
CHAPTER I

Density Operator Methods

1 The Nonequilibrium Statistical Operator and the Density Matrix

1.1 The Time-Dependent Schrödinger Equation

state vector notation of the time-dependent Schrödinger equation

i~
∂

∂t
|Ψ(t)〉 = H|Ψ(t)〉

the initial value of the state vector: |Ψ0〉 ≡ |Ψ(t0)〉

if the Hamiltonian is time-independent a formal solution is given by

|Ψ(t)〉 = e−iH(t−t0)/~|Ψ0〉

introduction of the time-evolution operator

U(t, t0) ≡ U(t− t0) = e−iH(t−t0)/~



U(t, t0) is unitary and obeys the following equation of motion

i~
∂

∂t
U(t, t0) = HU(t, t0)

with the initial condition U(t0, t0) = 1

the time-evolution operator has the important property that it can be decomposed as

U(t, t0) = U(t, tN−1)U(tN−1, tN−2) . . . U(t2, t1)U(t1, t0)

where t1 ≤ t2 . . . ≤ tN−1 are arbitrary times in the interval [t0, t]

if the solution of the stationary Schrödinger equation

H|λ〉 = Eλ|λ〉

with eigenstates |λ〉 and eigenvalues Eλ is known, on can solve the time-dependent Schrödinger

equation via an expansion with respect to the states |λ〉

|Ψ(t)〉 =
∑

λ

cλ(t)|λ〉

cλ(t) = 〈λ|e−iH(t−t0)/~|Ψ0〉 = 〈λ|e−iEλ(t−t0)/~|Ψ0〉 = e−iEλ(t−t0)/~cλ(t0)

|Ψ(t)〉 =
∑

λ

cλ(t0)e
−iEλ(t−t0)/~|λ〉

the superposition state is known as a wave packet



since the state vector |Ψ(t)〉 is given here as a superposition of (time-dependent) states cλ(t)|λ〉, it

is alternatively called coherent superposition state;

let us calculate the time-dependent expectation value of the operator Ô:

O(t) = 〈Ψ(t)|Ô|Ψ(t)〉 =
∑

λ

c∗λ(t0)e
iEλ(t−t0)/~〈λ|Ô

∑

κ

cκ(t0)e
−iEκ(t−t0)/~|κ〉

=
∑

λ,κ

c∗λ(t0)cκ(t0)〈λ|Ô|κ〉ei(Eλ−Eκ)(t−t0)/~

the different time-dependent contributions are determined by

transition frequencies ωλκ = (Eλ − Eκ)/~



1.2 The Density Operator

elementary quantum mechanics → a complete description of a system is only possible if a set of

observables exists from which all physical quantities can be measured simultaneously;

a set of commuting operators {Âα} has to exist, i.e., the following relation has to be fulfilled
[

Âα, Âα′

]

−
= ÂαÂα′ − Âα′Âα = 0

if for the considered system the maximal number of such operators is known, a complete descrip-

tion can be accomplished; the system is described by a pure state;

if the complete measurement of all Âα has not been carried out, for example, because the com-

plete set of observables is principally unknown → the state of the quantum system has to be

described as a statistical mixture of pure states |Ψν〉;

the probability for a single state to be in the mixture will be denoted by wν; the states |Ψν〉 are

assumed to be ortho-normalized, and therefore the wν must satisfy the relation
∑

ν

wν = 1

the expectation value of an observable becomes

〈Ô〉 =
∑

ν

wν〈Ψν|Ô|Ψν〉



introduction of the density operator (the statistical operator)

Ŵ =
∑

ν

wν|Ψν〉〈Ψν| = Ŵ+

simple notation of the expectation value of any observable using the trace formula

〈Ô〉 = tr{Ŵ Ô}

the abbreviation “tr” is defined as the trace with respect to the matrix formed by all matrix elements

which are determined in a complete orthonormal basis |a〉

tr{•} =
∑

a

〈a| • |a〉

therefore we have

tr{Ŵ Ô} =
∑

a,ν

wν〈a|Ψν〉〈Ψν|Ô|a〉 =
∑

a,ν

wν〈Ψν|Ô|a〉〈a|Ψν〉 =
∑

ν

wν〈Ψν|Ô|Ψν〉

taking arbitrary operators Ô, P̂ and Q̂ it is easy to proof the property called cyclic invariance of the

operator arrangement

tr{ÔP̂} =
∑

a

〈a|Ô
∑

b

|b〉〈b|P̂ |a〉 =
∑

b

∑

a

〈b|P̂ |a〉〈a|Ô|b〉 = tr{P̂ Ô}

tr{ÔP̂ Q̂} = tr{Ô[P̂ Q̂]} = tr{[P̂ Q̂]Ô} = tr{P̂ [Q̂Ô]} = tr{[Q̂Ô]P̂}

note also

tr{Ŵ} =
∑

a,ν

wν〈a|Ψν〉〈Ψν|a〉 =
∑

ν

wν〈Ψν|Ψν〉 = 1



example: the canonical density operator for thermal equilibrium

Ŵeq =
1

Z
e−H/kBT =

1

Z

∑

α

e−Eα/kBT |α〉〈α|

Z is the partition function tr{exp(−H/kBT )} ensuring proper normalization of Ŵeq;

the second part is obtained using the eigenenergies Eα and eigenstates |α〉 of the Hamiltonian H;

density operator of a pure state |Ψ〉

Ŵpure = |Ψ〉〈Ψ| = P̂Ψ

expansion of the state vector |Ψ〉 with respect to the complete orthogonal basis |α〉:

|Ψ〉 =
∑

α

cα|α〉

introducing this expansion into the expression for the pure state density operator one obtains

Ŵpure =
∑

α,ᾱ

cαc
∗
ᾱ|α〉〈ᾱ| 6=

∑

α

|cα|
2|α〉〈α|



there exists a measure which tells us whether the state is a pure state or not: degree of coherence

C = tr{Ŵ 2}

it takes the value 1 for pure states since the statistical operator in this case is a projector

Cpure = tr{Ŵ 2
pure} = tr{P̂ 2

Ψ} = tr{P̂Ψ} = tr{Ŵpure} = 1

where the projector property P 2
Ψ = PΨ has been used

for a mixed state it follows that

Cmixed = tr{Ŵ 2} =
∑

µ,ν

wµwν tr{P̂ΨµP̂Ψν} =
∑

µ,ν

∑

α

wµwν〈α|Ψµ〉〈Ψµ|Ψν〉〈Ψν|α〉

=
∑

µ

∑

α

w2
µ〈Ψµ|α〉〈α|Ψµ〉 =

∑

µ

w2
µ < 1

the degree of coherence becomes less than one



1.3 The Density Matrix

we consider a complete orthogonal basis of states |a〉, |b〉, ...

the density operator can be expanded as

Ŵ =
∑

a,b

〈a|Ŵ |b〉 |a〉〈b|

the expansion coefficients are called density matrix and denoted by

ρab = 〈a|Ŵ |b〉

the density matrix fulfills the relation

ρab = ρ∗ba

from which one simply deduces

Re ρab = Re ρba Im ρab = −Im ρba

the diagonal elements of the density matrix are real

ρaa = Re ρaa



one may write

ρaa = 〈a|Ŵ |a〉 =
∑

ν

〈a|wν|Ψν〉〈Ψν|a〉 =
∑

ν

wν |〈a|Ψν〉|
2 ≡

∑

ν

wν|ca(ν)|
2

with the expansion coefficients ca(ν) = 〈a|Ψν〉;

it shows that ρaa gives us the probability for the state |a〉 being contained in the statistical mixture

described by Ŵ

taking the off-diagonal matrix elements of the density operator it follows

ρab =
∑

ν

wνca(ν)c
∗
b(ν)

the density matrix ρab describes an incoherent superposition of contributions from different pure

states

depending on the basis set {|a〉} the different terms on the right-hand side can cancel each other

or give a finite ρab
the off-diagonal density matrix are also called coherences

since the definition of the density matrix represents a quadratic form the Schwarz inequality is

valid

ρaaρbb ≥ |ρab|
2



the representation of the statistical operator via the density matrix introduced so far is frequently

termed state representation

if eigenstates of some Hamiltonian are used it is also called energy representation

using eigenstates of the coordinate operator

|s〉 =
∏

j

|sj〉

with coordinate sj for the jth degree of freedom of the system, consequently, the coordinate rep-

resentation of the statistical operator reads

ρ(s, s̄) = 〈s|Ŵ |s̄〉



1.4 Equation of Motion for the Density Matrix

the probabilities wν represent our reduced knowledge about the state of the system;

the state vectors |Ψν〉 of the mixed state evolve in time according to the time-dependent Schrödinger

equation

i~
∂

∂t
|Ψν〉 = H|Ψν〉

although any individual state of the mixture changes in time there is no change whatsoever in the

amount of our knowledge about the system;

the probabilities wν are constant (wν 6= wν(t));

accordingly the time-dependent density operator has the following form

Ŵ (t) =
∑

ν

wν|Ψν(t)〉〈Ψν(t)|

to derive an equation of motion we note

Ŵ (t) =
∑

ν

wνU(t, t0)|Ψν(t0)〉〈Ψν(t0)|U
+(t, t0) = U(t, t0)Ŵ (t0)U

+(t, t0)

taking the time derivative of this expression it follows

∂

∂t
Ŵ (t) = −

i

~

(

HŴ (t)− Ŵ (t)H
)

≡ −
i

~

[

H, Ŵ (t)
]

−

this equation of motion for the density operator Ŵ is called Liouville-von Neumann equation or

Quantum Liouville equation; for its solution we have to establish an initial condition Ŵ (t0) = Ŵ0;



we give the Liouville-von Neumann equation in the state representation (〈a|H|b〉 = Hab)

∂

∂t
ρab = −

i

~

∑

c

(

Hacρcb −Hcbρac
)

≡ −i
Haa −Hbb

~
ρab −

i

~

∑

c 6=a

Hacρcb +
i

~

∑

c 6=b

Hcbρac

the difference of the diagonal matrix elements of the Hamiltonian defines the transition frequencies

ωab = (Haa −Hbb)/~, whereas the off-diagonal matrix elements describe the inter-state coupling

there exists an alternative notation of the Liouville-von Neumann equation using the concept of

superoperators

L• =
1

~
[H, •]−

we see that the Liouville-von Neumann equation can be written as

∂

∂t
Ŵ (t) = −iLŴ (t)

with the solution

Ŵ (t) = e−iL(t−t0) Ŵ (t0)

the exponential function of the superoperator is defined via the respective power expansion

one can introduce the time-evolution superoperator as follows:

U(t, t0) = e−iL(t−t0)

it gives

Ŵ (t) = U(t, t0)Ŵ (t0) = U(t, t0)Ŵ (t0)U
+(t, t0)



1.5 The Reduced Density Operator and the Reduced Density Matrix

the starting point will be the system-reservoir Hamiltonian

H = HS +HS−R +HR

a complete basis in the state space of the reservoir is written as |α〉;

then the reduced density operator follows as

ρ̂(t) =
∑

α

〈α|Ŵ (t)|α〉 = trR

{

Ŵ (t)
}

next we take a basis |a〉 in the state space of the system and define the reduced density matrix

ρab(t) = 〈a|ρ̂(t)|b〉

the following relation has to be fulfilled

trS{ρ̂(t)} ≡
∑

a

ρaa(t) = 1

it is easily confirmed if we note that

tr{Ŵ (t)} = 1 =
∑

a,α

〈a|〈α|Ŵ (t)|α〉|a〉



an equation of motion for the reduced density matrix is derived by starting from the respective

operator equation for the reduced density operator;

from the Liouville-von Neumann equation we obtain

∂

∂t
ρ̂(t) = trR

{

∂

∂t
Ŵ (t)

}

= −
i

~
trR

{[

HS +HS−R +HR, Ŵ (t)
]

−

}

= −
i

~
[HS, ρ̂(t)]− −

i

~
trR

{[

HS−R +HR, Ŵ (t)
]

−

}

the commutator notation for the reduced density operator is not possible for the contributions pro-

portional to HS−R and HR;

to calculate the commutator with HR we take into account the cyclic invariance of the trace; as

a result the term proportional to HR vanishes and the equation of motion for the reduced density

operator follows as
∂

∂t
ρ̂(t) = −

i

~
[HS, ρ̂(t)]− −

i

~
trR{

[

HS−R, Ŵ (t)
]

−
}

we realize that this is not yet a closed equation for the reduced density operator; because of the

appearance of HS−R in the commutator on the right-hand side it still contains the total density

operator;



the effect of the environment can be accounted for by a superoperator D acting on the reduced

density operator

−
i

~
trR{

[

HS−R, Ŵ (t)
]

−
} = −Dρ̂(t) ≡ −Âρ̂(t)− ρ̂(t)B̂ −

∑

j

Ĉjρ̂(t)D̂j

the last part of this formula indicates the most general action of the superoperator when repre-

sented by different ordinary operators (acting from the left as well as from the right);

we introduce the density matrix where the states |a〉 are considered as eigenstates of HS with

energy ~ωa; the equation of motion can be written as (ωab = ωa − ωb)

∂

∂t
ρab(t) = −iωabρab(t)−

∑

c,d

Rab,cdρcd(t)

the action of the superoperator D is replaced by the so-called Redfield tensor Rab,cd;

there exist several theories calculating Rab,cd; we will quote the most simple version

∑

c,d

Rab,cdρcd = δa,b
∑

c

(

ka→cρaa − kc→aρcc
)

+
(

1− δa,b
)1

2

∑

c

(

ka→c + kb→c

)

ρab

it is based on a decoupling of diagonal and off-diagonal density matrix elements;



the diagonal elements obey a rate equation with transition rates ka→c and kc→a;

the off-diagonal elements follow from an equation including transition frequencies as well as de-

phasing rates

γab =
1

2

∑

c

(

ka→c + kb→c

)

they are responsible for the exponential decay of the off-diagonal density matrix elements (the

coherences) with increasing time;

the transition rates and, thus, the dephasing rates can be calculated based on a concrete expres-

sion for the system-reservoir coupling HS−R;



1.6 The Phenomenon of Decoherence

to get some first insight into the time evolution of the density matrix, the total wave function (at

time t = 0) is expanded with respect to a complete basis set φa of the system state space

Ψ(s, Z; t = 0) =
∑

a

φa(s)χa(Z)

the χa are wave functions defined in the reservoir state space and follow from

χa(Z) =

∫

ds φ∗
a(s)Ψ(s, Z; t = 0)

the summation over the various χa can be interpreted as a manifestation of system-reservoir

correlations;

the time evolution of the total wave function is determined by the related time-dependent Schrödinger

equation, and the expansion similar to that at t = 0 reads

Ψ(s, Z; t) =
∑

a

φa(s)χa(Z, t)

now including time dependent reservoir wave functions;

since the total wave function Ψ is normalized we may deduce

1 =
∑

a

∫

dZ χa(Z, t)χ
∗
a(Z, t) =

∑

a

〈χa(t)|χa(t)〉 ≡
∑

a

Pa(t)

Pa(t) gives the probability that a particular system state φa is realized at time t;



the reduced density matrix follows as

ρ(s, s̄; t) =
∑

a,b

〈χb(t)|χa(t)〉φa(s)φ
∗
b(s) =

∑

a

Pa(t)φa(s)φ
∗
a(s̄) +

∑

a,b
a 6=b

〈χb(t)|χa(t)〉φa(s)φ
∗
b(s̄)

the part proportional to the Pa(t) is different from zero at all times;

the part determined by the overlap expressions 〈χb(t)|χa(t)〉 of reservoir wave functions belonging

to different system states typically decays in time as

〈χb(t)|χa(t)〉 ∼ exp(−γabt
r) (r = 1, 2)

due to the different time evolution with respect to the two states;

this phenomenon is known as decoherence;

while the probabilities Pa to have the system state φa always sum up to one, interrelations between

different system states φa and φb expressed by the part of the sum with a 6= b decay;

going from a single system to an ensemble this type of decoherence is complemented by the

destructive interference among observables belonging to different members of the ensemble in

the course of the time evolution; this phenomenon is frequently termed dephasing;



1.7 Dynamics of Coupled Multi-Level Systems in a Heat Bath

as a first application of the density operator method we consider two coupled multi-level systems;

in particular, a number of approximations are introduced which we will meet again later on;

each multilevel system is described by the energies Ea and Eβ, respectively and the coupling be-

tween them is due to the matrix element Vaβ; for both quantum numbers, i.e. a and β, we use the

running indices µ, ν, etc. in the following;

the subject of the following consideration is to derive a closed set of equations of motion for the

total population of the state manifold {|a〉} (the initial state)

Pi(t) =
∑

a

ρaa(t) ≡
∑

a

Pa(t)

and of the manifold {|β〉} (the final state)

Pf(t) =
∑

β

ρββ(t) ≡
∑

β

Pβ(t)

the only assumption we will make is that the coupling to the heat bath is much stronger than

the interstate coupling Vaβ; the rates for transitions within the two manifolds, ka→a′ and kβ→β′ are

supposed to be much larger than those for interstate probability transfer;



as a consequence, the populations of the initial and final state can be assumed to be thermalized

within the two manifolds on the time-scale of the inter-manifold transfer

Pa(t) = Pi(t) fa Pβ(t) = Pf(t) fβ

we search for equations of motion obeyed by the total populations Pi and Pf ; since the coupling

matrix element should be small, a perturbational treatment is appropriate;

we start with an equation of motion for the diagonal elements of the density matrix, ρµµ = Pµ,

∂

∂t
Pµ = −

i

~

∑

κ

(Vµκρκµ − Vκµρµκ) ≡
2

~
Im

∑

κ

Vµκρκµ

the off-diagonal density matrix elements which appear on the right-hand side obey

∂

∂t
ρκµ = −iωκµρκµ −

i

~

∑

λ

(Vκλρλµ − Vλµρκλ) ≈ −iωκµρκµ −
i

~
Vκµ (ρµµ − ρκκ)

since we are looking for the lowest-order approximation in Vµν, off-diagonal density matrix ele-

ments have been neglected in the second line;

fixing the initial condition as ρaβ(0) = 0 (absence of a superposition state between both subsys-

tems), we obtain

ρκµ(t) = −
i

~
Vκµ

t
∫

0

dt̄ e−iωκµ (t−t̄) [Pµ(t̄) − Pκ(t̄)]



inserting the result into the first equation yields (note the replacement of t̄ by t− τ )

∂

∂t
Pµ = −

1

~2

∑

κ

|Vµκ|
2 2Re

t
∫

0

dτ e−iωκµ τ [Pµ(t− τ ) − Pκ(t− τ )]

the total state populations Pi and Pf are obtained by making use of the thermalization condition

∂

∂t
Pi = −

t
∫

0

dτ [Ki→f(τ )Pi(t− τ )−Kf→i(τ )Pf(t− τ ) ]

with the integral kernel given by

Ki→f(τ ) =
2

~2

∑

a,β

|Vaβ|
2 fa cos(ωaβτ )

the kernel referring to the reverse transition is obtained in replacing fa by fβ;

interchanging i and f leads to the equation for Pf(t);

the quantity Ki→f(τ ) is usually named memory kernel;

the state populations enter the equation at a time τ earlier than t; the system retains the memory

of its past dynamics;

master equations which include memory effects are called Generalized Master Equation;



the time dependence of the memory kernel is determined by the structure of the energy spectrum

related to the initial as well as the final state;

if these spectra are dense Kif(τ ) would decay in a certain time interval τmem due to destructive

interference;

if τmem is short compared to the characteristic time where the populations Pi and Pf change, the

variation of both quantities within the interval [t− τmem, t] can be neglected;

we can replace Pi(t− τ ) and Pf(t− τ ) by Pi(t) and Pf(t), respectively, in the integrand;

this corresponds to a coarse graining of the time axis; accordingly the populations Pi and Pf are

only valid for times much larger than τmem; therefore, the result of the integration does not change

if the upper limit is put to infinity

∂

∂t
Pi = −ki→f Pi(t) + kf→i Pf(t)

the transition rates take the form

ki→f =

∞
∫

0

dt Ki→f(t) =
2

~2

∑

a,β

|Vaβ|
2 faRe

∞
∫

0

dτ exp(iωaβτ )



we note that Rez = (z+ z∗)/2 (where z is an arbitrary complex number) and replace the integral by

one along the total time-axis;

using the Fourier representation of the δ-function

δ(ω) =
1

2π

∞
∫

−∞

dt eiωt

we get

ki→f =
2π

~

∑

a,β

fa |Vaβ|
2 δ(Ea − Eβ)

the derived rate formula is identical to the Golden Rule expression of transition rates



it is instructive to view the transition rates from a different perspective; we write

Ki→f(t) =
2

~2
Re

∑

a,β

|Vaβ|
2 fa e

i(Ea−Eβ)t/~ =
2

~2
Re

∑

a,β

fa〈a|e
iEat/~V e−iEβt/~|β〉〈β|V |a〉

introducing the part

H0 =
∑

a

Ea|a〉〈a| +
∑

β

Eβ|β〉〈β|

of the total Hamiltonian we can replace the energies Ea and Eβ by H0 (the coupling part of the

Hamiltonian is denoted by V );

using the completeness relation with respect to the state manifold |β〉 gives

Ki→f(t) =
2

~
2Re

∑

a

〈a|Ŵ (i)
eq e

iH0t/~V e−iH0t/~V |a〉 = 2Re Ci→f(t)

the distribution fa has been replaced by the equilibrium density operator of the initial state Ŵ
(i)
eq ;

we introduced the correlation function

Ci→f(t) =
1

~
2 tri{Ŵ

(i)
eq V

(I)(t)V (I)(0)}

it represents an autocorrelation function of the interstate coupling V (I)(t) written in the interaction

representation and taken with respect to thermal equilibrium (tri{...} abbreviates
∑

a 〈a|...|a〉);

the memory kernel turns out to be proportional to the autocorrelation function of the inter-state

coupling;

a short memory time thus implies a rapid decay of this correlation function;


