
5 The Reservoir Correlation Function

5.1 General Properties of Cuv(t)

we discuss general properties of the correlation function as well as of its Fourier transform

Cuv(ω) =

∫

dt eiωtCuv(t)

if the Φu are Hermitian we have C∗
uv(t) = Cvu(−t);

it follows immediately that

Cvu(−ω) =

∫

dt eiωtC∗
uv(t)

and

C∗
uv(ω) = Cvu(ω)

it is convenient to introduce symmetric and antisymmetric correlation functions

C(+)
uv (t) = Cuv(t) + C∗

uv(t) C(−)
uv (t) = Cuv(t)− C∗

uv(t)

note, that C
(+)
uv (t) is a real function while C

(−)
uv (t) is imaginary; moreover, C

(+)
uv (−t) = C

(+)
vu (t) as well

as C
(−)
uv (−t) = −C

(−)
vu (t) hold if C∗

uv(t) = Cvu(−t) is valid;



another fundamental property of Cuv(ω) can be derived if one starts from the definition and intro-

duces eigenstates |α〉 and eigenvalues Eα of the reservoir Hamiltonian

Cuv(ω) =
1

~2

∫

dt eiωt
∑

α,β

〈α|R̂eqe
iHRt/~∆Φue

−iHRt/~|β〉〈β|∆Φv|α〉

=
1

~2

∑

α,β

∫

dt ei(ω−ωβα)tfα〈α|∆Φu|β〉〈β|∆Φv|α〉

here ωβα = (Eβ − Eα)/~ are the transition frequencies between the reservoir energy levels and

fα ≡ 〈α|R̂eq|α〉 = exp(−Eα/kBT )/
∑

β

exp(−Eβ/kBT )

denotes the thermal distribution function with respect to the reservoir states;

the time integration of the exponential function produces the delta function and we get

Cuv(ω) =
2π

~2

∑

α,β

fα〈α|∆Φu|β〉〈β|∆Φv|α〉δ(ω − ωβα)

now we consider the Fourier transform of the correlation function where the indices u and v are

interchanged; interchanging also α and β gives

Cvu(ω) =
2π

~2

∑

α,β

fβ〈α|∆Φu|β〉〈β|∆Φv|α〉δ(ω − ωαβ)



according to the identity

exp

{

−
Eβ

kBT

}

δ(ω − ωαβ) = exp

{

−
Eα − ~ω

kBT

}

δ(ω + ωβα)

we arrive at the important result

Cuv(ω) = exp

{

~ω

kBT

}

Cvu(−ω)

it builds upon the definition of Cuv(ω) with respect to the thermal equilibrium of the reservoir;

again, if C∗
uv(t) = Cvu(−t) is valid the Fourier transform of the symmetric and antisymmetric part of

the correlation function can be written as

C(±)
uv (ω) = Cuv(ω)± Cvu(−ω)

it follows that

Cuv(ω) =
C

(±)
uv (ω)

1± exp{−~ω/kBT}
≡ (1 + n(ω))C(−)

uv (ω) .

we introduced the Bose–Einstein distribution function

n(ω) =
1

exp{~ω/kBT} − 1

we get a relation between the Fourier transforms of the symmetric and antisymmetric parts of the

correlation function

C(+)
uv (ω) = coth

(

~ω

2kBT

)

C(−)
uv (ω)



since a relation between the correlation function and its antisymmetric part C
(−)
uv (ω) has been es-

tablished it is easy to express Cuv(t) by C
(−)
uv (ω);

the inverse Fourier transform can then be written in terms of the half–sided Fourier integral

Cuv(t) =

∞
∫

−∞

dω

2π
e−iωt[1 + n(ω)]C(−)

uv (ω) =

∞
∫

0

dω

2π

(

e−iωt[1 + n(ω)]C(−)
uv (ω) + eiωtn(ω)C(−)

vu (ω)
)



5.2 Harmonic Oscillator Reservoir

we set

Φ = ~

∑

ξ

ωξgξQξ

and get the correlation function

C(t) =
∑

ξ,ξ′

ωξgξ ωξ′gξ′trR{R̂eqQξ(t)Qξ′}

the trace is specified as the summation with respect to the product of normal–mode harmonic

oscillator states weighted by the respective thermal distributions

fNξ
=

1

Z
× exp(−Nξ~ωξ/kBT )

since only operators are concerned with mode index ξ and ξ′ the trace reduces to

trR{R̂eqQξ(t)Qξ′} =
∑

Nξ

∑

Nξ′

fNξ
fNξ′

〈Nξ|〈Nξ′|Qξ(t)Qξ′|Nξ〉|Nξ′〉

the remaining parts of
∑

{Nζ}
always give 1;

we note that, for example, 〈Nξ′|Qξ′|Nξ′〉 = 0 and see that only the case ξ = ξ′ contributes;



the correlation function reads

C(t) =
∑

ξ

ω2
ξg

2
ξ

∑

Nξ

fNξ
〈Nξ|[Cξe

−iωξt+C+
ξ e

iωξt][Cξ+C+
ξ ]|Nξ〉 =

∑

ξ

ω2
ξg

2
ξ

∑

Nξ

fNξ

(

[1+Nξ]e
−iωξt+eiωξtNξ

)

in the second part of this expression it has been used that only the operator combinations C+
ξ Cξ

and CξC
+
ξ contribute;

finally, they have been replaced by the respective occupation number Nξ;

the summations with respect to the oscillator quantum numbers can be removed by introducing

the mean occupation number of a harmonic oscillator mode (Bose–Einstein distribution)
∑

Nξ

NξfNξ
= n(ωξ)

we obtain

C(t) =
∑

ξ

(ωξgξ)
2
(

[1 + n(ωξ)]e
−iωξt + n(ωξ)e

iωξt
]

the Fourier transformed version follows as

C(ω) =
∑

ξ

(ωξgξ)
2
(

[1 + n(ωξ)]δ(ω − ωξ) + n(ωξ)δ(ω + ωξ)
)

to have a compact notation at hand we introduce the new quantity J(ω) called spectral density

J(ω) =
∑

ξ

g2ξδ(ω − ωξ)



with the help of this relation the correlation function can be written as

C(ω) = 2π ω2[1 + n(ω)]
(

J(ω)− J(−ω)
)

the spectral density contains the specific information about the reservoir and its interaction with

the relevant system;

although the spectral density is defined in terms of a sum of delta functions any macroscopic

system will in practice have a continuous spectral density;

there exist different models for J(ω) which are adapted to particular system–environment situa-

tions; they are often characterized by a frequency dependence showing a power law rise for small

frequencies which turns, after reaching a cut–off frequency ωc, into an exponential decay for large

frequencies:

ω2J(ω) = θ(ω) j0 ω
p e−ω/ωc

a different frequency dependence is given by the so–called Debye spectral density

ω2J(ω) = θ(ω)
j0ω

ω2 + ω2
D



if there exists an unambiguous relation between the mode index ξ and the mode frequency ωξ the

quantity gξ can be defined as a frequency–dependent function;

using the abbreviation κ(ωξ) = g2ξ it is then possible to rewrite the spectral density by introducing

the density of states (DOS) of the reservoir oscillators

NR(ω) =
∑

ξ

δ(ω − ωξ)

it gives the number of oscillators in the reservoir one may find in the frequency interval ∆ω; it

follows the relation

J(ω) = κ(ω)NR(ω)

which highlights that the spectral density can be viewed as the reservoir oscillator DOS which is

weighted by the coupling strength between system and reservoir coordinates.



5.2.1 An Example

once J(ω) is fixed the time–dependent correlation function C(t) can be calculated; in order to do

this we separate it into a real and imaginary part

C(t) =

∞
∫

0

dω

(

cos(ωt) coth
~ω

2kBT
− i sin(ωt)

)

ω2J(ω) .

for the subsequent computations we use the Debye spectral density; it is easy to calculate C(t) in

the high–temperature limit kBT ≫ ~ωD where one can take the following approximation

coth(~ω/2kBT ) ≈ 2kBT/~ω

if one inserts this approximation into C(t) and replaces ω sin(ωt) by the time derivative of cos(ωt)

one obtains

C(t) =
j0
~

(

2kBT + i~
∂

∂t

)

∞
∫

0

dω
cos(ωt)

ω2 + ω2
D

since the integrand is an even function of ω we can extend the frequency integral up to −∞ and

calculate it using the residue theorem



∫

dω
cos(ωt)

ω2 + ω2
D

=

i

4ωD







∫

C1

dω eiωt
(

1

ω + iωD
−

1

ω − iωD

)

−

∫

C2

dω e−iωt

(

1

ω + iωD
−

1

ω − iωD

)






=

π

ωD
e−ωD|t|

C1 and C2 are closed integration contours (with mathematically positive orientation) in the upper or

lower half of the complex frequency plane, respectively;

for t > 0, C1 is closed in the upper plane and C2 in the lower plane; the situation is reverse for t < 0;

we obtain for the correlation function

C(t) =
πj0
2~ωD

(2kBT − isgn(t)~ωD) e
−ωD|t|

it decays with a time constant τc determined by the inverse of ωD; if the Debye frequency is as-

sumed to be large, the correlation time goes to zero, i.e. C(t) ≈ δ(t); this is the Markovian limit;


