
3 Equation of Motion for the Reduced Density Operator

3.1 The Interaction Representation of the Reduced Density Operator

formal solution of the Liouville–von Neumann

Ŵ (t) = U(t− t0)Ŵ (t0)U
+(t− t0)

the time–evolution operator U(t− t0) is defined with respect to the total Hamiltonian H;

one can separate this operator into the “free” time–evolution operator

U0(t− t0) = exp
(

−
i

~
HS(t− t0)

)

exp
(

−
i

~
HR(t− t0)

)

≡ US(t− t0) UR(t− t0)

and the related S–operator

S(t, t0) = T exp
(

−
i

~

t
∫

t0

dτH
(I)
S−R(τ )

)

it contains the system–reservoir coupling Hamiltonian in the interaction representation

H
(I)
S−R(t) = U+

0 (t− t0)HS−RU0(t− t0)



for the total density operator we can write

Ŵ (t) = U0(t− t0)Ŵ
(I)(t)U+

0 (t− t0)

density operator in the interaction representation

Ŵ (I)(t) = U+
0 (t− t0)Ŵ (t)U0(t− t0) = S(t, t0)Ŵ (t0)S

+(t, t0)

using this equation the following time derivative can be written as

∂

∂t
Ŵ (t) = −

i

~
[H0, Ŵ (t)]− + U0(t− t0)

∂

∂t
Ŵ (I)(t)U+

0 (t− t0)

we set this expression equal to the right–hand side of the Liouville–von Neumann equation

∂

∂t
Ŵ (I)(t) = −

i

~
[H

(I)
S−R(t), Ŵ

(I)(t)]−

next, we transform the RDO into the interaction representation

ρ̂(t) = trR{Ŵ (t)} = trR

{

U0(t− t0)Ŵ
(I)(t)U+

0 (t− t0)
}

= US(t−t0)trR

{

UR(t−t0)Ŵ
(I)(t)U+

R (t−t0)
}

U+
S (t−t0)

using the cyclic invariance of the trace we can write ρ̂(t) = US(t− t0)ρ̂
(I)(t)U+

S (t− t0)

with the RDO in the interaction representation defined as ρ̂(I)(t) = trR

{

Ŵ (I)(t)
}

with these definitions the equation of motion for ρ(I)(t) follows as

∂

∂t
ρ̂(I)(t) = −

i

~
trR

{

[H
(I)
S−R(t), Ŵ

(I)(t)]−

}



3.2 The Projection Superoperator

the generation of equations for the RDO of higher order in the system–reservoir coupling requires

the combination of a perturbation theory with a scheme for restricting the operator equations to

the state space of the relevant system;

suppose Ô is an operator acting in the space of the system and the reservoir states;

let us consider the quantity P which acts on Ô as follows

PÔ = R̂ trR{Ô}

P separates Ô into the part trR{Ô} acting only in the system space and an operator R̂ which

exclusively acts in the state space of the reservoir;

if we apply P to the full density operator we obtain the RDO ρ̂ and some reservoir operator

PŴ (t) = R̂ ρ̂(t)

if trR{R̂} = 1, which we will assume in the following, the superoperator P is a projection superop-

erator

P2Ô = R̂ trR{R̂ trR{Ô}} = R̂ trR{R̂} trR{Ô} = PÔ

we specify

P ... = R̂eq trR{...}

with the reservoir equilibrium statistical operator

R̂eq =
1

Z
e−HR/kBT



orthogonal complement to projection superoperator Q = 1− P QP = PQ = 0

the action of Q on the total density operator leads to QŴ (t) = Ŵ (t)− ρ̂(t)R̂eq

this is often called irrelevant part of the statistical operator;

P and Q can be used to systematically develop a perturbation expansion with respect to HS−R; we

start our considerations in the interaction representation

PŴ (I)(t) = R̂eqtrR{Ŵ
(I)(t)} = R̂eqρ̂

(I)(t)

using the identity Ŵ (I)(t) = PŴ (I)(t) +QŴ (I)(t) the Liouville–von Neumann equation can be split

into two coupled equations

P
∂

∂t
Ŵ (I)(t) = −

i

~
P
[

H
(I)
S−R(t),PŴ (I)(t) +QŴ (I)(t)

]

−

taking the trace with respect to the reservoir states it follows that

trR{P
∂

∂t
Ŵ (I)(t)} =

∂

∂t
ρ̂(I)(t) = −

i

~
trR

{[

H
(I)
S−R(t), R̂eqρ̂

(I)(t) +QŴ (I)(t)
]

−

}

in a similar manner one obtains

∂

∂t
QŴ (I)(t) = −

i

~
Q
[

H
(I)
S−R(t), R̂eqρ̂

(I)(t) +QŴ (I)(t)
]

−



3.3 The Nakajima–Zwanzig Equation

to have a more compact notation we introduce the interaction Liouville superoperator

L
(I)
S−R... =

1

~
[H

(I)
S−R, ...]−

and the time–ordered superoperator

SQ(t, t̄) = T exp
{

− i

t
∫

t̄

dτ QL
(I)
S−R(τ )

}

the expansion of SQÔ in powers of QL
(I)
S−R(τ ) introduces multiple commutators with H

(I)
S−R (the

quantity Ô is an arbitrary operator);

those H
(I)
S−R appearing left from Ô are ordered with increasing time from right to left while the H

(I)
S−R

appearing right from Ô are arranged in the reverse manner;

these two different types of time ordering have been abbreviated by the symbol T ;

the equation of motion for QŴ (I)(t) is solved as

QŴ (I)(t) = SQ(t, t0)QŴ (I)(t0)− i

t
∫

t0

dt̄ SQ(t, t̄)QL
(I)
S−R(t̄)R̂eqρ̂

(I)(t̄) .

since we are not interested in the problem of initial correlations the first term on the right–hand

side will be neglected by assuming that at time t0 the density operator of the total system factorizes

into the density operator of the relevant system and the reservoir, W (t0) = ρ̂(t0)R̂eq;



inserting QŴ (I)(t) in the equation for PŴ (I)(t) we get an equation of motion which allows an exact

determination of the reduced statistical operator of the relevant system;

this so–called Nakajima–Zwanzig equation reads

∂

∂t
ρ̂(I)(t) = −i trR

{

L
(I)
S−R(t)R̂eq

}

ρ̂(I)(t)−

t
∫

t0

dt̄ trR

{

L
(I)
S−R(t)SQ(t, t̄)QL

(I)
S−R(t̄)R̂eq

}

ρ̂(I)(t̄)

the system–reservoir interaction enters the right–hand side in infinite order;

to have a more compact notation we introduce

< ... >R= trR{...R̂eq}

the equation of motion for the RDO follows as

∂

∂t
ρ̂(I)(t) = −i 〈L

(I)
S−R(t)〉R ρ̂

(I)(t)−

t
∫

t0

dt̄ M(I)(t, t̄)ρ̂(I)(t̄)

the first term can be identified as as the mean–field contribution; the second term introduced the

memory kernel superoperator (in the interaction representation)

M(I)(t, t̄) = 〈L
(I)
S−R(t)SQ(t, t̄)QL

(I)
S−R(t̄)〉R .

according to the definition of the kernel we have t > t̄, and, additionally, any expansion of the

S–superoperator guarantees time–ordered expressions;



3.4 Second–Order Equation of Motion for the Reduced Statistical Operator

replacing SQ by unity we obtain the equation of motion for the RDO which is of second–order with

respect to HS−R

∂

∂t
ρ̂(I)(t) = −

i

~
trR

{

R̂eq

[

H
(I)
S−R(t), ρ̂

(I)(t)
]

−

}

−
1

~2

t
∫

t0

dτ trR

{

[H
(I)
S−R(t), (1− P)[H

(I)
S−R(τ ), R̂eqρ̂

(I)(τ )]−]−

}

in the following we use the factorized form of the system–reservoir coupling;

the mean–field contribution (in the interaction representation) becomes

trR{R̂eq[H
(I)
S−R(t), ρ̂

(I)(t)]−} =
∑

u

[K(I)
u (t)〈Φu〉R, ρ̂

(I)(t)]− ≡ [H
(I)
mf(t), ρ̂

(I)(t)]−

the term

−

t
∫

t0

dτ M(I)(t, τ )ρ̂(I)(τ ) = −
1

~2

t
∫

t0

dτ trR

{

[H
(I)
S−R(t), (1− P)[H

(I)
S−R(τ ), R̂eqρ̂

(I)(τ )]−]−

}

is considered in more detail;

due to the factor (1 − P) there are altogether eight terms where those containing the factor P

include two trace operations;



we consider the four terms corresponding to the unit operator of (1− P) and write

~
2M

(I)
1 ρ̂(I) = trR{

[

H
(I)
S−R(t), [H

(I)
S−R(τ ), R̂eqρ

(I)(τ )]−
]

−
}

or in more detail

~
2M

(I)
1 ρ̂(I) =

∑

u,v

(

trR{Φ
(I)
u (t)Φ(I)

v (τ )R̂eq} K(I)
u (t)K(I)

v (τ )ρ̂(I)(τ )

−trR{Φ
(I)
u (t)R̂eqΦ

(I)
v (τ )}K(I)

u (t)ρ̂(I)(τ )K(I)
v (τ )

−trR{Φ
(I)
v (τ )R̂eqΦ

(I)
u (t)}K(I)

v (τ )ρ̂(I)(τ )K(I)
u (t)

+trR{R̂eqΦ
(I)
v (τ )Φ(I)

u (t)}ρ̂(I)(τ )K(I)
v (τ )K(I)

u (t)
)

for the second term proportional to P we write

~
2M

(I)
2 ρ̂(I) = trR

{[

H
(I)
S−R(t), R̂eqtrR{[H

(I)
S−R(τ ), R̂eqρ̂

(I)(τ )]−}
]

−

}

=
∑

u,v

〈Φu〉R〈Φv〉R
[

K(I)
u (t), [K(I)

v (τ ), ρ̂(I)(τ )]−
]

−

we rewrite the expectation values of the reservoir part of HS−R in M
(I)
1

trR{Φ
(I)
u (t)Φ(I)

v (τ )R̂eq} = trR{U
+
R (t− τ )ΦuUR(t− τ )ΦvR̂eq} = 〈Φ(I)

u (t− τ )Φ(I)
v (0)〉R



we get for the remaining terms

trR{Φ
(I)
u (t)R̂eqΦ

(I)
v (τ )} = 〈Φ(I)

v (0)Φ(I)
u (t− τ )〉R

trR{Φ
(I)
v (t)R̂eqΦ

(I)
u (τ )} = 〈Φ(I)

u (t− τ )Φ(I)
v (0)〉R

trR{R̂eqΦ
(I)
v (τ )Φ(I)

u (t)} = 〈Φ(I)
v (0)Φ(I)

u (t− τ )〉R

the total memory kernel can be cast into a form which has only four terms each containing the fol-

lowing type of function (the superscript I on the bath operators will be suppressed in the following)

Cuv(t) =
1

~2
〈Φu(t)Φv(0)〉R −

1

~2
〈Φu〉R〈Φv〉R =

1

~2
〈∆Φu(t)∆Φv(0)〉R

we introduced

∆Φu(t) = Φu(t)− 〈Φu〉R

this operator describes the fluctuations of the reservoir part of HS−R with respect to its average

value; the function Cuv(t) is called reservoir correlation function;

it establishes a connection between the fluctuations of the operators Φv and Φu at different times;

the correlations of the fluctuations decay after a certain correlation time τc;

if Φu is a Hermitian operator we have

〈Φv(0)Φu(t)〉R = [〈Φu(t)Φv(0)〉R]
∗ = 〈Φv(−t)Φu(0)〉R

from which we get the important property

C∗
uv(t) = Cvu(−t)



using the definition of the correlation function the equation of motion for the RDO follows as

∂

∂t
ρ̂(I)(t) = −

i

~

∑

u

〈Φu〉R[K
(I)
u , ρ̂(I)(t)]−

−
∑

u,v

t
∫

t0

dτ
(

Cuv(t− τ )[K(I)
u (t), K(I)

v (τ )ρ̂(I)(τ )]− − Cvu(−t + τ )[K(I)
u (t), ρ̂(I)(τ )K(I)

v (τ )]−

)

since every term on the right–hand side is given by a commutator it is easy to demonstrate that

the RDO equation ensures conservation of total probability, i.e. trS{∂ρ̂(t)/∂t} = 0;

by computing the Hermitian conjugated of the right–hand side one may demonstrate that the Her-

miticity of ρ̂(I) is assured for all times (note that in the case of non–Hermitian operators Ku and Φu

the whole u, v–summation realizes Hermitian operators);

the equation is called Quantum Master Equation (QME) since it generalizes ordinary rate equa-

tions (Master equations); alternatively, the term density matrix equation in the second Born ap-

proximation is common (one refers to the second–order perturbation theory);

the right–hand side of this equation reveals that the change in time of the RDO is not only deter-

mined by its actual value but by the history of its own time dependence; the equation is specified

as the QME with memory effects;



4 Quantum Master Equation

we transform the equation of motion for the RDO from the interaction representation into the

Schrödinger representation

∂

∂t
ρ̂(t) =

∂

∂t
[US(t− t0)ρ̂

(I)(t)U+
S (t− t0)]− = −

i

~

[

HS, ρ̂(t)
]

−
+ US(t− t0)

∂

∂t
ρ̂(I)(t)U+

S (t− t0)

this gives
∂

∂t
ρ̂(t) = −

i

~

[

HS +
∑

u

〈Φu〉RKu, ρ̂(t)
]

−

−US(t−t0)×
∑

u,v

∫ t

t0

dt̄
{

Cuv(t−t̄)
[

U+
S (t−t0)KuUS(t−t0), U

+
S (t̄−t0)KvUS(t̄−t0)U

+
S (t̄−t0)ρ̂(t̄)US(t̄−t0)

]

−

−Cvu(−t+ t̄)
[

U+
S (t− t0)KuUS(t− t0), U

+
S (t̄− t0)ρ̂(t̄)US(t̄− t0)U

+
S (t̄− t0)KvUS(t̄− t0)

]

−

}

× U+
S (t− t0)

combining products of time–evolution operators and replacing t− t̄ by τ , we obtain the QME in the

Schrödinger representation
∂

∂t
ρ̂ = −

i

~
[HS +

∑

u

〈Φu〉RKu, ρ̂]−

−
∑

u,v

t−t0
∫

0

dτ
(

Cuv(τ )
[

Ku, US(τ )Kvρ̂(t− τ )U+
S (τ )

]

−
− Cvu(−τ )

[

Ku, US(τ )ρ̂(t− τ )KvU
+
S (τ )

]

−

)



let us assume that the integrand is constant within the memory time; then the contribution of the

integral to the right–hand side of the QME is of the order of τmem〈HS−R〉
2/~2; in order to justify the

perturbation expansion, this quantity (which has the dimension of a rate) has to be small com-

pared to the first term on the right–hand side 〈HS〉/~;

the term ∼ 〈Φu〉R contains the mean–field contribution to the system dynamics which is of first or-

der in the system–reservoir interaction; the dynamics including this mean–field term is reversible;

the second term on the right–hand side which depends on the complex–valued correlation func-

tion Cuv(t) leads to a quite different behavior; it is responsible for energy dissipation from the

relevant system into the reservoir; the QME also guarantees Hermiticity of ρ̂ and conservation of

total probability;

in the QME the RDO ρ̂ appears with an retarded time argument, t− τ , in the integrand; this means

that the actual change of probabilistic information in time is not determined by the probabilistic

information at the same time t but also by that of earlier times t− τ ; this type of equation is known

from probabilistic theory as a non–Markovian equation; it is encountered whenever time–local

equations of motion are reduced to equations which only describe a part of the original set of

degrees of freedom; the characteristic feature of non–Markovian behavior is the appearance of

memory effects in the determination of the time dependence of the RDO;



4.1 Markov Approximation

let us assume that a characteristic time τmem (memory time) exists which characterizes the time

span of memory effects;

if the reduced density operator ρ̂ does not change substantially on the time scale given by τmem,

memory effects will be negligible;

one can invoke the Markov approximation

ρ̂(t− τ ) ≈ ρ̂(t)

for a slight improvement of this approximation we use the interaction representation of the RDO

ρ̂(t− τ ) = US(t− τ − t0)ρ̂
(I)(t− τ )U+

S (t− τ − t0) ≈ US(−τ )US(t− t0)ρ̂
(I)(t)U+

S (t− t0)U
+
S (−τ )

= U+
S (τ )ρ̂(t)US(τ )

this procedure gurantees that dynamical effects caused by the relevant system time–evolution

operators are accounted for (need to carry out the Markov approximation in the interaction repre-

sentation);

the dissipative part of the QME becomes
(

∂ρ̂

∂t

)

diss

= −
∑

u,v

∫ ∞

0

dτ
{

Cuv(τ )
[

Ku, K
(I)
v (−τ )ρ̂(t)

]

−
− Cvu(−τ )

[

Ku, ρ̂(t)K
(I)
v (−τ )

]

−

}

where

K(I)
v (−τ ) = US(τ )KvU

+
S (τ )



a more compact form of this equation is obtained after introduction of the operator

Λu =
∑

v

∞
∫

0

dτ Cuv(τ )K
(I)
v (−τ )

and the operator Λ
(+)
u following from Λu upon replacing Cuv(τ ) by Cvu(−τ );

if any term of HS−R is Hermitian, then Λ
(+)
u = Λ+

u ;

it follows
(

∂ρ̂

∂t

)

diss

= −
∑

u

[

Ku,Λuρ̂(t)− ρ̂(t)Λ(+)
u

]

−

carrying out the commutator the resulting expression suggests to supplement the system Hamil-

tonian by non–Hermitian contributions which are proportional to KuΛu

H
(eff)
S = HS +

∑

u

Ku

[

〈Φu〉R − i~Λu

]

we obtain for the QME in the Markov approximation as

∂

∂t
ρ̂(t) = −

i

~

(

H
(eff)
S ρ̂(t)− ρ̂(t)H

(eff)+
S

)

+
∑

u

(

Kuρ̂(t)Λ
(+)
u + Λuρ̂(t)Ku

)

H
(eff)+
S has to be understood as the Hermitian conjugated of H(eff) except that all Λu have been

replaced by Λ
(+)
u



this equation can be interpreted as follows:

we first note that the part of the dissipative contributions acting exclusively from the left or from

the right on the reduced density operator could be comprised to a non–Hermitian Hamiltonian; its

action can be understood as changing of a state vector norm; however, the remaining dissipative

part acting on the reduced density operator from the left and the right simultaneously compen-

sates for this normalization change; as a result the condition trS{ρ̂} = 1 is fulfilled (together, of

course, with conservation of total probability);

we give an alternative notation of the QME based on the superoperator formulation in Liouville

space; in the present case a Liouville superoperator can only be introduced for the reversible part

of the QME

LS... = [HS, ...]−/~

we write
∂

∂t
ρ̂(t) = −iLSρ̂(t)−Dρ̂(t)

the so–called dissipative (or relaxation) superoperator D has been introduced;

sometimes it is useful to introduce the formal solution of the QME as

ρ̂(t) = U(t− t0)ρ̂(t0)

with the time–evolution superoperator

U(t− t0) = exp
(

− i(LS − iD)(t− t0)
)



the action of D can be characterized by considering the change of the internal energy of the

relevant system (if 〈Φu〉R 6= 0, HS can be extended by Hmf)

ES = trS{ρ̂(t)HS}

one immediately obtains

∂

∂t
ES = −trS{HSDρ̂(t)} = −

∑

u

trS{[HS, Ku]−
(

Λuρ̂(t)− ρ̂(t)Λ(+)
u

)

}

the expression shows that for cases where the commutator of the system Hamiltonian with every

operator Ku vanishes, dissipation does not alter the internal energy; this may be interpreted as an

action of the environment reduced to elastic scattering processes which do not change the system

energy but probably the phase of the system; because of this particular property dissipative pro-

cesses which do not change the system energy are related to what is known as pure dephasing;

assuming that the |a〉 are eigenstates of HS the coupling operator Ku = |a〉〈a| represents an ex-

ample for a system–reservoir coupling which guarantees the conservation of the internal energy

ES; this has to be expected since the system part Ku of the system–reservoir coupling does not

change the system–state;

to be complete we also remark that the internal energy remains constant if the dissipation is of

such a type that the second term in the trace expression of vanishes;


