3.3 Frenkel Excitons

3.3.1 Exciton Hamiltonian

the basic form of the dye aggregate or chromophore complex (CC) Hamiltonian is
1
HCC = ;Hm—i_ §;an

the spatial position of the chromophores are counted by m as well as n, and H,, de-
notes the electron—vibrational Hamiltonian of an individual chromophore:

H, = Z Hma’@ma><90ma|

the part V,,,,, of Hc¢ is the mutual Coulomb interaction between chromophore at site m
and at site n; it covers the interaction among electrons and nuclei:

an _ Vn(lel—el) + Vﬁ(ﬁi—nuc) + Vw(lnuc—el) + Vn(lr;zuc—nuc)

for the following it suffices to restrict the considerations to singly excited states; every
chromophore is described by the electronic ground—state ¢,,, and the excited elec-
tronic state ¢,,.; the distance between the chromophores should be large enough to
neglect electron exchange
the CC ground state reads

[@0) = ] T lmo)

all possible singly excited states can be written as

|6m) = [@me) [ |#ng)

n#m
this expansion assumes the general orthogonality relation
<‘10ma|§0nb> = 6m,n5a,b

to reduce Hcc to the ground—state and the singly excited states we introduce respective
projection operators
we obtain for the CC ground—state

Iy = |¢o) (o

and for the singly excited states

both projectors can be used to introduce the following expansion
HCC ~ ﬂoHccﬂo + ﬂchcﬂl = H() + H1 = Hoﬂo + Hlﬂl

we may derive

(ol Hecloo) = Ho = [T (ool (30 Hont 5 32 Vi) [T leowd = - g

k
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in the same way we get

<¢m’HCC|¢n> = 5m,n (Hme - ng + HO) + (1 - (Sm,n>=]mn

the excitation energy transfer coupling has been already calculated; it takes the form

Jmn = <¢me§0ng|vmn|(pne§0mg> = <90megong|v7$};el)‘gpne¢mg>

the Hamiltonian of the singly excited complex state results as

Hy = Z (Hme - ng + HO)|¢m><¢m| + Z Jmn|¢m><¢n|

m

a detailed inspection shows that the given structure assumes a totally balanced charge
distribution of electrons and nuclei (in the electronic ground as well as in the first excited
state)

Coupling to Vibrational Modes

in most cases we have to distinguish between intra—molecular and inter—molecular vi-
brations; for simplicity it is assumed in the following that a common set of normal mode
vibrations couples to every molecule; R, denotes the reference nuclear equilibrium
configuration for which the normal mode vibrations are defined

the normal mode expansion of the ground—state Hamiltonian takes the form:

Ho = T + > Ung(R) ~ Toe + Z (Umo(Ro) + Z KIOAR,AR,)

W,V
:ZUT(’?3+ZM§< C§—|—1/2) Vlb
m ¢

the deviations from the equilibrium nuclear configuration are denoted as AR,;

to get the contribution for the excited state we consider the difference H,,. - H,,,; we
can restrict ourselves to the linear contribution with respect to the deviations AR,,; it
results in:

Hupe — Hyg = Upe(R) = Upng 0 4 Z KmIAR, — U

=En+ Y hwege(m)(ce + cf)
13

an expansion of the excitonic coupling follows as

Jmn(R) ~ Jmn + Z hwﬁgﬁ(mv n)<CE + Cg)
3

we denote the excited state Hamiltonian as
Hl - Hex + Hex—vib + Hvibﬂl

the first part corresponds to the electronic (excitonic) contributions

Hoe = 3~ (mn B+ (1 = ) Jonn ) |6} (60

m,n
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the coupling to vibrational coordinates is described by

Hexvio = Y > hwege(m, n)(ce + ¢ ) ém) (d]

mmn £
with
gé(m> n) = m,ngf(m) +(1— 5m,n>g£(ma n)

Change to an Exciton Representation

introduction of exciton states is achieved as
Z Ca(m)|dm)
the exciton Hamiltonian becomes diagonal

= hu|o) (o

and the exciton vibrational coupling reads

ex vib — Z Z hwﬁgf CE + C;)|O[> <5|

aB ¢
the coupling constant follows as

ZC* m)ge(m,n)Cp(n ZC* m) + > Ci(m)ge(m,n)Cs(n)

m#n
Linear and Regular Chain of Dye Molecules
we consider a linear chain of NV, identical molecules with
E,, — Ej
Jmn = Omnt1 + Omn—1)J (1 <m < Npo)
Jin = a0 INpon = ON -1
the exciton energies become

T

hQo = Ey + 2J cos a:m 7=1,..., Npo
and the expansion coefficients read
Co(m) = 2 sin(am)
Nmot + 1
to estimate J we use the version based on the dipole—dipole coupling

if the transition dipole moments are given in Debey and the Distance in Angstroem we
arrive at

—)[? 0.625eV



3.4 The Nonequilibrium Statistical Operator and the Den-
sity Matrix

3.4.1 The Density Operator

elementary quantum mechanics — a complete description of a system is only possible
if a set of observables exists from which all physical quantities can be measured simul-
taneously
a set of commuting operators {Aa} has to exist, i.e., the following relation has to be
fulfilled

[Aa, Aa,} = AgAy — AyA, =0

if for the considered system the maximal number of such operators is known, a com-
plete description can be accomplished

the system is described by a pure state

if the complete measurement of all A, has not been carried out, for example, because
the complete set of observables is principally unknown — the state of the quantum
system has to be described as a statistical mixture of pure states |, )

the probability for a single state to be in the mixture will be denoted by w,; the states
|W,) are assumed to be ortho—normalized, and therefore the w, must satisfy the rela-

tion
Z w, =1

the expectation value of an observable becomes
)) = Zwu<‘I’V|O|\Pu>

introduction of the density operator (the statistical operator)

W=> w,|0,)(T,|=W"

simple notation of the expectation value of any observable using the trace formula
(0) = tr{W O}

the abbreviation “tr” is defined as the trace with respect to the matrix formed by all
matrix elements which are determined in a complete orthonormal basis |a)

tr{e} = (al o a)
therefore we have

tr(W Zwy a|¥,)(¥,|0a) = Zwy (U, |0a)(a|¥,) Zwy (¥, |0,

taking two arbitrary operators O and P it is easy to proof

tr{OP} = tr{ PO)
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this property is called cyclic invariance of the operator arrangement
note also X
tr{WW} =1
example: the canonical density operator for thermal equilibrium
i 1 —H/kpgT 1 —Eo/kpT
Weq = Z¢ =3 Ze la) (|

Z is the partition function tr[exp{—H/kgT'}] ensuring proper normalization of TV,

the second part is obtained using the eigenenergies £, and eigenstates |«) of the
Hamiltonian H

density operator of a pure state |¥)

Whure = [U)(¥] =

expansion of the state vector |¥) with respect to the complete orthogonal basis |«):

T) => " cala) .

o

introducing this expansion into the expression for the pure state density operator one

obtains )
Wowe = Y _ cacilo)(@l # Y |eal’|a)a

o,

there exists a measure which tells us whether the state is a pure state or not: degree
of coherence A
C = tr{Ww?}

it takes the value 1 for pure states since the statistical operator in this case is a projector
Cpure - tl"{ pure} = tr{P\%} = tr{P‘I’} = tr{WPure} = 1

where the projector property P2 = Py has been used
for a mixed state it follows that

Ciset = tr (W2} = 3wy tr{ Py, P, b = 30 3wt (00,10, 0, (W, )
mwy o«

2214

—ZZU) U, |a)(a|V,) Zw <1

the degree of coherence becomes less than one

3.4.2 The Density Matrix

we consider a complete orthogonal basis of states |a), |b), ...
the density operator can be expanded as

W=> (alW]b) |a)b]
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the expansion coefficients are called density matrix and denoted by
Pab = <@‘W|b>
the density matrix fulfills the relation
Pab = Ppa
from which one simply deduces
Re pap = Re ppo ;,  Im pgy = —Im py,

the diagonal elements of the density matrix are real

Paa = Re Paa -

one may write

Paa = {alWla) = D {alw, |V, (T ]a) = D w, (alL) " =) wilea)]

v

with the expansion coefficients ¢,(v) = (a|V,)

it shows that p,, gives us the probability for the state |a) being contained in the statistical
mixture described by W

taking the off-diagonal matrix elements of the density operator it follows

pun = 3 w,cav)ci ()

the density matrix p,, describes an incoherent superposition of contributions from dif-
ferent pure states
depending on the basis set {|a)} the different terms on the right—-hand side can cancel
each other or give a finite p,
the off-diagonal density matrix are also called coherences
since the definition of the density matrix represents a quadratic form the Schwarz in-
equality is valid

PaaPib > |pab|?

the representation of the statistical operator via the density matrix introduced so far is
frequently termed state representation

if eigenstates of some Hamiltonian are used it is also called energy representation
using eigenstates of the coordinate operator

|s) = H |85) 5

with coordinate s; for the jth degree of freedom of the system, consequently, the coor-
dinate representation of the statistical operator reads

p(s,5) = (s|W13)
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3.4.3 Equation of Motion for the Density Operator

the probabilities w, represent our reduced knowledge about the state of the system
the state vectors |V, ) of the mixed state evolve in time according to the time—dependent
Schrddinger equation

0
h—|V,) = H|V,
iho 0,) = HD,)
although any individual state of the mixture changes in time there is no change what-
soever in the amount of our knowledge about the system

the probabilities w, are constant (w, # w,(t))
accordingly the time—dependent density operator has the following form

W(t) = w, | W, () (0, ()]

to derive an equation of motion we note

W(t) = w,U(t, to)[ Ty (t0)) (W, (to)[UF (¢, to) = U (t, 1) W (o) U™ (t, 1) -

taking the time derivative of this expression it follows

0 - i
—W(t)=——
ot ®) h
this equation of motion for the density operator I is called Liouville—von Neumann or

Quantum Liouville; for its solution we have to establish an initial condition

(HW () — W(t)H) = _% (1,17 (1)

W(to) = W,
we give the Liouville—~von Neumann equation in the state representation ((a|H |b) = H,)
0 7 Hu, — Hy, 1 1
S, Pab — — ¢ Hac cb — Hc ac) = U7 Pab — % Hac c . Hc ac
arPab h & (Hacpen bPac) T Pab h; pb-i‘h; bP

the difference of the diagonal matrix elements of the Hamiltonian defines the transition
frequencies w,, = (H,, — Hy,)/h, whereas the off—diagonal matrix elements describe
the inter—state coupling

there exists an alternative notation of the Liouville—von Neumann equation using the
concept of superoperators

1
Lo=_—|H e
P H ]
we see that the Liouville—von Neumann equation can be written as

0 - R
atW(t) = —iLW(t),
with the solution

W (t) = e £00) 117 (¢,)
the exponential function of the superoperator is defined via the respective power ex-
pansion
one can introduce the time—evolution superoperator as follows:

U(t,tg) = e Elt)
it gives A A A
W (t) =U(t, to)W (to) = U(t, to)W (to)UT (t,t0) .

18



3.4.4 The Reduced Density Operator and the Reduced Density Ma-
trix
to put the idea of the reduced density matrix into a rigorous frame the starting point will

be
H = Hs+ Hs g + Hg

a complete basis in the state space of the reservoir is written as |«)
then the reduced density operator follows as

pt) = (W (B)]a) = tra { W (1)}
next we take a basis |a) in the state space of the system and define the reduced density
matrix
Pas(t) = {alp(t)[)
the following relation has to be fulfilled

PO} = 3 paalt) = 1

it is easily confirmed if we note that
tr{W(t)} =1

an equation of motion for the reduced density matrix is derived by starting from the
respective operator equation for the reduced density operator
from the Liouville—von Neumann equation we obtain

%A(t) = trg {%W(t)} = —% try { [Hs + Hs-gr + Hr, W(tﬂ _}

= s (0]~ o { [+ V0] )

the commutator notation for the reduced density operator is not possible for the contri-
butions proportional to Hs_r and Hy
to calculate the commutator with Hi we take into account the cyclic invariance of the
trace; as a result the term proportional to Hi vanishes and the equation of motion for
the reduced density operator follows as

0 p) = — [Hs, pt)]_ — -ornd [Hs—n, W(2)] }

ot I S, P\L)|_ R S—-R; _
we realize that this is not yet a closed equation for reduced density operator; because

of the appearance of Hg_g in the commutator on the right—hand side it still contains the
total density operator

Approximate Equations of Motion for the Reduced Density Oper ator and the Re-
duced Density Matrix

the effect of the environment can be accounted for by a superoperator D acting on the
reduced density operator

—tun{ [Hs W] _} = ~Dplt) = ~Ap(0) - p(0)B — 3 C5p(1) D,



the last part of this formula indicates the most general action of the superoperator
when represented by different ordinary operators (acting from the left as well as from
the right);

we introduce the density matrix where the states |a) are considered as eigenstates of
Hs with energy hw,; the equation of motion can be written as (wq, = w, — wy)

0 ‘
&pab(t) = _@wabpab(t) - gd: Rab,cdpcd(t)

the action of the superoperator D is replaced by the so—called Redfield tensor R, c4;
there exist several theories calculating R, ..; we will quote the most simple version

1
Z Rab,cdpcd = 5a,b Z (kaﬂcpaa - kCHapcc) + (1 - 6a,b) 5 Z (kCLHC + kbﬂc)pab
c,d c

[

it is based on a decoupling of diagonal and off-diagonal density matrix elements ; the
diagonal elements obey a rate equation with transition rates k,_.. and k._.,; the off—
diagonal elements follow from an equation including transition frequencies as well as
dephasing rates

1
Yab = 5 Z (kaac + kb%c)

[

they are responsible for the exponential decay of the off—diagonal density matrix ele-
ments (the coherences) with increasing time;

the transition rates and, thus, the dephasing rates can be calculated based on a con-
crete expression for the system-reservoir coupling Hs_g;

3.4.5 Density Matrix Equations for Excitons
we note the definition of the reduced density operator
pt) = trn (W (1)}
the exciton density matrix follows as
pas(t) = (alp(t)|5)
the equations of motion take the form

0 .
apaﬂ(t) = —iQappas(t) — Z Rag 5P+
7,0

the approximation which decouples diagonal and off-diagonal density matrix elements
reads here:

> Ragsprs = 0ap Y (KayPaa = ky—apry) + (1 = 0ap)Taspas
7,0 v

the dephasing rates are
1
5 Z (k’a*)ry + kﬁgvy)

~

Lop =
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although a direct theory exist which leads to the density matrix equations as well as
to the transition rates, the latter can also be directly deduced from the Golden Rule
formula; it is based on the given form of the exciton vibrational coupling;

next we present respective computations; the normal mode vibrational states are ab-
breviated as yx,, for the initial state (note M = {A/}), and as y for the final state of
the transition; related energies, for example, are

Wy = Z Mg&)g
3

we introduce the thermal distribution f(w,,) for the initial vibrational state and obtain
the total rate as

2
ka—p =5 > Flwan) (o] (xar| Hex—vin X ) 18)*6(Qa + war — Q5 — wiy)
M,N

standard manipulations give first

Ka—p = dt €ZQ“ﬁZf (war) (el (xarl €™ Hox—vine ™ [xn) |B) (8] (X ] Hex—vin [ xar) | )

h2
this leads to

Ka—p = / dt 0"ty { Re™ N " wege(a, B) (ce + cf Je hzwcgg B,a)(ce+cf)}
3
- ngmg(@, A)? / dt €maﬁttrvib{R(C§cge_wft + cfcee™e)}
3

- ngmf(av ﬁ)‘z / dt €maﬁt([1 + n(wé)]e*i“’&t 4 n(wg)eiwgt)
3

=21 Y WG, B)[7 ([1+ n(we)]6(Qas — we) + nlwe)d(Rap + we))
3
here we noticed that the double sum with respect to the normal mode vibrations re-
duces to a single sum and we took into account

1

trvib{chcf} = n(wg) = ehwe [ksT _ |

the rate expression is further rewritten by introducing the following general type of spec-
tral density

Japs(w Zga 7,6)0(w — we)
accordingly, the rate takes the form

ka—p = 2702 5[1 4+ n(Qap)] (Jap,50(Qas) — Jappa(—Ras))

to compute this expression we need the exciton spectrum resulting in the transition
frequencies Q2,5 and the set of spectral densities J,z s.(w); temperature enters via the
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Bose—Einstein distribution
to be more specific we approximate

a,f) = Y Calm)ge(m)Cs(m)

i.e. we neglect the contribution given by g¢(m, n)
it yields

Japqs(w ZC* C(n)Cs(n) Y ge(m)ge(n)d(w — we)

3

this expression leads to the introduction of the spectral density
w) = ge(m)ge(n)s(w — we)
3

furthermore, we neglect correlations among different excited states and assume
T (W) = S (w)
it follows
Japs(w Z Ca(m C3(m)Cs(m)J(w) = Japasd (W)
now, the rate can be S|mply written as
ka—p = Jap,paC(Qap)
with the abbreviation

Cw) = 27?1 + n(w)] [J(w) — J(—w)] = 2mw? ( 1+ n(w)]J(w) + n(—w)J(—w))

Analysis of the Complete Redfield—Tensor

for the Redfield—tensor we may write

oo

Rop~s = Re / dr (50177 Z e T Cseep(—T) + 05 Z e T C e e (T)

0
€Tl 0 (=) = €7 Ciy 00 (7))
the correlation function reads
Capro(w) = 2mw? [1 4+ n(w)] [Japrs(w) — Japns(—w)]

the spectral density has been already defined;
we introduce identical simplifications as in the foregoing section and arrive at

Caprs(W) = JapreClw)

we assume C,3 -5 to be a real quantity and note

[e.o] o0

Re/dT GWT a@,Yg(:l:T) :Re/ ag,yg /d Z(wxw T

0 0
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duw’ i 1
= Re [ G Copos o)y = o)

the Redfield tensor follows as

1 1
Raﬁ;yé = 504,75 Z C&e,eﬂ(Qée) + 5(5,55 Z Cae,e'y(_Qe’y)

1 1
—gcéﬁm(ﬁéﬁ) - §Caﬁ,av(—9m)

with, for example,

Copay(Qup) = 2725, (9(955) 11+ n(p) ] J5.0+(s5) + @(Qﬁé)n(gﬂé)Jéﬁ,av(Qﬁé)>

and with
Cocer(—ey) = Caeer(re)

= 27TQ’2)/6 (6(9%) [1 + n(Q%)} Jacey(Sye) + @(QGV)TL(QW)JO&QW(QE’Y))

the transition rates read

kamp = Cap,pa(Qas) = 200 370,50 < [1+1(Qap)] J (Qap) + ”(_Qaﬁ)J<_Qaﬂ)>

= 2003, 3 [Calm o) (1 +n(020)] T(200) +7(25) T (250))

Linear and Regular Chain of Dye Molecules
the spectral density should take the form

W J (W) = jyw’e /v

we get
Caprs(w) = Cijrawr (W) = jjjruwC(w)
. Z ( Wj/m ) . ( mim ) . ( ml'm )
R I — Sln Sln S1n S11n
Jati ( mol‘l’1 2 m mol_‘_1 ]V'mol_l'1 ]\fmol_‘_1 ]\/vmol_l_1
. 1wl elw/ksT 1
C(w) = 2], |w| e 1«l/we (0(w)—eﬁw/kBT — " 0(-w) o—hw/keT _ 1)

Qs = Ay = 2J<COS(L) - cos(ﬂ—l)>

Nm01+ 1 ]\]’mol"'1
_ T+ w1
= J81n(2(Nm01+ 1))sm(2(Nm01+1))

initial condition
population of a particular exciton level «
p(0) = |ao) (ol
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it gives
Pap(0) = dagla,ao
population of a particular site m,
p(0) = [mo)(mol =D _ Ci(mo)Cis(mo)|er) (]
a8
it gives
Pap(0) = Cg(mo)Cs(mo)
the populations follows as

Fa(0)

!
52
3

|
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3.5 Linear Absorption of a Chromophore Complex

optical properties of molecular systems are characterized via the macroscopic polar-

ization (dipole density) )
P(r,t) = AV (D) Z d, (1)

meAV
the macroscopic polarization at the absence of inhomogeneous broadening reads

P(r,t) = nypad(r;t)

here, n,,, denotes the volume density of the considered molecules, and d,,(t) is the
expectation values of the m’'th molecule dipole operator; since inhomogeneous broad-
ening has been neglected we take the quantity d(r;¢) which, first, is independent on
the spatial position; however, the electric field—strength depends on r, and just this de-
pendence enters the expectation value;

to obtain a formula for the linear absorption coefficient

4w
=—1

a(w) = —“Tmy(w)
we have to establish a linear relation between the electric field—strength and the polar-
ization:

P(r.t) = [ de it OB(r.D

the dipole operator expectation value follows as

d(r;t) = te{W (1)}
here, the time—dependence of the statistical operator 1 (t) is determined by the time—
dependent Hamiltonian

H(t) = Hyol + Heea(t)

therefore we have to write

t
Ult, to) = T exp —%/dt’ H(t)

to

i.e. the time—evolution operator appears as a time—ordered quantity;
to carry out a perturbation theory with respect to the molecule—field coupling it is more
appropriate to introduce the S—operator according to

t

U(t,to) = Unal(t — to)S(t, to) = e~ Hmat=t0)/M] oxcpy —% / dt’ HY (1)
to

note the use of the interaction representation for Hy.q (as well as ji):
Higy(t) = Uy (t = to) Hoera () Ul (t — to)
accordingly the expectation value of the dipole operator reads
d(r;t) = tr{U(t, to)We U (£, to) s} = tr{WeoUT (t, to) iU (¢, 1)}
= tr{Weq ST (¢, t0) iV (1) S (t, 10) }

the statistical operator Weq describes thermal equilibrium present before the application
of the external field; the different contributions in powers of the field—strength may be
obtained by a power expansion of S(t,t);
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3.5.1 Dipole-Dipole Correlation Function
to expand d(r; t) up to the first order in the field—strength we note
S(t, t[]) ~ 1 -+ S(l) (t, to)

with
t

SOt t0) =~ [ dt HZ(®)
to

we insert this approximation into the formula for d(r;¢) and obtain (the zeroth—order
term does not contribute because of the absence of a macroscopic dipole density in
the equilibrium)

d(r; 1) & tr{Weq [1 + SDF (L, o) 4D (8) [1 + SD(t,10)] }

t

) “ . .
~ 1 [ e[ 0 - 400 )}
to

t

/dt tr{w [Unnot(t" = t0) Hgeta (t') Uy (t — ') iU (t — to)

to

>t |

Ut (t = 10) itUmol (t = t") Hpera(t' ) Umar (' — t0)] }
t
=+ [ a o li - )50} B

to

inserting the last expression into the macroscopic polarization, the linear dielectric sus-
ceptibility is obtained as

/ 7’ / — /
Xip(t —t) = 2Ot —t Yot CL5 V(=) 5

we introduced the dipole—dipole correlation function

C](.;l,—d> (t) =tr {Weq [ ﬂf) (1), ﬂg)(o)} _}

which represents a second-rank tensor;

before considering the case of randomly oriented molecules we assume for the follow-
ing that all matrix elements of the dipole operator show in the z—direction of a coordi-
nate system where the z—axis is defined by the direction of the electric field—strength;
then, the correlation function tensor reduces to a single component identical with

Cocalt) = tr { Wiy [A0(0), 40(0)]_}

and the absorption coefficient is obtained as (note n = 1)

(e.)
4TwWNme

4 ' ,
Trwlm/dt €Wt - nmolCd,d(t) = 3 Re/dt e“"t Cd,d(t)
C
0
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3.5.2 The Absorption Coefficient

we concentrate on a situation where the exciton—vibrational coupling is sufficiently
small compared to the Coulomb coupling; if we neglect any contribution of the exciton—
vibrational coupling to the absorption spectrum we obtain the absorption as sharp lines
at the different exciton energies &,;

the absorption coefficient can be written as (n,4, is the volume density of aggregates)

oo
B AT W age Re

alw) = BETY /dt et Cy_q(t)
0

the dipole-dipole correlation function reads
C'J(-;.i,_d) (t) = tr {Weq [ﬂf) (1), ﬂg)(O)} _} ;
in the present case the dipole operator comprises the contributions /i, of all molecules

in the aggregate according to
=Y

for the present purposes it is sufficient to restrict the model to transitions into the single
exciton state
Q= Z[Lm = de]mﬂm + h.c.

where d,, is the transition matrix element of the two—level model;
let us first study the coherent case where exciton—vibrational coupling is neglected; we
introduce the exciton representation of the dipole operator

i=> da|o)(0] + h.c.
with the transition matrix elements given by
d, = (o Zﬂmm) = Z cp(m)dpm,

the time—dependent dipole operator entering the dipole—dipole correlation function Cy_4(%)
reads s o
a(t) = Z d, et et/ ) (0o Hest/h 4 1y )

~ Z d,e€t"a)(0] + h.c.

the trace in C4q_q(¢) is a trace with respect to the electronic states |0) and |m); the
equilibrium statistical operator gives a projection onto the electronic ground state of the
aggregate, Weq = ]0)(0|; neglecting antiresonant contributions results in (the prefactor
1/3 follows from the orientational averaging)

Am%wn,
a(w) = ng D ldal*6(Ea — hw)
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the strength for transitions from the ground state into the single—exciton state |a) is
determined by the respective transition dipole moment, where the expansion coeffi-
cients ¢, (m) give the contribution of the mth molecule to the single—exciton eigenstate
|a); to characterize this quantity we compute the oscillator strength; for a collection of
molecules with identical transition dipole moments (same magnitude and same spatial
orientation), d,, = d, it reads

0.= "t =12l

in the limit of weak exciton—vibrational coupling the absorption reads

drwn, Ve
a(w) = BTngZ |d,|”

(w - ‘s'oc/h)2 + ’7/2
the quantity ~, is the homogeneous broadening;

Static Disorder

an important factor determining the width of absorption lines of artificially prepared or
naturally occurring aggregates is static disorder; a change of the energy level structure,
for example, from aggregate to aggregate leads to an additional broadening of the ab-
sorption which is measured on a sample containing a large number of aggregates; one
can characterize such a behavior by a set of parameters y = {y;} which enter the
Hamiltonian and describe a specific energetic and structural situation in the aggregate;
the parameters y will be additionally labelled by A, which counts all aggregates con-
tained in the sample volume V/; this should indicate that set y varies from aggregate to
aggregate; accordingly, every aggregate will have its own absorption cross section

0 =o(w;ya)
the cross section follows from the absorption coefficient as
0 = 0/ Nagg

and we may write:
1
Qi (W) = v Z o(w;ya)
AeV
the inhomogeneous broadening can be described as an averaging with respect to dif-
ferent realizations of the aggregate’s structure and energy spectrum; this is called a
configurational average;
if there exist a large number of different realizations one can change from the summa-
tion to the integration with respect to the different parameters y;

Qinn (w) = /dy F(y)o(w;y)

the integration extends over the whole set of parameters; the appropriate normalized
distribution function F(y) can formally be introduced as

> 3 ITo - )

AcV j
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for specific applications F(y) is taken to be a continuous function of the parameters y;;
we consider the simple case, where disorder can be described by Gaussian distribu-
tions of the various exciton levels around certain mean values &,,.

Fy) = Fly ={&}) = nage Hj:a(ga —&a)

with

1 E?
FalB) = —ome exp{‘w}

here A, is the width of the Gaussian distribution for the state |«);
taking the cross section the inhomogeneously broadened absorption spectrum is ob-
tained as

Am2wn, —=
O () = /dS F(E)o(w: €) = =3 |do | Fo(hw — Eo)

in this simple case the distribution of microscopic parameters directly determines the
lineshape of the inhomogeneously broadened spectrum;
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