6 The The Quantum Master Equation in Energy Representation

we transform the QME into the energy (state) representation with respect to the system Hamilto-
nian; suppose we have solved the eigenvalue problem for Hg

Hsla) = Ey|a)
the reduced density matrix (RDM) is given by
pa(t) = (alp(t)|b)
the matrix elements of the system part of the system-reservoir coupling read
(al K, Jb) = Ky
the energy representation offers the advantage that

Us(7)la) = e""*7"a) = e"7|a)

we take respective matrix elements of the equation of motion for the RDO (note the introduction
of transition frequencies wy,, = w, — wy)
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the dissipative part is firstly considered in it's non—Markovian version
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introducing two times complete sets of system states results in
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a rearrangement of terms gives
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a more compact notation of this equation is achieved by introducing the tetradic matrix called
memory matrix
ab (’d ZCUU

it satisfies the relation
;b cd Z Cvu Mdc ba( )

the dissipative part of the non-Markowan density matrix equation reads
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one can proof that the total occupation probability of the different eigenstates of Hg are conserved,
i.e. > Opaa/0t = 0; since the reservoir is at temperature 7' the density matrix displays the limiting

behavior
: - —Eq/kpT —Ec/kgT
Jim pop(t) = 0 pe™ "0/ > et



6.1 Multi-Level Redfield Equations

we carry out the Markov approximation

par(t —7) = {alp(t — 7)|b) = (a|Ug (1) p(t)Us(1)|b) = ™7 pyy(t)
and obtain
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the time integrals can be viewed as half—sided Fourier transforms of the memory functions;
these complex quantities define the dissipative part of the QME in the Markov approximation;
their real part describes an irreversible redistribution of the amplitudes contained in the various
parts of reduced density matrix;

the imaginary part introduces terms which can be interpreted as a modification of the transition
frequencies and the respective mean-field matrix elements;



they can be accounted for by changing the energy scale or adjusting the transition frequencies;
therefore, we restrict ourselves to the discussion of the real part only leading to the following
(damping) matrix
[up.ca(w) = Re / dr €™ My ca(T) = ReZKéZ‘)Kﬁs) / dr €7 Cly(T)
0 U, 0
the dissipative part of the QME in the state representation becomes
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we introduce the relaxation matrix

Rab,cd — 5(1,0 Z Fbe,ed(wde) + 5b,d Z Fae,ec(wce) — Fca,bd(wdb) — de,ac(wca>

the dissipative contribution to the reduced density matrix equations of motion can be finally written
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the tetradic relaxation matrix is frequently termed Redfield tensor after A. G. Redfield who intro-
duced it in the theory of nuclear magnetic resonance spectroscopy in the early sixties;

since the density matrix elements can be distinguished as populations (a = b) and coherences
(a # b) it is reasonable to discuss R, . according to its effect on the dynamics of p,, and pg;




1.1 Population transfer: « =0, c=d

the respective matrix elements of the Redfield tensor can be written as
Raa,cc — 25@,0 Z Fae,ea<wae) — 2Fca,ac(wca) — 5@,0 Z ka—>e — kc—)a

we introduced the rate k, ., for the transition from state |a) to state |b) according to
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the two terms on the last line can be combined to give

ka—>b - /dT eiwabTMab,ba(T) = Mab,ba(wab)

using the definition of the memory matrix we obtain an alternative expression for the energy relax-
ation rates

Koy = Z Cufv (wab)Kéz)Kés)
the rate for a particular transition is determined by the matrix elements of the operators K, and by
the value of the correlation function taken at the respective transition frequency, C,,(w = wu);
this last dependence can be viewed as a “probing” of the spectral density at this frequency;



in terms of the harmonic reservoir model this implies that there has to be a reservoir oscillator
mode which can absorb or emit a reservoir quantum at the transition frequency of the system;
since the transitions between the system states are therefore accompanied by energy dissipation
into the reservoir, the rates are also called energy relaxation rates;

we can proof that the principle of detailed balance is fulfilled
ko p = Z Cou(wWap) KC(LZ) Kb(s) _ ohwan/kBT Z Coro(wha) Kéﬁf) KC(LZ) — eMwa/ksTE,



612 Coherence dephasing: a #b,a=c¢,b=d

in this case we have
Rab,ab = Yab = Z (Fae,ea(wae> + Fbe,eb(wbe)) - Faa,bb<0) - be,aa<0)

e

the expression determines the damping of the off-diagonal elements of the reduced density ma-
trix;

these are called coherences since they represent phase relations between different states;

the decay of coherences is known as the dephasing process, and the ., are called dephasing
rates;

we notice that the first part of the dephasing rate can be written as ~, + v, where ~, and ~;, equals
half of the relaxation rates;

within the present model energy relaxation is a source of coherence dephasing;

the second part denoted by %(}Zd) is defined by the reservoir correlation function at zero frequency,
l.e., it represents an elastic type of collision where no energy is exchanged between system and
reservoir;

these rates are usually named pure dephasing rates and we write
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613 Remaining Elements of R, .4

we can distinguish the following transitions induced by R, .q;
first coherences can be transferred between different pairs of states: pu, — pea (Rap.ca);

second, populations can change to coherences: pu., — ped (Raa.cd);
and finally, the coherences can be transformed into populations: p., — pee (Rab.cc);

as a consequence there is a mixing between different types of reduced density matrix elements;



6.2 The Secular Approximation

in order to see under what conditions the mixing between population and coherence type density
maitrix elements can be neglected we change to the interaction representation
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the right—hand side contains various contributions which oscillate with the combined frequency
Wah — Wed s

all contributions to the equations of motion where 1/|w., — weq| is much smaller than the time in-
crement At for which the QME is solved will cancel each other upon integration of the equations
of motion due to destructive interference;

let us suppose that we can neglect all those contributions to the dissipative part for which the
condition 1/|w. — weq| < At is fulfilled;

there are at first glance two types of contributions which cannot be neglected since |w., — weg| =0
holds;

these are related to those elements of R, . which were discussed as cases (1) and (2) in the
previous section;



however, for systems with degenerate transition frequencies such as a harmonic oscillator |w,;, —
weq| = 0 can be fulfilled even if R,;, ., belongs to the category (3) of the previous section;

in general the approximation which builds upon the consideration of only those terms in the dis-
sipative part of the QME for which |w,, — w.¢| = 0 holds is called secular approximation; it is also
often also termed

myred rotating wave approximation;

note that within the Markov approximation the smallest possible time step, At, is determined by
the memory time 7em;

if, however, in systems with nearly degenerate transition frequencies the condition 1/|w., — weq| >
Tmem 1S realized the secular approximation determines the coarse graining of the time axis and
therefore imposes a lower limit on the time resolution of the reduced density matrix;

thus, we have seen that even in the secular approximation there is a chance that populations and
coherences are coupled via R, .q; if we neglect this coupling, i.e. if we suppose that |w,, —we| =0
holds only in the cases (1) and (2) of the previous section we are at the level of the so—called

Bloch model 9P
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the Redfield tensor does not mix diagonal and off—diagonal elements of the reduced density ma-
trix; we can consider the equations for the populations and the coherences separately;



6.3 State Expansion of the System-Reservoir Coupling

we introduce an expansion of Hg_ g in the eigenstates of Hs:
Hs p = Y (a|Hs g|b)|a)(b]
a,b

it is a special version of the factorized ansatz for the system—reservoir interaction Hamiltonian;
we have to identify the index « with (ab), K, with |a)(b| (i.e. Kég) = 0c.00ap), @nd @, with (a|Hg_gr|b);
the K ,—operators do not represent Hermitian operators;

in a first step we set

<a’HS R’b ab = Z hwfgab

the (energy) relaxation rates are obtained as kwb = Cuppa(Wap)
we get for the correlation function

Cab’cd(w) = 27Tw2[1 + n(w)] [Jab’cd(w) — Ju Cd(—w)]

where we introduced the generalized spectral density Jap.ca(w) = Z Gab(€)Gea(§)0(w — we)

the relaxation rates follow as (be aware of the relation —n(—w) =1+ n(w))

ka—ﬂ? — 27—“‘}3() ([1 + n(wabﬂjab,ba(waw + n<wba)f]a,b,ba<wba)>



finally, we demonstrate that in case of the Bloch model it is possible to change back from the
energy representation to the following operator notation of the QME

(ag—?)diss—Z{ Fasala)al, p(0)] = Raalb)alp@la) (bl } = D1 = 2,07 ladala(t)]b) 0

a,b

the first sum including an anti—commutator is exclusively determined by the energy relaxation rate
k., whereas the second sum incorporates the pure dephasing part ygjd);

once pure dephasing vanishes the whole dissipative part resembles what is often called the Lind-
blad form;

it is possible to derive this type of dissipative contribution to the equation of motion of the reduced
density operator in a more formal way starting from the assumption that the diagonal elements of
the reduced density operator have to be greater or equal to zero in any basis set;

this has been shown by Lindblad in the 1970s;

the advantage is that the condition p,,(t) > 0 is guaranteed by construction in contrast to the case

of the QME;



we proof the expression by changing to matrix elements
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64 Lindblad Form of Density Matrix Equations

in order to simplify the notation somewhat we assume yggcﬂ =0 and Hys = 0;
moreover we introduce so-called Lindblad operators as

Lch |a) (0|

as a result the full quantum master equation takes the form

. o o
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finally, we demonstrate how this notation can be used to change from a density matrix equation to
an equation of motion for a particular observable;

we introduce O as an operator representing a particular observable and being defined in the
system state space;

it's expectation value is obtained as

O(t) = ts{p(t)0} =< O > (1)

a related equation is immediately obtained as
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we arrange the right-hand side somewhat and obtain
0

—O(t) = %trs{ p(H)[Hs, 0] } =3 zb: kosptrsd p(t) ( L Lan O], — zL;;bOLab)}

this can be written in a more compact form as

1, A 7 A 1 e s o
5 < O > (t) = 7 < |Hs, O] _ > (t) — 5%: Koy < | L, Lap, OL —2L5 0Ly > (t)

the RDO is hidden in this notation what makes it ready for particular approximations (factoriza-
tions) of the bracket terms;



