3.3 Frenkel Excitons

3.3.1 Exciton Hamiltonian

the basic form of the dye aggregate or chromophore complex (CC) Hamiltonian is

$$H_{\rm CC} = \sum_m H_m + \frac{1}{2} \sum_{m,n} V_{mn}$$

the spatial position of the chromophores are counted by m as well as n, and H_m denotes the electron–vibrational Hamiltonian of an individual chromophore:

$$H_m = \sum_a H_{ma} |\varphi_{ma}\rangle \langle \varphi_{ma}|$$

the part V_{mn} of H_{CC} is the mutual Coulomb interaction between chromophore at site m and at site n; it covers the interaction among electrons and nuclei:

$$V_{mn} = V_{mn}^{(\mathrm{el-el})} + V_{mn}^{(\mathrm{el-nuc})} + V_{mn}^{(\mathrm{nuc-el})} + V_{mn}^{(\mathrm{nuc-nuc})}$$

for the following it suffices to restrict the considerations to singly excited states; every chromophore is described by the electronic ground–state φ_{mg} and the excited electronic state φ_{me} ; the distance between the chromophores should be large enough to neglect electron exchange

the CC ground state reads

$$|\phi_0\rangle = \prod_m |\varphi_{mg}\rangle$$

all possible singly excited states can be written as

$$|\phi_m\rangle = |\varphi_{me}\rangle \prod_{n \neq m} |\varphi_{ng}\rangle$$

this expansion assumes the general orthogonality relation

$$\langle \varphi_{ma} | \varphi_{nb} \rangle = \delta_{m,n} \delta_{a,b}$$

to reduce $H_{\rm CC}$ to the ground–state and the singly excited states we introduce respective projection operators

we obtain for the CC ground-state

$$\hat{\Pi}_0 = |\phi_0\rangle\langle\phi_0|$$

and for the singly excited states

$$\hat{\Pi}_1 = \sum_m |\phi_m\rangle \langle \phi_m|$$

both projectors can be used to introduce the following expansion

$$H_{\rm CC} \approx \hat{\Pi}_0 H_{\rm CC} \hat{\Pi}_0 + \hat{\Pi}_1 H_{\rm CC} \hat{\Pi}_1 = H_0 + H_1 \equiv \mathcal{H}_0 \hat{\Pi}_0 + \mathcal{H}_1 \hat{\Pi}_1$$

we may derive

$$\langle \phi_0 | H_{\rm CC} | \phi_0 \rangle \equiv \mathcal{H}_0 = \prod_k \langle \varphi_{kg} | \left(\sum_m H_m + \frac{1}{2} \sum_{m,n} V_{mn} \right) \prod_l | \varphi_{lg} \rangle = \sum_m H_{mg}$$

in the same way we get

$$\langle \phi_m | H_{\rm CC} | \phi_n \rangle = \delta_{m,n} \big(H_{me} - H_{mg} + \mathcal{H}_0 \big) + (1 - \delta_{m,n}) J_{mn}$$

the excitation energy transfer coupling has been already calculated; it takes the form

$$J_{mn} = \langle \varphi_{me} \varphi_{ng} | V_{mn} | \varphi_{ne} \varphi_{mg} \rangle \equiv \langle \varphi_{me} \varphi_{ng} | V_{mn}^{(\text{el-el})} | \varphi_{ne} \varphi_{mg} \rangle$$

the Hamiltonian of the singly excited complex state results as

$$H_1 = \sum_m \left(H_{me} - H_{mg} + \mathcal{H}_0 \right) |\phi_m\rangle \langle \phi_m| + \sum_{m,n} J_{mn} |\phi_m\rangle \langle \phi_n|$$

a detailed inspection shows that the given structure assumes a totally balanced charge distribution of electrons and nuclei (in the electronic ground as well as in the first excited state)

Coupling to Vibrational Modes

in most cases we have to distinguish between intra–molecular and inter–molecular vibrations; for simplicity it is assumed in the following that a common set of normal mode vibrations couples to every molecule; R_0 denotes the reference nuclear equilibrium configuration for which the normal mode vibrations are defined

the normal mode expansion of the ground-state Hamiltonian takes the form:

$$\mathcal{H}_0 = T_{\text{nuc}} + \sum_m U_{mg}(R) \approx T_{\text{nuc}} + \sum_m \left(U_{mg}(R_0) + \frac{1}{2} \sum_{\mu,\nu} k_{\mu\nu}^{(mg)} \Delta R_\mu \Delta R_\nu \right)$$
$$= \sum_m U_{mg}^{(0)} + \sum_{\xi} \hbar \omega_{\xi} \left(c_{\xi}^+ c_{\xi} + 1/2 \right) \equiv H_{\text{vib}}$$

the deviations from the equilibrium nuclear configuration are denoted as ΔR_{μ} ; to get the contribution for the excited state we consider the difference H_{me} - H_{mg} ; we can restrict ourselves to the linear contribution with respect to the deviations ΔR_{μ} ; it results in:

$$H_{me} - H_{mg} = U_{me}(R) - U_{mg}(R) \approx U_{me}^{(0)} + \sum_{\mu,\nu} k_{\mu}^{(me)} \Delta R_{\mu} - U_{mg}^{(0)}$$
$$= E_m + \sum_{\xi} \hbar \omega_{\xi} g_{\xi}(m) (c_{\xi} + c_{\xi}^+)$$

an expansion of the excitonic coupling follows as

$$J_{mn}(R) \approx J_{mn} + \sum_{\xi} \hbar \omega_{\xi} g_{\xi}(m, n) (c_{\xi} + c_{\xi}^{+})$$

we denote the excited state Hamiltonian as

$$H_1 = H_{\rm ex} + H_{\rm ex-vib} + H_{\rm vib}\hat{\Pi}_1$$

the first part corresponds to the electronic (excitonic) contributions

$$H_{\rm ex} = \sum_{m,n} \left(\delta_{m,n} E_m + (1 - \delta_{m,n}) J_{mn} \right) |\phi_m\rangle \langle \phi_n|$$

the coupling to vibrational coordinates is described by

$$H_{\text{ex-vib}} = \sum_{m,n} \sum_{\xi} \hbar \omega_{\xi} \tilde{g}_{\xi}(m,n) (c_{\xi} + c_{\xi}^{+}) |\phi_{m}\rangle \langle \phi_{n}|$$

with

$$\tilde{g}_{\xi}(m,n) = \delta_{m,n}g_{\xi}(m) + (1 - \delta_{m,n})g_{\xi}(m,n)$$

Change to an Exciton Representation

introduction of exciton states is achieved as

$$|\alpha\rangle = \sum_{m} C_{\alpha}(m) |\phi_{m}\rangle$$

the exciton Hamiltonian becomes diagonal

$$H_{\rm ex} = \sum_{\alpha} \hbar \Omega_{\alpha} |\alpha\rangle \langle \alpha |$$

and the exciton vibrational coupling reads

$$H_{\rm ex-vib} = \sum_{\alpha,\beta} \sum_{\xi} \hbar \omega_{\xi} \tilde{g}_{\xi}(\alpha,\beta) (c_{\xi} + c_{\xi}^{+}) |\alpha\rangle \langle \beta |$$

the coupling constant follows as

$$\tilde{g}_{\xi}(\alpha,\beta) = \sum_{m,n} C^*_{\alpha}(m) \tilde{g}_{\xi}(m,n) C_{\beta}(n) = \sum_m C^*_{\alpha}(m) g_{\xi}(m) C_{\beta}(m) + \sum_{m \neq n} C^*_{\alpha}(m) g_{\xi}(m,n) C_{\beta}(n)$$

Linear and Regular Chain of Dye Molecules

we consider a linear chain of $N_{\rm mol}$ identical molecules with

$$E_m \to E_0$$

$$J_{mn} = (\delta_{m,n+1} + \delta_{m,n-1})J \quad (1 < m < N_{\text{mol}})$$

$$J_{1n} = \delta_{2,n}J \qquad J_{N_{\text{mol}}n} = \delta_{N_{\text{mol}}-1,n}J$$

the exciton energies become

$$\hbar\Omega_{\alpha} = E_0 + 2J\cos\alpha \qquad \alpha = \frac{\pi j}{N_{\rm mol} + 1} \qquad j = 1, ..., N_{\rm mol}$$

and the expansion coefficients read

$$C_{\alpha}(m) = \sqrt{\frac{2}{N_{\rm mol} + 1}} \sin(\alpha m)$$

to estimate J we use the version based on the dipole-dipole coupling

$$J = \frac{d_1 d_2}{R^3}$$

if the transition dipole moments are given in Debey and the Distance in Ångstroem we arrive at

$$J = \frac{d_1[D]d_2[D]}{(R[Å])^3} \, 0.625 \, \mathrm{eV}$$

3.4 The Nonequilibrium Statistical Operator and the Density Matrix

3.4.1 The Density Operator

elementary quantum mechanics \rightarrow a *complete description* of a system is only possible if a set of observables exists from which all physical quantities can be measured simultaneously

a set of commuting operators $\{\hat{A}_{\alpha}\}$ has to exist, i.e., the following relation has to be fulfilled

$$\left[\hat{A}_{\alpha},\hat{A}_{\alpha'}\right]_{-}=\hat{A}_{\alpha}\hat{A}_{\alpha'}-\hat{A}_{\alpha'}\hat{A}_{\alpha}=0$$

if for the considered system the maximal number of such operators is known, a *complete* description can be accomplished

the system is described by a pure state

if the complete measurement of all \hat{A}_{α} has not been carried out, for example, because the complete set of observables is principally unknown \rightarrow the state of the quantum system has to be described as a *statistical mixture* of pure states $|\Psi_{\nu}\rangle$

the probability for a single state to be in the mixture will be denoted by w_{ν} ; the states $|\Psi_{\nu}\rangle$ are assumed to be ortho-normalized, and therefore the w_{ν} must satisfy the relation

$$\sum_{\nu} w_{\nu} = 1$$

the expectation value of an observable becomes

$$\langle \hat{O} \rangle = \sum_{\nu} w_{\nu} \langle \Psi_{\nu} | \hat{O} | \Psi_{\nu} \rangle$$

introduction of the *density operator* (the statistical operator)

$$\hat{W} = \sum_{\nu} w_{\nu} |\Psi_{\nu}\rangle \langle \Psi_{\nu}| = \hat{W}^{\dagger}$$

simple notation of the expectation value of any observable using the trace formula

$$\langle \hat{O} \rangle = \operatorname{tr}\{\hat{W}\hat{O}\}$$

the abbreviation "tr" is defined as the trace with respect to the matrix formed by all matrix elements which are determined in a complete orthonormal basis $|a\rangle$

$$\operatorname{tr}\{\bullet\} = \sum_{a} \langle a | \bullet | a \rangle$$

therefore we have

$$\operatorname{tr}(\hat{W}\hat{O}) = \sum_{a,\nu} w_{\nu} \langle a | \Psi_{\nu} \rangle \langle \Psi_{\nu} | \hat{O} | a \rangle = \sum_{a,\nu} w_{\nu} \langle \Psi_{\nu} | \hat{O} | a \rangle \langle a | \Psi_{\nu} \rangle = \sum_{\nu} w_{\nu} \langle \Psi_{\nu} | \hat{O} | \Psi_{\nu} \rangle$$

taking two arbitrary operators \hat{O} and \hat{P} it is easy to proof

$$\operatorname{tr}\{\hat{O}\hat{P}\} = \operatorname{tr}\{\hat{P}\hat{O}\}$$

this property is called *cyclic invariance* of the operator arrangement note also

$$\operatorname{tr}\{\hat{W}\} = 1$$

example: the canonical density operator for thermal equilibrium

$$\hat{W}_{\rm eq} = \frac{1}{\mathcal{Z}} e^{-H/k_{\rm B}T} = \frac{1}{\mathcal{Z}} \sum_{\alpha} e^{-E_{\alpha}/k_{\rm B}T} |\alpha\rangle\langle\alpha|$$

 \mathcal{Z} is the partition function $\operatorname{tr}[\exp\{-H/k_{\mathrm{B}}T\}]$ ensuring proper normalization of \hat{W}_{eq} the second part is obtained using the eigenenergies E_{α} and eigenstates $|\alpha\rangle$ of the Hamiltonian H

density operator of a pure state $|\Psi
angle$

$$\hat{W}_{\text{pure}} = |\Psi\rangle\langle\Psi| = \hat{P}_{\Psi}$$

expansion of the state vector $|\Psi\rangle$ with respect to the complete orthogonal basis $|\alpha\rangle$:

$$|\Psi\rangle = \sum_{\alpha} c_{\alpha} |\alpha\rangle \; .$$

introducing this expansion into the expression for the pure state density operator one obtains

$$\hat{W}_{\text{pure}} = \sum_{\alpha,\bar{\alpha}} c_{\alpha} c_{\bar{\alpha}}^* |\alpha\rangle \langle \bar{\alpha} | \neq \sum_{\alpha} |c_{\alpha}|^2 |\alpha\rangle \langle \alpha | .$$

there exists a measure which tells us whether the state is a pure state or not: *degree* of coherence

$$C = \operatorname{tr}\{\hat{W}^2\}$$

it takes the value 1 for pure states since the statistical operator in this case is a projector

$$C_{\text{pure}} = \text{tr}\{\hat{W}_{\text{pure}}^2\} = \text{tr}\{\hat{P}_{\Psi}^2\} = \text{tr}\{\hat{P}_{\Psi}\} = \text{tr}\{\hat{W}_{\text{pure}}\} = 1$$

where the projector property $P_{\Psi}^2 = P_{\Psi}$ has been used for a mixed state it follows that

$$C_{\text{mixed}} = \text{tr} \{ \hat{W}^2 \} = \sum_{\mu,\nu} w_\mu w_\nu \text{ tr} \{ \hat{P}_{\Psi_\mu} \hat{P}_{\Psi_\nu} \} = \sum_{\mu,\nu} \sum_{\alpha} w_\mu w_\nu \langle \alpha | \Psi_\mu \rangle \langle \Psi_\mu | \Psi_\nu \rangle \langle \Psi_\nu | \alpha \rangle$$
$$= \sum_{\mu} \sum_{\alpha} w_\mu^2 \langle \Psi_\mu | \alpha \rangle \langle \alpha | \Psi_\mu \rangle = \sum_{\mu} w_\mu^2 \langle 1$$

the degree of coherence becomes less than one

3.4.2 The Density Matrix

we consider a complete orthogonal basis of states $|a\rangle, |b\rangle, ...$ the density operator can be expanded as

$$\hat{W} = \sum_{a,b} \langle a | \hat{W} | b \rangle \; | a \rangle \langle b |$$

the expansion coefficients are called *density matrix* and denoted by

$$\rho_{ab} = \langle a | \hat{W} | b \rangle$$

the density matrix fulfills the relation

 $\rho_{ab} = \rho_{ba}^*$

from which one simply deduces

$$\operatorname{Re} \rho_{ab} = \operatorname{Re} \rho_{ba} , \qquad \operatorname{Im} \rho_{ab} = -\operatorname{Im} \rho_{ba}$$

the diagonal elements of the density matrix are real

$$\rho_{aa} = \operatorname{Re} \rho_{aa}$$

one may write

$$\rho_{aa} = \langle a | \hat{W} | a \rangle = \sum_{\nu} \langle a | w_{\nu} | \Psi_{\nu} \rangle \langle \Psi_{\nu} | a \rangle = \sum_{\nu} w_{\nu} | \langle a | \Psi_{\nu} \rangle |^2 \equiv \sum_{\nu} w_{\nu} |c_a(\nu)|^2$$

with the expansion coefficients $c_a(\nu) = \langle a | \Psi_{\nu} \rangle$

it shows that ρ_{aa} gives us the probability for the state $|a\rangle$ being contained in the statistical mixture described by \hat{W}

taking the off-diagonal matrix elements of the density operator it follows

$$\rho_{ab} = \sum_{\nu} w_{\nu} c_a(\nu) c_b^*(\nu)$$

the density matrix ρ_{ab} describes an *incoherent* superposition of contributions from different pure states

depending on the basis set $\{|a\rangle\}$ the different terms on the right–hand side can cancel each other or give a finite ρ_{ab}

the off-diagonal density matrix are also called coherences

since the definition of the density matrix represents a quadratic form the Schwarz inequality is valid

$$\rho_{aa}\rho_{bb} \ge |\rho_{ab}|^2$$

the representation of the statistical operator via the density matrix introduced so far is frequently termed *state representation*

if eigenstates of some Hamiltonian are used it is also called *energy representation* using eigenstates of the coordinate operator

$$|s\rangle = \prod_{j} |s_{j}\rangle ,$$

with coordinate s_j for the *j*th degree of freedom of the system, consequently, the *coordinate representation* of the statistical operator reads

$$\rho(s,\bar{s}) = \langle s | \hat{W} | \bar{s} \rangle$$

3.4.3 Equation of Motion for the Density Operator

the probabilities w_{ν} represent our reduced knowledge about the state of the system the state vectors $|\Psi_{\nu}\rangle$ of the mixed state evolve in time according to the time–dependent Schrödinger equation

$$i\hbar\frac{\partial}{\partial t}|\Psi_{\nu}\rangle = H|\Psi_{\nu}\rangle$$

although any individual state of the mixture changes in time there is no change whatsoever in the amount of our knowledge about the system

the probabilities w_{ν} are constant $(w_{\nu} \neq w_{\nu}(t))$

accordingly the time-dependent density operator has the following form

$$\hat{W}(t) = \sum_{\nu} w_{\nu} |\Psi_{\nu}(t)\rangle \langle \Psi_{\nu}(t)|$$

to derive an equation of motion we note

$$\hat{W}(t) = \sum_{\nu} w_{\nu} U(t, t_0) |\Psi_{\nu}(t_0)\rangle \langle \Psi_{\nu}(t_0) | U^+(t, t_0) = U(t, t_0) \hat{W}(t_0) U^+(t, t_0) .$$

taking the time derivative of this expression it follows

$$\frac{\partial}{\partial t}\hat{W}(t) = -\frac{i}{\hbar} \left(H\hat{W}(t) - \hat{W}(t)H\right) \equiv -\frac{i}{\hbar} \left[H, \hat{W}(t)\right]_{-}$$

this equation of motion for the density operator \hat{W} is called *Liouville–von Neumann* or *Quantum Liouville*; for its solution we have to establish an initial condition

$$\hat{W}(t_0) = \hat{W}_0$$

we give the Liouville–von Neumann equation in the state representation ($\langle a|H|b \rangle = H_{ab}$)

$$\frac{\partial}{\partial t}\rho_{ab} = -\frac{i}{\hbar}\sum_{c} \left(H_{ac}\rho_{cb} - H_{cb}\rho_{ac}\right) \equiv -i\frac{H_{aa} - H_{bb}}{\hbar}\rho_{ab} - \frac{i}{\hbar}\sum_{c\neq a}H_{ac}\rho_{cb} + \frac{i}{\hbar}\sum_{c\neq b}H_{cb}\rho_{ac}$$

the difference of the diagonal matrix elements of the Hamiltonian defines the transition frequencies $\omega_{ab} = (H_{aa} - H_{bb})/\hbar$, whereas the off-diagonal matrix elements describe the inter-state coupling

there exists an alternative notation of the Liouville–von Neumann equation using the concept of *superoperators*

$$\mathcal{L} \bullet = \frac{1}{\hbar} \left[H, \bullet \right]_{-} \; .$$

we see that the Liouville-von Neumann equation can be written as

$$\frac{\partial}{\partial t}\hat{W}(t) = -i\mathcal{L}\hat{W}(t) \;,$$

with the solution

$$\hat{W}(t) = e^{-i\mathcal{L}(t-t_0)} \hat{W}(t_0)$$

the exponential function of the superoperator is defined via the respective power expansion

one can introduce the time-evolution superoperator as follows:

$$\mathcal{U}(t,t_0) = e^{-i\mathcal{L}(t-t_0)}$$

it gives

$$\hat{W}(t) = \mathcal{U}(t, t_0)\hat{W}(t_0) = U(t, t_0)\hat{W}(t_0)U^+(t, t_0) .$$

3.4.4 The Reduced Density Operator and the Reduced Density Matrix

to put the idea of the reduced density matrix into a rigorous frame the starting point will be

$$H = H_{\rm S} + H_{\rm S-R} + H_{\rm R}$$

a complete basis in the state space of the reservoir is written as $|\alpha\rangle$ then the *reduced density operator* follows as

$$\hat{\rho}(t) = \sum_{\alpha} \langle \alpha | \hat{W}(t) | \alpha \rangle = \operatorname{tr}_{\mathrm{R}} \left\{ \hat{W}(t) \right\}$$

next we take a basis $|a\rangle$ in the state space of the system and define the *reduced density* matrix

$$\rho_{ab}(t) = \langle a | \hat{\rho}(t) | b \rangle$$

the following relation has to be fulfilled

$$\operatorname{tr}_{S}\{\hat{\rho}(t)\}\equiv\sum_{a}\rho_{aa}(t)=1$$

it is easily confirmed if we note that

$$\operatorname{tr}\{\hat{W}(t)\} = 1$$

an equation of motion for the reduced density matrix is derived by starting from the respective operator equation for the reduced density operator from the Liouville–von Neumann equation we obtain

$$\frac{\partial}{\partial t}\hat{\rho}(t) = \operatorname{tr}_{\mathrm{R}} \left\{ \frac{\partial}{\partial t}\hat{W}(t) \right\} = -\frac{i}{\hbar} \operatorname{tr}_{\mathrm{R}} \left\{ \left[H_{\mathrm{S}} + H_{\mathrm{S-R}} + H_{\mathrm{R}}, \hat{W}(t) \right]_{-} \right\}$$
$$= -\frac{i}{\hbar} \left[H_{\mathrm{S}}, \hat{\rho}(t) \right]_{-} - \frac{i}{\hbar} \operatorname{tr}_{\mathrm{R}} \left\{ \left[H_{\mathrm{S-R}} + H_{\mathrm{R}}, \hat{W}(t) \right]_{-} \right\}$$

the commutator notation for the reduced density operator is not possible for the contributions proportional to $H_{\rm S-R}$ and $H_{\rm R}$

to calculate the commutator with $H_{\rm R}$ we take into account the cyclic invariance of the trace; as a result the term proportional to $H_{\rm R}$ vanishes and the equation of motion for the reduced density operator follows as

$$\frac{\partial}{\partial t}\hat{\rho}(t) = -\frac{i}{\hbar}\left[H_{\rm S},\hat{\rho}(t)\right]_{-} - \frac{i}{\hbar}{\rm tr}_{\rm R}\{\left[H_{\rm S-R},\hat{W}(t)\right]_{-}\}$$

we realize that this is not yet a closed equation for reduced density operator; because of the appearance of $H_{\rm S-R}$ in the commutator on the right–hand side it still contains the total density operator

Approximate Equations of Motion for the Reduced Density Operator and the Reduced Density Matrix

the effect of the environment can be accounted for by a superoperator $\ensuremath{\mathcal{D}}$ acting on the reduced density operator

$$-\frac{i}{\hbar} \operatorname{tr}_{\mathrm{R}}\left\{\left[H_{\mathrm{S-R}}, \hat{W}(t)\right]_{-}\right\} = -\mathcal{D}\hat{\rho}(t) \equiv -\hat{A}\hat{\rho}(t) - \hat{\rho}(t)\hat{B} - \sum_{j}\hat{C}_{j}\hat{\rho}(t)\hat{D}_{j}$$

the last part of this formula indicates the most general action of the superoperator when represented by different ordinary operators (acting from the left as well as from the right);

we introduce the density matrix where the states $|a\rangle$ are considered as eigenstates of $H_{\rm S}$ with energy $\hbar\omega_a$; the equation of motion can be written as ($\omega_{ab} = \omega_a - \omega_b$)

$$\frac{\partial}{\partial t}\rho_{ab}(t) = -i\omega_{ab}\rho_{ab}(t) - \sum_{c,d} R_{ab,cd}\rho_{cd}(t)$$

the action of the superoperator \mathcal{D} is replaced by the so-called *Redfield tensor* $R_{ab,cd}$; there exist several theories calculating $R_{ab,cd}$; we will quote the most simple version

$$\sum_{c,d} R_{ab,cd}\rho_{cd} = \delta_{a,b} \sum_{c} \left(k_{a \to c}\rho_{aa} - k_{c \to a}\rho_{cc} \right) + \left(1 - \delta_{a,b} \right) \frac{1}{2} \sum_{c} \left(k_{a \to c} + k_{b \to c} \right) \rho_{ab}$$

it is based on a decoupling of diagonal and off–diagonal density matrix elements; the diagonal elements obey a rate equation with transition rates $k_{a\to c}$ and $k_{c\to a}$; the off–diagonal elements follow from an equation including transition frequencies as well as dephasing rates

$$\gamma_{ab} = \frac{1}{2} \sum_{c} \left(k_{a \to c} + k_{b \to c} \right)$$

they are responsible for the exponential decay of the off-diagonal density matrix elements (the coherences) with increasing time;

the transition rates and, thus, the dephasing rates can be calculated based on a concrete expression for the system–reservoir coupling H_{S-R} ;

3.4.5 Density Matrix Equations for Excitons

we note the definition of the reduced density operator

$$\hat{\rho}(t) = \operatorname{tr}_{\operatorname{vib}}\{\hat{W}(t)\}$$

the exciton density matrix follows as

$$\rho_{\alpha\beta}(t) = \langle \alpha | \hat{\rho}(t) | \beta \rangle$$

the equations of motion take the form

$$\frac{\partial}{\partial t}\rho_{\alpha\beta}(t) = -i\Omega_{\alpha\beta}\rho_{\alpha\beta}(t) - \sum_{\gamma,\delta} R_{\alpha\beta,\gamma\delta}\rho_{\gamma\delta}$$

the approximation which decouples diagonal and off-diagonal density matrix elements reads here:

$$\sum_{\gamma,\delta} R_{\alpha\beta,\gamma\delta} \rho_{\gamma\delta} \approx \delta_{\alpha\beta} \sum_{\gamma} \left(k_{\alpha \to \gamma} \rho_{\alpha\alpha} - k_{\gamma \to \alpha} \rho_{\gamma\gamma} \right) + (1 - \delta_{\alpha\beta}) \Gamma_{\alpha\beta} \rho_{\alpha\beta}$$

the dephasing rates are

$$\Gamma_{\alpha\beta} = \frac{1}{2} \sum_{\gamma} \left(k_{\alpha \to \gamma} + k_{\beta \to \gamma} \right)$$

although a direct theory exist which leads to the density matrix equations as well as to the transition rates, the latter can also be directly deduced from the *Golden Rule* formula; it is based on the given form of the exciton vibrational coupling;

next we present respective computations; the normal mode vibrational states are abbreviated as χ_M for the initial state (note $M = \{M_{\xi}\}$), and as χ_N for the final state of the transition; related energies, for example, are

$$\omega_M = \sum_{\xi} M_{\xi} \omega_{\xi}$$

we introduce the thermal distribution $f(\omega_M)$ for the initial vibrational state and obtain the total rate as

$$k_{\alpha \to \beta} = \frac{2\pi}{\hbar^2} \sum_{M,N} f(\omega_M) |\langle \alpha | \langle \chi_M | H_{\text{ex-vib}} | \chi_N \rangle |\beta \rangle|^2 \delta(\Omega_\alpha + \omega_M - \Omega_\beta - \omega_N)$$

standard manipulations give first

$$k_{\alpha \to \beta} = \frac{1}{\hbar^2} \int dt \; e^{i\Omega_{\alpha\beta}} \sum_{M,N} f(\omega_M) \langle \alpha | \langle \chi_M | e^{i\omega_M t} H_{\text{ex-vib}} e^{-i\omega_N t} | \chi_N \rangle | \beta \rangle \langle \beta | \langle \chi_N | H_{\text{ex-vib}} | \chi_M \rangle | \alpha \rangle$$

this leads to

$$\begin{aligned} k_{\alpha \to \beta} &= \int dt \; e^{i\Omega_{\alpha\beta}t} \mathrm{tr}_{\mathrm{vib}} \{ \hat{R} e^{iH_{\mathrm{vib}}t/\hbar} \sum_{\xi} \omega_{\xi} \tilde{g}_{\xi}(\alpha,\beta) (c_{\xi} + c_{\xi}^{+}) e^{-iH_{\mathrm{vib}}t/\hbar} \sum_{\zeta} \omega_{\zeta} \tilde{g}_{\zeta}(\beta,\alpha) (c_{\zeta} + c_{\zeta}^{+}) \} \\ &= \sum_{\xi} \omega_{\xi}^{2} |\tilde{g}_{\xi}(\alpha,\beta)|^{2} \int dt \; e^{i\Omega_{\alpha\beta}t} \mathrm{tr}_{\mathrm{vib}} \{ \hat{R} (c_{\xi} c_{\xi}^{+} e^{-i\omega_{\xi}t} + c_{\xi}^{+} c_{\xi} e^{i\omega_{\xi}t}) \} \\ &= \sum_{\xi} \omega_{\xi}^{2} |\tilde{g}_{\xi}(\alpha,\beta)|^{2} \int dt \; e^{i\Omega_{\alpha\beta}t} \big([1+n(\omega_{\xi})] e^{-i\omega_{\xi}t} + n(\omega_{\xi}) e^{i\omega_{\xi}t} \big) \\ &= 2\pi \sum_{\xi} \omega_{\xi}^{2} |\tilde{g}_{\xi}(\alpha,\beta)|^{2} \big([1+n(\omega_{\xi})] \delta(\Omega_{\alpha\beta} - \omega_{\xi}) + n(\omega_{\xi}) \delta(\Omega_{\alpha\beta} + \omega_{\xi}) \big) \end{aligned}$$

here we noticed that the double sum with respect to the normal mode vibrations reduces to a single sum and we took into account

$$\operatorname{tr}_{\operatorname{vib}}\{\hat{R}c_{\xi}^{+}c_{\xi}\} = n(\omega_{\xi}) \equiv \frac{1}{e^{\hbar\omega_{\xi}/k_{\mathrm{B}}T} - 1}$$

the rate expression is further rewritten by introducing the following general type of spectral density

$$J_{\alpha\beta,\gamma\delta}(\omega) = \sum_{\xi} \tilde{g}_{\xi}(\alpha,\beta)\tilde{g}_{\xi}(\gamma,\delta)\delta(\omega-\omega_{\xi})$$

accordingly, the rate takes the form

$$k_{\alpha \to \beta} = 2\pi \Omega_{\alpha\beta}^2 [1 + n(\Omega_{\alpha\beta})] (J_{\alpha\beta,\beta\alpha}(\Omega_{\alpha\beta}) - J_{\alpha\beta,\beta\alpha}(-\Omega_{\alpha\beta}))$$

to compute this expression we need the exciton spectrum resulting in the transition frequencies $\Omega_{\alpha\beta}$ and the set of spectral densities $J_{\alpha\beta,\beta\alpha}(\omega)$; temperature enters via the

Bose–Einstein distribution

to be more specific we approximate

$$\tilde{g}_{\xi}(\alpha,\beta) = \sum_{m} C^*_{\alpha}(m) g_{\xi}(m) C_{\beta}(m)$$

i.e. we neglect the contribution given by $g_{\xi}(m, n)$ it yields

$$J_{\alpha\beta,\gamma\delta}(\omega) = \sum_{m,n} C^*_{\alpha}(m) C_{\beta}(m) C^*_{\gamma}(n) C_{\delta}(n) \sum_{\xi} g_{\xi}(m) g_{\xi}(n) \delta(\omega - \omega_{\xi})$$

this expression leads to the introduction of the spectral density

$$J_{mn}(\omega) = \sum_{\xi} g_{\xi}(m) g_{\xi}(n) \delta(\omega - \omega_{\xi})$$

furthermore, we neglect correlations among different excited states and assume

$$J_{mn}(\omega) \approx \delta_{mn} J(\omega)$$

it follows

$$J_{\alpha\beta,\gamma\delta}(\omega) = \sum_{m} C^*_{\alpha}(m) C_{\beta}(m) C^*_{\gamma}(m) C_{\delta}(m) J(\omega) \equiv j_{\alpha\beta,\gamma\delta} J(\omega)$$

now, the rate can be simply written as

$$k_{\alpha \to \beta} = j_{\alpha \beta, \beta \alpha} C(\Omega_{\alpha \beta})$$

with the abbreviation

$$C(\omega) = 2\pi\omega^2 \left[1 + n(\omega)\right] \left[J(\omega) - J(-\omega)\right] \equiv 2\pi\omega^2 \left(\left[1 + n(\omega)\right] J(\omega) + n(-\omega) J(-\omega)\right)$$

Analysis of the Complete Redfield–Tensor

- -

for the Redfield-tensor we may write

$$R_{\alpha\beta,\gamma\delta} = \operatorname{Re} \int_{0}^{\infty} d\tau \left(\delta_{\alpha,\gamma} \sum_{\epsilon} e^{i\Omega_{\epsilon\delta}\tau} C_{\delta\epsilon,\epsilon\beta}(-\tau) + \delta_{\delta,\beta} \sum_{\epsilon} e^{i\Omega_{\gamma\epsilon}\tau} C_{\alpha\epsilon,\epsilon\gamma}(\tau) - e^{i\Omega_{\beta\delta}\tau} C_{\delta\beta,\alpha\gamma}(-\tau) - e^{i\Omega_{\gamma\alpha}\tau} C_{\delta\beta,\alpha\gamma}(\tau) \right)$$

the correlation function reads

$$C_{\alpha\beta,\gamma\delta}(\omega) = 2\pi\omega^2 \left[1 + n(\omega)\right] \left[J_{\alpha\beta,\gamma\delta}(\omega) - J_{\alpha\beta,\gamma\delta}(-\omega)\right]$$

the spectral density has been already defined; we introduce identical simplifications as in the foregoing section and arrive at

$$C_{\alpha\beta,\gamma\delta}(\omega) = j_{\alpha\beta,\gamma\delta}C(\omega)$$

we assume $C_{\alpha\beta,\gamma\delta}$ to be a real quantity and note

$$\operatorname{Re}\int_{0}^{\infty} d\tau \ e^{i\omega\tau} C_{\alpha\beta,\gamma\delta}(\pm\tau) = \operatorname{Re}\int \frac{d\omega'}{2\pi} C_{\alpha\beta,\gamma\delta}(\omega') \int_{0}^{\infty} d\tau \ e^{i(\omega\mp\omega')\tau}$$

$$= \operatorname{Re} \int \frac{d\omega'}{2\pi} C_{\alpha\beta,\gamma\delta}(\omega') \frac{i}{\omega \mp \omega' + i\epsilon} = \frac{1}{2} C_{\alpha\beta,\gamma\delta}(\pm \omega)$$

the Redfield tensor follows as

$$R_{\alpha\beta,\gamma\delta} = \delta_{\alpha,\gamma} \frac{1}{2} \sum_{\epsilon} C_{\delta\epsilon,\epsilon\beta}(\Omega_{\delta\epsilon}) + \delta_{\delta,\beta} \frac{1}{2} \sum_{\epsilon} C_{\alpha\epsilon,\epsilon\gamma}(-\Omega_{\epsilon\gamma}) - \frac{1}{2} C_{\delta\beta,\alpha\gamma}(\Omega_{\delta\beta}) - \frac{1}{2} C_{\delta\beta,\alpha\gamma}(-\Omega_{\alpha\gamma})$$

with, for example,

$$C_{\delta\beta,\alpha\gamma}(\Omega_{\delta\beta}) = 2\pi\Omega_{\delta\beta}^2 \Big(\Theta(\Omega_{\delta\beta}) \big[1 + n(\Omega_{\delta\beta}) \big] J_{\delta\beta,\alpha\gamma}(\Omega_{\delta\beta}) + \Theta(\Omega_{\beta\delta}) n(\Omega_{\beta\delta}) J_{\delta\beta,\alpha\gamma}(\Omega_{\beta\delta}) \Big)$$

and with

$$C_{\alpha\epsilon,\epsilon\gamma}(-\Omega_{\epsilon\gamma}) = C_{\alpha\epsilon,\epsilon\gamma}(\Omega_{\gamma\epsilon})$$
$$= 2\pi\Omega_{\gamma\epsilon}^{2} \Big(\Theta(\Omega_{\gamma\epsilon}) \big[1 + n(\Omega_{\gamma\epsilon}) \big] J_{\alpha\epsilon,\epsilon\gamma}(\Omega_{\gamma\epsilon}) + \Theta(\Omega_{\epsilon\gamma}) n(\Omega_{\epsilon\gamma}) J_{\alpha\epsilon,\epsilon\gamma}(\Omega_{\epsilon\gamma}) \Big)$$

the transition rates read

$$k_{\alpha \to \beta} = C_{\alpha\beta,\beta\alpha}(\Omega_{\alpha\beta}) = 2\pi \Omega_{\alpha\beta}^2 j_{\alpha\beta,\beta\alpha} \Big(\Big[1 + n(\Omega_{\alpha\beta}) \Big] J(\Omega_{\alpha\beta}) + n(-\Omega_{\alpha\beta}) J(-\Omega_{\alpha\beta}) \Big)$$
$$\equiv 2\pi \Omega_{\alpha\beta}^2 \sum_m |C_\alpha(m)C_\beta(m)|^2 \Big(\Big[1 + n(\Omega_{\alpha\beta}) \Big] J(\Omega_{\alpha\beta}) + n(\Omega_{\beta\alpha}) J(\Omega_{\beta\alpha}) \Big)$$

Linear and Regular Chain of Dye Molecules

the spectral density should take the form

$$\omega^2 J(\omega) = j_\nu \omega^\nu e^{-\omega/\omega_{\rm c}}$$

we get

$$C_{\alpha\beta,\gamma\delta}(\omega) \equiv C_{jj',ll'}(\omega) = j_{jj',ll'}C(\omega)$$

$$j_{jjj',ll'} = \frac{4}{(N_{\rm mol}+1)^2} \sum_m \sin(\frac{\pi jm}{N_{\rm mol}+1}) \sin(\frac{\pi j'm}{N_{\rm mol}+1}) \sin(\frac{\pi lm}{N_{\rm mol}+1}) \sin(\frac{\pi l'm}{N_{\rm mol}+1})$$

$$C(\omega) = 2\pi j_\nu |\omega|^\nu e^{-|\omega|/\omega_c} \left(\theta(\omega) \frac{e^{\hbar\omega/k_{\rm B}T}}{e^{\hbar\omega/k_{\rm B}T}-1} + \theta(-\omega) \frac{1}{e^{-\hbar\omega/k_{\rm B}T}-1}\right)$$

$$\hbar\Omega_{\alpha\beta} \equiv \hbar\Omega_{jl} = 2J \left(\cos(\frac{\pi j}{N_{\rm mol}+1}) - \cos(\frac{\pi l}{N_{\rm mol}+1})\right)$$

$$\equiv -J\sin(\frac{\pi (j+l)}{2(N_{\rm mol}+1)}) \sin(\frac{\pi (j-l)}{2(N_{\rm mol}+1)})$$

initial condition

population of a particular exciton level α_0

$$\hat{\rho}(0) = |\alpha_0\rangle \langle \alpha_0|$$

it gives

$$\rho_{\alpha\beta}(0) = \delta_{\alpha\beta}\delta_{\alpha,\alpha_0}$$

population of a particular site m_0

$$\hat{\rho}(0) = |m_0\rangle \langle m_0| = \sum_{\alpha,\beta} C^*_{\alpha}(m_0) C_{\beta}(m_0) |\alpha\rangle \langle \beta|$$

it gives

$$\rho_{\alpha\beta}(0) = C^*_{\alpha}(m_0)C_{\beta}(m_0)$$

the populations follows as

$$P_{\alpha}(0) = |C_{\alpha}(m_0)|^2 = \frac{2}{N_{\text{mol}} + 1} \sin^2(\frac{\pi j m_0}{N_{\text{mol}} + 1})$$

3.5 Linear Absorption of a Chromophore Complex

optical properties of molecular systems are characterized via the macroscopic polarization (dipole density)

$$\mathbf{P}(\mathbf{r},t) = \frac{1}{\Delta V(\mathbf{r})} \sum_{m \in \Delta V} \mathbf{d}_m(t)$$

the macroscopic polarization at the absence of inhomogeneous broadening reads

$$\mathbf{P}(\mathbf{r},t) = n_{\rm mol}\mathbf{d}(\mathbf{r};t)$$

here, $n_{\rm mol}$ denotes the volume density of the considered molecules, and $d_m(t)$ is the expectation values of the m'th molecule dipole operator; since inhomogeneous broadening has been neglected we take the quantity $d(\mathbf{r};t)$ which, first, is independent on the spatial position; however, the electric field–strength depends on \mathbf{r} , and just this dependence enters the expectation value;

to obtain a formula for the linear absorption coefficient

$$\alpha(\omega) = \frac{4\pi\omega}{nc} \mathrm{Im}\chi(\omega)$$

we have to establish a linear relation between the electric field–strength and the polarization:

$$\mathbf{P}(\mathbf{r},t) = \int d\bar{t} \, \hat{\chi}^{(1)}(t,\bar{t}) \mathbf{E}(\mathbf{r},\bar{t})$$

the dipole operator expectation value follows as

$$\mathbf{d}(\mathbf{r};t) = \operatorname{tr}\{\hat{W}(t)\hat{\mu}\}$$

here, the time–dependence of the statistical operator $\hat{W}(t)$ is determined by the time–dependent Hamiltonian

$$H(t) = H_{\rm mol} + H_{\rm field}(t)$$

therefore we have to write

$$U(t,t_0) = \hat{T} \exp\left(-\frac{i}{\hbar} \int_{t_0}^t dt' \ H(t')\right)$$

i.e. the time-evolution operator appears as a time-ordered quantity;

to carry out a perturbation theory with respect to the molecule–field coupling it is more appropriate to introduce the *S*–operator according to

$$U(t,t_0) = U_{\rm mol}(t-t_0)S(t,t_0) \equiv e^{-iH_{\rm mol}(t-t_0)/\hbar}\hat{T}\exp\left(-\frac{i}{\hbar}\int_{t_0}^t dt' \ H_{\rm field}^{\rm (I)}(t')\right)$$

note the use of the *interaction representation* for H_{field} (as well as $\hat{\mu}$):

$$H_{\text{field}}^{(1)}(t) = U_{\text{mol}}^+(t-t_0)H_{\text{field}}(t)U_{\text{mol}}(t-t_0)$$

accordingly the expectation value of the dipole operator reads

$$\mathbf{d}(\mathbf{r};t) = \operatorname{tr}\{U(t,t_0)\hat{W}_{\mathrm{eq}}U^+(t,t_0)\hat{\mu}\} = \operatorname{tr}\{\hat{W}_{\mathrm{eq}}U^+(t,t_0)\hat{\mu}U(t,t_0)\}$$
$$= \operatorname{tr}\{\hat{W}_{\mathrm{eq}}S^+(t,t_0)\hat{\mu}^{(I)}(t)S(t,t_0)\}$$

the statistical operator \hat{W}_{eq} describes thermal equilibrium present before the application of the external field; the different contributions in powers of the field–strength may be obtained by a power expansion of $S(t, t_0)$;

3.5.1 Dipole–Dipole Correlation Function

to expand $d(\mathbf{r}; t)$ up to the first order in the field–strength we note

$$S(t, t_0) \approx 1 + S^{(1)}(t, t_0)$$

with

$$S^{(1)}(t,t_0) = -\frac{i}{\hbar} \int_{t_0}^t dt' \ H^{(I)}_{\text{field}}(t')$$

we insert this approximation into the formula for $d(\mathbf{r};t)$ and obtain (the zeroth–order term does not contribute because of the absence of a macroscopic dipole density in the equilibrium)

$$\begin{aligned} \mathbf{d}(\mathbf{r};t) &\approx \operatorname{tr}\{\hat{W}_{\mathrm{eq}}\left[1+S^{(1)+}(t,t_{0})\right]\hat{\mu}^{(I)}(t)\left[1+S^{(1)}(t,t_{0})\right]\}\\ &\approx \frac{i}{\hbar}\int_{t_{0}}^{t}dt'\operatorname{tr}\left\{\hat{W}_{\mathrm{eq}}\left[H_{\mathrm{field}}^{(I)}(t')\hat{\mu}^{(I)}(t)-\hat{\mu}^{(I)}(t)H_{\mathrm{field}}^{(I)}(t')\right]\}\\ &= \frac{i}{\hbar}\int_{t_{0}}^{t}dt'\operatorname{tr}\left\{\hat{W}_{\mathrm{eq}}\left[U_{\mathrm{mol}}^{+}(t'-t_{0})H_{\mathrm{field}}(t')U_{\mathrm{mol}}^{+}(t-t')\hat{\mu}U_{\mathrm{mol}}(t-t_{0})\right.\right.\\ &\left.-U_{\mathrm{mol}}^{+}(t-t_{0})\hat{\mu}U_{\mathrm{mol}}(t-t')H_{\mathrm{field}}(t')U_{\mathrm{mol}}(t'-t_{0})\right]\}\\ &= \frac{i}{\hbar}\int_{t_{0}}^{t}dt'\operatorname{tr}\left\{\hat{W}_{\mathrm{eq}}\left[\hat{\mu}^{(I)}(t-t'),\hat{\mu}^{(I)}(0)\right]_{-}\right\}\operatorname{\mathbf{E}}(\mathbf{r};t')\end{aligned}$$

inserting the last expression into the macroscopic polarization, the *linear dielectric susceptibility* is obtained as

$$\chi_{jj'}(t-t') = \frac{i}{\hbar} \Theta(t-t') n_{\rm mol} C_{jj'}^{\rm (d-d)}(t-t') ;$$

we introduced the dipole-dipole correlation function

$$C_{jj'}^{(d-d)}(t) = \operatorname{tr}\left\{\hat{W}_{eq}\left[\hat{\mu}_{j}^{(I)}(t), \hat{\mu}_{j'}^{(I)}(0)\right]_{-}\right\}$$

which represents a second-rank tensor;

before considering the case of randomly oriented molecules we assume for the following that all matrix elements of the dipole operator show in the z-direction of a coordinate system where the z-axis is defined by the direction of the electric field-strength; then, the correlation function tensor reduces to a single component identical with

$$C_{\rm d-d}(t) = {\rm tr} \left\{ \hat{W}_{\rm eq} \left[\hat{\mu}^{({\rm I})}(t), \hat{\mu}^{({\rm I})}(0) \right]_{-} \right\}$$

and the absorption coefficient is obtained as (note n = 1)

$$\alpha(\omega) = \frac{4\pi\omega}{c} \operatorname{Im} \int dt \ e^{i\omega t} \ \frac{i}{\hbar} \Theta(t) n_{\mathrm{mol}} C_{\mathrm{d-d}}(t) = \frac{4\pi\omega n_{\mathrm{mol}}}{\hbar c} \operatorname{Re} \int_{0}^{\infty} dt \ e^{i\omega t} \ C_{\mathrm{d-d}}(t)$$

3.5.2 The Absorption Coefficient

we concentrate on a situation where the exciton–vibrational coupling is sufficiently small compared to the Coulomb coupling; if we neglect any contribution of the exciton–vibrational coupling to the absorption spectrum we obtain the absorption as sharp lines at the different exciton energies \mathcal{E}_{α} ;

the absorption coefficient can be written as (n_{agg} is the volume density of aggregates)

$$\alpha(\omega) = \frac{4\pi\omega n_{\text{agg}}}{3\hbar c} \operatorname{Re} \int_{0}^{\infty} dt \ e^{i\omega t} \ C_{\text{d-d}}(t)$$

the dipole-dipole correlation function reads

$$C_{jj'}^{(d-d)}(t) = \operatorname{tr}\left\{ \hat{W}_{\text{eq}}\left[\hat{\mu}_{j}^{(I)}(t), \hat{\mu}_{j'}^{(I)}(0) \right]_{-} \right\} ;$$

in the present case the dipole operator comprises the contributions $\hat{\mu}_m$ of all molecules in the aggregate according to

$$\hat{\mu} = \sum_{m} \hat{\mu}_{m}$$

for the present purposes it is sufficient to restrict the model to transitions into the single exciton state

$$\hat{\mu} = \sum_{m} \hat{\mu}_{m} \equiv \sum_{m} \mathbf{d}_{m} |m\rangle \langle 0| + \text{h.c.}$$

where d_m is the transition matrix element of the two–level model;

let us first study the coherent case where exciton-vibrational coupling is neglected; we introduce the exciton representation of the dipole operator

$$\hat{\mu} = \sum_{\alpha} \mathbf{d}_{\alpha} |\alpha\rangle \langle 0| + \text{h.c.}$$

with the transition matrix elements given by

$$\mathbf{d}_{\alpha} = \langle \alpha | \sum_{m} \hat{\mu}_{m} | 0 \rangle = \sum_{m} c_{\alpha}^{*}(m) \mathbf{d}_{m}$$

the time-dependent dipole operator entering the dipole-dipole correlation function $C_{d-d}(t)$ reads

$$\hat{\mu}(t) = \sum_{\alpha} \mathbf{d}_{\alpha} e^{iH_{\text{agg}}^{(1)}t/\hbar} |\alpha\rangle \langle 0| e^{-iH_{\text{agg}}^{(0)}t/\hbar} + \text{h.c}$$
$$\approx \sum_{\alpha} \mathbf{d}_{\alpha} e^{i\mathcal{E}_{\alpha}t/\hbar} |\alpha\rangle \langle 0| + \text{h.c.}$$

the trace in $C_{d-d}(t)$ is a trace with respect to the electronic states $|0\rangle$ and $|m\rangle$; the equilibrium statistical operator gives a projection onto the electronic ground state of the aggregate, $\hat{W}_{eq} = |0\rangle\langle 0|$; neglecting antiresonant contributions results in (the prefactor 1/3 follows from the orientational averaging)

$$\alpha(\omega) = \frac{4\pi^2 \omega n_{\text{agg}}}{3c} \sum_{\alpha} |\mathbf{d}_{\alpha}|^2 \delta(\mathcal{E}_{\alpha} - \hbar\omega)$$

the strength for transitions from the ground state into the single–exciton state $|\alpha\rangle$ is determined by the respective transition dipole moment, where the expansion coefficients $c_{\alpha}(m)$ give the contribution of the *m*th molecule to the single–exciton eigenstate $|\alpha\rangle$; to characterize this quantity we compute the oscillator strength; for a collection of molecules with identical transition dipole moments (same magnitude and same spatial orientation), $\mathbf{d}_m = \mathbf{d}$, it reads

$$O_{\alpha} = \frac{|\mathbf{d}_{\alpha}|^2}{|\mathbf{d}|^2} = |\sum_{m} c_{\alpha}(m)|^2 .$$

in the limit of weak exciton-vibrational coupling the absorption reads

$$\alpha(\omega) = \frac{4\pi\omega n_{\text{agg}}}{3\hbar c} \sum_{\alpha} |\mathbf{d}_{\alpha}|^2 \frac{\gamma_{\alpha}}{(\omega - \mathcal{E}_{\alpha}/\hbar)^2 + \gamma_{\alpha}^2}$$

the quantity γ_{α} is the homogeneous broadening;

Static Disorder

an important factor determining the width of absorption lines of artificially prepared or naturally occurring aggregates is static disorder; a change of the energy level structure, for example, from aggregate to aggregate leads to an additional broadening of the absorption which is measured on a sample containing a large number of aggregates; one can characterize such a behavior by a set of parameters $y \equiv \{y_j\}$ which enter the Hamiltonian and describe a specific energetic and structural situation in the aggregate; the parameters y will be additionally labelled by A, which counts all aggregates contained in the sample volume V; this should indicate that set y varies from aggregate to aggregate; accordingly, every aggregate will have its own absorption cross section

$$\sigma = \sigma(\omega; y_A)$$

the cross section follows from the absorption coefficient as

$$\sigma = \alpha / n_{\rm agg}$$

and we may write:

$$\alpha_{\rm inh}(\omega) = \frac{1}{V} \sum_{A \in V} \sigma(\omega; y_A)$$

the inhomogeneous broadening can be described as an averaging with respect to different realizations of the aggregate's structure and energy spectrum; this is called a configurational average;

if there exist a large number of different realizations one can change from the summation to the integration with respect to the different parameters y_i

$$\alpha_{\rm inh}(\omega) = \int dy \ \mathcal{F}(y)\sigma(\omega;y)$$

the integration extends over the whole set of parameters; the appropriate normalized distribution function $\mathcal{F}(y)$ can formally be introduced as

$$\mathcal{F}(y) = \frac{1}{V} \sum_{A \in V} \prod_{j} \delta(y_j - y_{Aj})$$

for specific applications $\mathcal{F}(y)$ is taken to be a continuous function of the parameters y_j ; we consider the simple case, where disorder can be described by Gaussian distributions of the various exciton levels around certain mean values $\overline{\mathcal{E}}_{\alpha}$.

$$\mathcal{F}(y) \to \mathcal{F}(y \equiv \{\mathcal{E}_{\alpha}\}) = n_{\text{agg}} \prod_{\alpha} \mathcal{F}_{\alpha}(\mathcal{E}_{\alpha} - \overline{\mathcal{E}}_{\alpha})$$

with

$$\mathcal{F}_{\alpha}(E) = \frac{1}{\sqrt{2\pi\Delta_{\alpha}}} \exp\left\{-\frac{E^2}{2\Delta_{\alpha}^2}\right\}$$

here Δ_{α} is the width of the Gaussian distribution for the state $|\alpha\rangle$; taking the cross section the inhomogeneously broadened absorption spectrum is obtained as

$$\alpha_{\rm inh}(\omega) = \int d\mathcal{E} \ \mathcal{F}(\mathcal{E})\sigma(\omega;\mathcal{E}) = \frac{4\pi^2 \omega n_{\rm agg}}{3c} \sum_{\alpha} |\mathbf{d}_{\alpha}|^2 \ \mathcal{F}_{\alpha}(\hbar\omega - \overline{\mathcal{E}}_{\alpha})$$

in this simple case the distribution of microscopic parameters directly determines the lineshape of the inhomogeneously broadened spectrum;