small compared with |XAD|;
we abbreviate XDA = X and rD − rA = r and obtain

1

|X + r| ≈
1

|X| + r∇X

1

|X| +
1

2
(r∇X)(r∇X)

1

|X|

the derivatives read in detail

r∇X

1

|X| = − rX

|X|3
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and

(r∇X)(r∇X)
1

|X| = − r
2

|X|3 +
3(rX)2

|X|5

if we insert the obtained approximation into the matrix element it follows

JDA =

∫

dr3
Ddr3

Aρ∗

Aeg(rA)ρDeg(rD)

( 1

|XDA|
− [rD − rA]XDA

|XDA|3
− 1

2

[rD − rA]2

|XDA|3
+

3

2

([rD − rA]XDA)2

|XDA|5
)

we immediately see that the zeroth– and first–order terms do not contribute since
∫

d3
rmρmeg(rm) = 0 (the wave functions have been assumed to be orthogonal to each

other); there only remains

JDA =

∫

dr3
Ddr3

Aρ∗

Aeg(rA)ρDeg(rD)
(

rDrA

|XDA|3
− 3([rDXDA][rAXDA]

|XDA|5
)

we note the definition of transition dipole matrix elements (m = D,A)

dmeg ≡ dm = 〈ϕme|
∑

j

erj(m)|ϕmg〉 ≡
∫

dr3
mrmρmeg(rm)

we may write for the matrix element

JDA =
dDd

∗

A

|XDA|3
− 3

[dDXDA][d∗

AXDA]

|XDA|5

it is often abbreviated as

JDA(XDA) = κDA

|dD||d∗

A|
|XDA|3

we introduced an orientational factor defined as

κDA = nDnA − 3[eDAnD][eDAnA)

where nm and eDA are the unit vectors pointing in the directions of the transition dipole
moment dm, and the distance vector XDA, respectively;
this finally gives the matrix element of intra–molecular Coulomb interaction in dipole–
dipole approximation as:

〈ΨDeMD
, ΨAgNA

|VDA|ΨAeMA
, ΨDgND

〉 = JDA〈χDeMD
|χDgND

〉〈χAgNA
|χAeMA

〉

3.2.2 The Rate Expression

it is obvious that the process of excitation energy transfer can formally be viewed as
the combined process of optical recombination at the donor and simultaneous optical
absorption at the acceptor; the Förster approach is built upon this analogy; therefore
we rewrite the delta function in kDA as

δ(EDeMD
+EAgNA

−EAeMA
−EDgND

) =

∫

dE δ(EDeMD
−EDgND

−E)×δ(E+EAgNA
−EAeMA

)
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the first delta function on the right–hand side accounts for the donor emission; the
energy, E = ~ω, which is set free in this process is used to excite the acceptor;
it follows for the overall rate

kD→A =
2π

~

∑

MD,ND

∑

MA,NA

fDeMD
fAgNA

|JDA|2|〈χDeMD
|χDgND

〉|2|〈χAgNA
|χAeMA

〉|2

×
∞

∫

0

dE δ(EDeMD
− EDgND

− E) × δ(E + EAgNA
− EAeMA

)

we may introduce the combined density of states of donor de–excitation

DD(E) =
∑

MD,ND

fDeMD
|〈χDeMD

|χDgND
〉|2δ(EDeMD

− EDgND
− E)

and acceptor excitation

DA(E) =
∑

MA,NA

fAgNA
|〈χAgNA

|χAeMA
〉|2δ(E + EAgNA

− EAeMA
)

it gives the overall EET rate as

kD→A =
2π

~
|JDA|2

∫

dE DD(E)DA(E)

we specify the donor acceptor Coulomb interaction by introducing the approximation of
a dipole–dipole coupling

kD→A =
2π

~

κ2
DA

X6
DA

∞
∫

0

dE |dD|2DD(E) × |dA|2DA(E)

at the final step of our derivation we note the definition of emission and absorption
spectra of molecular systems
accordingly, the donor emission spectrum (valid for a single molecule but averaged with
respect to many emission processes) is given by

ID(ω) =
4ω3

3c3
|dD|2DD(E)

it is defined in such a way to give the inverse radiation life–time as

1

τ
(D)
rad

=

∞
∫

0

dωID(ω)

the acceptor absorption coefficient (of an ensemble of molecules with volume density
nmol) reads

αA(ω) =
4π2ωnmol

3c
|dA|2DA(E)
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we obtain the Förster formula which expresses the energy transfer rate in terms of the
spectral overlap between the monomeric emission and absorption characteristics:

kD→A =
2π

~

κ2
DA

X6
DA

∞
∫

0

dE
3c3

4ω3
ID(ω)

3c

4π2ωnmol

αA(ω)

=
9c4κ2

DA

8πnmolX6
DA

∞
∫

0

dω

ω4
ID(ω) αA(ω)

the rate decreases with the sixth power of the distance between the monomers
the distance, RF, for which the transfer rate is equal to the radiative decay rate of the
donor,

kD→A(RF) =
1

τ
(D)
rad

=

∞
∫

0

dωID(ω)

is called the Förster radius;
in terms of the Förster radius the transfer rate is

kD→A =
1

τ
(D)
rad

(

RF

XDA

)6

the absolute value of the Förster rate is determined by the donor emission rate and the
acceptor absorption coefficient;

3.2.3 An Alternative Derivation of the Excitation Energy Transfer
Rate

we give a somewhat more general description; therefore we introduce electronic states
of the two molecules interacting with each other (the dimer) as |m〉 (m = D,A); they
count the molecule in the excited state and are simply defined as

|D〉 = |ϕDeϕAg〉

|A〉 = |ϕDgϕAe〉
next the zero order Hamiltonian for the dimer is introduced

H0 =
∑

m

(

Tnuc + Um(q))|m〉〈m|

with the common PES UD = UDe +UAg and UA = UDg +UAe; as in the foregoing section
the donor as well as the acceptor molecule have their own set of vibrational coordinates
the Coulombic inter–molecular coupling defines the perturbation

V̂ =
∑

mn

Jmn|m〉〈n|

the respective transition rate can be written as

kD→A =
2π

~
|JDA|2DDA(ωDA)
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here, we introduced the combined density of states DDA for the transition

DDA =
1

2π~

∫

dt trvib{R̂DÛ+
D (t)ÛA(t)}

the Ûm(t) denote the time–evolution operator describing nuclear motions of the whole
dimer if molecule m is excited;
the vibrational equilibrium statistical operator takes the following form:

R̂D = R̂DeR̂Ag

in a similar manner the time–evolution operator is obtained as

ÛD(t) = ÛDe(t)ÛAg(t)

and
ÛA(t) = ÛDg(t)ÛAe(t)

as a result the trace expression reads

trvib{R̂DÛ+
D (t)ÛA(t)} = trD{R̂DeÛ

+
De(t)ÛDg(t)}trA{R̂AgÛ

+
Ag(t)ÛAe(t)}

trD{...} denotes the trace expression with respect to the donor molecule vibrational
coordinates and trA{...} the trace related to the acceptor coordinates;, the separation
became possible since both molecules posses their own set of vibrational coordinates;
the following formulas may be formulated by the donor and acceptor combined DOS;
however, it is more appropriate to define correlation functions for the de–excitation of
the donor

CDe→g(t) = trD{R̂DeU
+
De(t)UDg(t)}

and the excitation of the acceptor

CAg→e(t) = trA{R̂AgU
+
Ag(t)UAe(t)}

the the combined density of states defining the rate can be written as

DDA =
1

2π~

∫

dt CDe→g(t)CAg→e(t)

if the correlation functions are replaced by their Fourier–transforms it follows

DDA =
1

(2π)2~

∫

dω CDe→g(−ω)CAg→e(ω)

Correlation Functions for the Case of Harmonic Vibrational M otion

if the vibrational dynamics in the donor as well as in the acceptor are harmonic the
above introduced correlation functions can be drastically specified (as already demon-
strated when dealing with electron transfer reactions)
to simplify the notation we drop the donor and acceptor index for a moment and in-
troduce a correlation function Ca→b(t) which refers to the donor de–excitation (a = e,
b = g) or the acceptor excitation (a = g, b = e); it reads

Ca→b(t) = exp
(

iωabt − G(0) + G(t)
)
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we introduced the transition frequencies (difference of the minima of the PES related
to the donor or the acceptor)

ωab = (U (0)
a − U

(0)
b )/~

and the so–called line shape function

G(t) =

∞
∫

0

dω
[

(1 + n(ω))e−iωt + n(ω)eiωt
]

J(ω)

the spectral density reads

J(ω) =
∑

ξ

(

ge(ξ) − gg(ξ)
)2

δ(ω − ωξ)

we can use the spectral density to write the Stokes shift as

S = 2~

∞
∫

0

dω ωJ(ω)

let us separate the function G(t) into its real and imaginary part

G(t) = G1(t) − iG2(t)

where

G1(t) =

∞
∫

0

dω cos(ωt)[1 + 2n(ω)]J(ω)

and

G2(t) =

∞
∫

0

dω sin(ωt)J(ω)

according to this separation of G(t) the Fourier–transformed correlation function reads

Ca→b(ω) =

∫

dt exp {i [(ω + ωab)t − G2(t)] + G1(t) − G1(0)}

the imaginary part of G(t) introduces a shift of the electronic transition frequency ωab,
whereas the real part leads to an exponential decay
one example for J is the so–called Debye spectral density

ωJ(ω) = Θ(ω)
S

π~

ωD

ω2 + ω2
D

it is related to the dynamics in a polar solvent;
in order to discuss the resulting Ca→b we may introduce two time scales; first we have
the time scale for vibrational motion characterized by

Tvib ≈ 1/ωD
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the second time scale is related to the strength of the coupling between electronic
and nuclear motions and can be interpreted as the time scale for fluctuations of the
electronic energy gap

Tfluc = ~/
√

kBTS

we can distinguish two limits:
Slow nuclear motion
we suppose that Tvib ≫ Tfluc; one obtains

C
(slow)
a→b (t) = exp

(

i(ωab − S/2~)t − kBTSt2/2~
2
)

and after Fourier–transformation

C
(slow)
a→b (ω) =

√
2πTfluc exp

{

−1

2
(Tfluc[ω + ωab − S/2~])2

}

≡
√

2π~2

kBTS
exp

{

−
(

~[ω + ωab] − S/2
)2

2kBTS

}

this case is known as the limit of inhomogeneous broadening, where the time scale
for nuclear motion is such that the nuclei can be considered to be frozen; it results,
for example, in a Gaussian absorption line shape centered around the vertical Franck–
Condon transition ω = ωeg + S/2
Fast nuclear motion
here, Tvib ≪ Tfluc and the absorption line shape follows as a Lorentzian (τ = T 2

fluc/Tvib)

C
(fast)
a→b (t) = exp

(

iωabt − |t|/τ
)

and a Fourier–transformation results in

C
(fast)
a→b (ω) =

2/τ

(ω + ωab)2 + 1/τ 2

this is the limit of homogeneous broadening; note that the absorption is now centered
at the electronic transition frequency and the Stokes shift does not appear; it can be ra-
tionalized by the fact that the nuclear motion is so fast that only the electronic transition
which is averaged with respect to the nuclear dynamics is detected in the experiment;
finally, we point out that the transition between the limits of inhomogeneous and ho-
mogeneous broadening can be observed upon changing the temperature; while at low
temperature the nuclear motions are frozen and the line shape is Gaussian, at higher
temperature it becomes Lorentzian; this phenomenon is also known as motional line
narrowing;

Rate Expressions in Two Limiting Cases

while a computation of the correlation functions is best carried out in the time domain
an interpretation should be given in terms of released and absorbed excitation energy,
i.e. in the frequency domain; therefore, we quote again the Fourier–transformed single
molecule correlation functions now specified for the donor and the acceptor and first
for slow nuclear motion

C
(slow)
De→g(−ω) =

√

2π~
2

kBTSD

exp
{

−
(

~[ω − ωDeg] + SD/2
)2

2kBTSD

}
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C
(slow)
Ag→e(ω) =

√

2π~
2

kBTSA

exp
{

−
(

~[ω − ωAeg] − SA/2
)2

2kBTSA

}

we distinguished between donor and acceptor transition frequencies and Stokes–shifts
the correlation function for the fast nuclear motion read

C
(fast)
De→g(−ω) =

2/τD

(ω − ωDeg)2 + 1/τ 2
D

and

C
(fast)
Ag→e(ω) =

2/τA

(ω − ωAeg)2 + 1/τ 2
A

next we present for both cases the combined DOS for the donor acceptor EET; the
case of slow nuclear motion leads to (ωDA = ωDeg − ωAeg, SDA = SD + SA)

D(slow)
DA =

1√
2πkBTSDA

exp

{

−
(

~ωDA − SDA/2
)2

2kBTSDA

}

.

in the case of fast nuclear motion we arrive at

D(fast)
DA =

1

π~

γDA

ω2
DA + γ2

DA

with
γDA = 1/τD + 1/τA
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