5 The Reservoir Correlation Function

5.1 General Properties of $C_{u v}(t)$

we discuss general properties of the correlation function as well as of its Fourier transform

$$
C_{u v}(\omega)=\int d t e^{i \omega t} C_{u v}(t)
$$

if the Φ_{u} are Hermitian we have $C_{u v}^{*}(t)=C_{v u}(-t)$;
it follows immediately that

$$
C_{v u}(-\omega)=\int d t e^{i \omega t} C_{u v}^{*}(t)
$$

and

$$
C_{u v}^{*}(\omega)=C_{v u}(\omega)
$$

it is convenient to introduce symmetric and antisymmetric correlation functions

$$
C_{u v}^{(+)}(t)=C_{u v}(t)+C_{u v}^{*}(t) \quad C_{u v}^{(-)}(t)=C_{u v}(t)-C_{u v}^{*}(t)
$$

note, that $C_{u v}^{(+)}(t)$ is a real function while $C_{u v}^{(-)}(t)$ is imaginary; moreover, $C_{u v}^{(+)}(-t)=C_{v u}^{(+)}(t)$ as well as $C_{u v}^{(-)}(-t)=-C_{v u}^{(-)}(t)$ hold if $C_{u v}^{*}(t)=C_{v u}(-t)$ is valid;
another fundamental property of $C_{u v}(\omega)$ can be derived if one starts from the definition and introduces eigenstates $|\alpha\rangle$ and eigenvalues E_{α} of the reservoir Hamiltonian

$$
\begin{aligned}
C_{u v}(\omega) & =\frac{1}{\hbar^{2}} \int d t e^{i \omega t} \sum_{\alpha, \beta}\langle\alpha| \hat{R}_{\mathrm{eq}} e^{i H_{\mathrm{R}} t / \hbar} \Delta \Phi_{u} e^{-i H_{\mathrm{R}} t / \hbar}|\beta\rangle\langle\beta| \Delta \Phi_{v}|\alpha\rangle \\
& =\frac{1}{\hbar^{2}} \sum_{\alpha, \beta} \int d t e^{i\left(\omega-\omega_{\beta \alpha}\right) t} f_{\alpha}\langle\alpha| \Delta \Phi_{u}|\beta\rangle\langle\beta| \Delta \Phi_{v}|\alpha\rangle
\end{aligned}
$$

here $\omega_{\beta \alpha}=\left(E_{\beta}-E_{\alpha}\right) / \hbar$ are the transition frequencies between the reservoir energy levels and

$$
f_{\alpha} \equiv\langle\alpha| \hat{R}_{\mathrm{eq}}|\alpha\rangle=\exp \left(-E_{\alpha} / k_{\mathrm{B}} T\right) / \sum_{\beta} \exp \left(-E_{\beta} / k_{\mathrm{B}} T\right)
$$

denotes the thermal distribution function with respect to the reservoir states;
the time integration of the exponential function produces the delta function and we get

$$
C_{u v}(\omega)=\frac{2 \pi}{\hbar^{2}} \sum_{\alpha, \beta} f_{\alpha}\langle\alpha| \Delta \Phi_{u}|\beta\rangle\langle\beta| \Delta \Phi_{v}|\alpha\rangle \delta\left(\omega-\omega_{\beta \alpha}\right)
$$

now we consider the Fourier transform of the correlation function where the indices u and v are interchanged; interchanging also α and β gives

$$
C_{v u}(\omega)=\frac{2 \pi}{\hbar^{2}} \sum_{\alpha, \beta} f_{\beta}\langle\alpha| \Delta \Phi_{u}|\beta\rangle\langle\beta| \Delta \Phi_{v}|\alpha\rangle \delta\left(\omega-\omega_{\alpha \beta}\right)
$$

according to the identity

$$
\exp \left\{-\frac{E_{\beta}}{k_{\mathrm{B}} T}\right\} \delta\left(\omega-\omega_{\alpha \beta}\right)=\exp \left\{-\frac{E_{\alpha}-\hbar \omega}{k_{\mathrm{B}} T}\right\} \delta\left(\omega+\omega_{\beta \alpha}\right)
$$

we arrive at the important result

$$
C_{u v}(\omega)=\exp \left\{\frac{\hbar \omega}{k_{\mathrm{B}} T}\right\} C_{v u}(-\omega)
$$

it builds upon the definition of $C_{u v}(\omega)$ with respect to the thermal equilibrium of the reservoir; again, if $C_{u v}^{*}(t)=C_{v u}(-t)$ is valid the Fourier transform of the symmetric and antisymmetric part of the correlation function can be written as

$$
C_{u v}^{(\pm)}(\omega)=C_{u v}(\omega) \pm C_{v u}(-\omega)
$$

it follows that

$$
C_{u v}(\omega)=\frac{C_{u v}^{(\pm)}(\omega)}{1 \pm \exp \left\{-\hbar \omega / k_{\mathrm{B}} T\right\}} \equiv(1+n(\omega)) C_{u v}^{(-)}(\omega) .
$$

we introduced the Bose-Einstein distribution function

$$
n(\omega)=\frac{1}{\exp \left\{\hbar \omega / k_{\mathrm{B}} T\right\}-1}
$$

we get a relation between the Fourier transforms of the symmetric and antisymmetric parts of the correlation function

$$
C_{u v}^{(+)}(\omega)=\operatorname{coth}\left(\frac{\hbar \omega}{2 k_{\mathrm{B}} T}\right) C_{u v}^{(-)}(\omega)
$$

since a relation between the correlation function and its antisymmetric part $C_{u v}^{(-)}(\omega)$ has been established it is easy to express $C_{u v}(t)$ by $C_{u v}^{(-)}(\omega)$;
the inverse Fourier transform can then be written in terms of the half-sided Fourier integral

$$
C_{u v}(t)=\int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} e^{-i \omega t}[1+n(\omega)] C_{u v}^{(-)}(\omega)=\int_{0}^{\infty} \frac{d \omega}{2 \pi}\left(e^{-i \omega t}[1+n(\omega)] C_{u v}^{(-)}(\omega)+e^{i \omega t} n(\omega) C_{v u}^{(-)}(\omega)\right)
$$

5.2 Harmonic Oscillator Reservoir
we set

$$
\Phi=\hbar \sum_{\xi} \omega_{\xi} g_{\xi} Q_{\xi}
$$

and get the correlation function

$$
C(t)=\sum_{\xi, \xi^{\prime}} \omega_{\xi} g_{\xi} \omega_{\xi^{\prime}} g_{\xi^{\prime}} \operatorname{tr}_{\mathrm{R}}\left\{\hat{R}_{\mathrm{eq}} Q_{\xi}(t) Q_{\xi^{\prime}}\right\}
$$

the trace is specified as the summation with respect to the product of normal-mode harmonic oscillator states weighted by the respective thermal distributions

$$
f_{N_{\xi}}=\frac{1}{\mathcal{Z}} \times \exp \left(-N_{\xi} \hbar \omega_{\xi} / k_{\mathrm{B}} T\right)
$$

since only operators are concerned with mode index ξ and ξ^{\prime} the trace reduces to

$$
\operatorname{tr}_{\mathrm{R}}\left\{\hat{R}_{\mathrm{eq}} Q_{\xi}(t) Q_{\xi^{\prime}}\right\}=\sum_{N_{\xi}} \sum_{N_{\xi^{\prime}}} f_{N_{\xi}} f_{N_{\xi^{\prime}}}\left\langle N_{\xi}\right|\left\langle N_{\xi^{\prime}}\right| Q_{\xi}(t) Q_{\xi^{\prime}}\left|N_{\xi}\right\rangle\left|N_{\xi^{\prime}}\right\rangle
$$

the remaining parts of $\sum_{\left\{N_{\zeta}\right\}}$ always give 1;
we note that, for example, $\left\langle N_{\xi^{\prime}}\right| Q_{\xi^{\prime}}\left|N_{\xi^{\prime}}\right\rangle=0$ and see that only the case $\xi=\xi^{\prime}$ contributes;
the correlation function reads
$C(t)=\sum_{\xi} \omega_{\xi}^{2} g_{\xi}^{2} \sum_{N_{\xi}} f_{N_{\xi}}\left\langle N_{\xi}\right|\left[C_{\xi} e^{-i \omega_{\xi} t}+C_{\xi}^{+} e^{i \omega_{\xi} t}\right]\left[C_{\xi}+C_{\xi}^{+}\right]\left|N_{\xi}\right\rangle=\sum_{\xi} \omega_{\xi}^{2} g_{\xi}^{2} \sum_{N_{\xi}} f_{N_{\xi}}\left(\left[1+N_{\xi}\right] e^{-i \omega_{\xi} t}+e^{i \omega_{\xi} t} N_{\xi}\right)$
in the second part of this expression it has been used that only the operator combinations $C_{\xi}^{+} C_{\xi}$ and $C_{\xi} C_{\xi}^{+}$contribute;
finally, they have been replaced by the respective occupation number N_{ξ}; the summations with respect to the oscillator quantum numbers can be removed by introducing the mean occupation number of a harmonic oscillator mode (Bose-Einstein distribution)

$$
\sum_{N_{\xi}} N_{\xi} f_{N_{\xi}}=n\left(\omega_{\xi}\right)
$$

we obtain

$$
C(t)=\sum_{\xi}\left(\omega_{\xi} g_{\xi}\right)^{2}\left(\left[1+n\left(\omega_{\xi}\right)\right] e^{-i \omega_{\xi} t}+n\left(\omega_{\xi}\right) e^{i \omega_{\xi} t}\right]
$$

the Fourier transformed version follows as

$$
C(\omega)=\sum_{\xi}\left(\omega_{\xi} g_{\xi}\right)^{2}\left(\left[1+n\left(\omega_{\xi}\right)\right] \delta\left(\omega-\omega_{\xi}\right)+n\left(\omega_{\xi}\right) \delta\left(\omega+\omega_{\xi}\right)\right)
$$

to have a compact notation at hand we introduce the new quantity $J(\omega)$ called spectral density

$$
J(\omega)=\sum_{\xi} g_{\xi}^{2} \delta\left(\omega-\omega_{\xi}\right)
$$

with the help of this relation the correlation function can be written as

$$
C(\omega)=2 \pi \omega^{2}[1+n(\omega)](J(\omega)-J(-\omega))
$$

the spectral density contains the specific information about the reservoir and its interaction with the relevant system;
although the spectral density is defined in terms of a sum of delta functions any macroscopic system will in practice have a continuous spectral density;
there exist different models for $J(\omega)$ which are adapted to particular system-environment situations; they are often characterized by a frequency dependence showing a power law rise for small frequencies which turns, after reaching a cut-off frequency ω_{c}, into an exponential decay for large frequencies:

$$
\omega^{2} J(\omega)=\theta(\omega) j_{0} \omega^{p} e^{-\omega / \omega_{c}}
$$

a different frequency dependence is given by the so-called Debye spectral density

$$
\omega^{2} J(\omega)=\theta(\omega) \frac{j_{0} \omega}{\omega^{2}+\omega_{\mathrm{D}}^{2}}
$$

if there exists an unambiguous relation between the mode index ξ and the mode frequency ω_{ξ} the quantity g_{ξ} can be defined as a frequency-dependent function;
using the abbreviation $\kappa\left(\omega_{\xi}\right)=g_{\xi}^{2}$ it is then possible to rewrite the spectral density by introducing the density of states (DOS) of the reservoir oscillators

$$
\mathcal{N}_{\mathbb{R}}(\omega)=\sum_{\xi} \delta\left(\omega-\omega_{\xi}\right)
$$

it gives the number of oscillators in the reservoir one may find in the frequency interval $\Delta \omega$; it follows the relation

$$
J(\omega)=\kappa(\omega) \mathcal{N}_{\mathrm{R}}(\omega)
$$

which highlights that the spectral density can be viewed as the reservoir oscillator DOS which is weighted by the coupling strength between system and reservoir coordinates.

5.2. An Example

once $J(\omega)$ is fixed the time-dependent correlation function $C(t)$ can be calculated; in order to do this we separate it into a real and imaginary part

$$
C(t)=\int_{0}^{\infty} d \omega\left(\cos (\omega t) \operatorname{coth} \frac{\hbar \omega}{2 k_{\mathrm{B}} T}-i \sin (\omega t)\right) \omega^{2} J(\omega) .
$$

for the subsequent computations we use the Debye spectral density; it is easy to calculate $C(t)$ in the high-temperature limit $k_{\mathrm{B}} T \gg \hbar \omega_{\mathrm{D}}$ where one can take the following approximation

$$
\operatorname{coth}\left(\hbar \omega / 2 k_{\mathrm{B}} T\right) \approx 2 k_{\mathrm{B}} T / \hbar \omega
$$

if one inserts this approximation into $C(t)$ and replaces $\omega \sin (\omega t)$ by the time derivative of $\cos (\omega t)$ one obtains

$$
C(t)=\frac{j_{0}}{\hbar}\left(2 k_{\mathrm{B}} T+i \hbar \frac{\partial}{\partial t}\right) \int_{0}^{\infty} d \omega \frac{\cos (\omega t)}{\omega^{2}+\omega_{\mathrm{D}}^{2}}
$$

since the integrand is an even function of ω we can extend the frequency integral up to $-\infty$ and calculate it using the residue theorem

$$
\begin{gathered}
\int d \omega \frac{\cos (\omega t)}{\omega^{2}+\omega_{\mathrm{D}}^{2}}= \\
\frac{i}{4 \omega_{\mathrm{D}}}\left(\int_{\mathcal{C}_{1}} d \omega e^{i \omega t}\left(\frac{1}{\omega+i \omega_{\mathrm{D}}}-\frac{1}{\omega-i \omega_{\mathrm{D}}}\right)-\int_{\mathcal{C}_{2}} d \omega e^{-i \omega t}\left(\frac{1}{\omega+i \omega_{\mathrm{D}}}-\frac{1}{\omega-i \omega_{\mathrm{D}}}\right)\right)=\frac{\pi}{\omega_{\mathrm{D}}} e^{-\omega_{\mathrm{D}}|t|}
\end{gathered}
$$

\mathcal{C}_{1} and \mathcal{C}_{2} are closed integration contours (with mathematically positive orientation) in the upper or lower half of the complex frequency plane, respectively; for $t>0, \mathcal{C}_{1}$ is closed in the upper plane and \mathcal{C}_{2} in the lower plane; the situation is reverse for $t<0$;
we obtain for the correlation function

$$
C(t)=\frac{\pi j_{0}}{2 \hbar \omega_{\mathrm{D}}}\left(2 k_{\mathrm{B}} T-i \operatorname{sgn}(t) \hbar \omega_{\mathrm{D}}\right) e^{-\omega_{\mathrm{D}}|t|}
$$

it decays with a time constant τ_{c} determined by the inverse of ω_{D}; if the Debye frequency is assumed to be large, the correlation time goes to zero, i.e. $C(t) \approx \delta(t)$; this is the Markovian limit;

