
6 The The Quantum Master Equation in Energy Representation

we transform the QME into the energy (state) representation with respect to the system Hamilto-

nian; suppose we have solved the eigenvalue problem for HS

HS|a〉 = Ea|a〉

the reduced density matrix (RDM) is given by

ρab(t) = 〈a|ρ̂(t)|b〉

the matrix elements of the system part of the system-reservoir coupling read

〈a|Ku|b〉 = K
(u)
ab

the energy representation offers the advantage that

US(τ )|a〉 = e−iEaτ/~|a〉 ≡ e−iωaτ |a〉

we take respective matrix elements of the equation of motion for the RDO (note the introduction

of transition frequencies ωab = ωa − ωb)
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the dissipative part is firstly considered in it’s non–Markovian version
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introducing two times complete sets of system states results in
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a rearrangement of terms gives
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a more compact notation of this equation is achieved by introducing the tetradic matrix called

memory matrix

Mab,cd(t) =
∑

u,v

Cuv(t)K
(u)
ab K

(v)
cd

it satisfies the relation

M ∗
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the dissipative part of the non-Markovian density matrix equation reads
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one can proof that the total occupation probability of the different eigenstates of HS are conserved,

i.e.
∑

a ∂ρaa/∂t = 0; since the reservoir is at temperature T the density matrix displays the limiting

behavior
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6.1 Multi-Level Redfield Equations

we carry out the Markov approximation

ρab(t− τ ) = 〈a|ρ̂(t− τ )|b〉 ≈ 〈a|U+
S (τ )ρ̂(t)US(τ )|b〉 = eiωabτρab(t)

and obtain
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the time integrals can be viewed as half–sided Fourier transforms of the memory functions;

these complex quantities define the dissipative part of the QME in the Markov approximation;

their real part describes an irreversible redistribution of the amplitudes contained in the various

parts of reduced density matrix;

the imaginary part introduces terms which can be interpreted as a modification of the transition

frequencies and the respective mean-field matrix elements;



they can be accounted for by changing the energy scale or adjusting the transition frequencies;

therefore, we restrict ourselves to the discussion of the real part only leading to the following

(damping) matrix

Γab,cd(ω) = Re
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the dissipative part of the QME in the state representation becomes
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we introduce the relaxation matrix

Rab,cd = δa,c
∑

e

Γbe,ed(ωde) + δb,d
∑

e

Γae,ec(ωce)− Γca,bd(ωdb)− Γdb,ac(ωca)

the dissipative contribution to the reduced density matrix equations of motion can be finally written

as
(

∂ρab
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)

diss.

= −
∑

cd

Rab,cdρcd(t)

the tetradic relaxation matrix is frequently termed Redfield tensor after A. G. Redfield who intro-

duced it in the theory of nuclear magnetic resonance spectroscopy in the early sixties;

since the density matrix elements can be distinguished as populations (a = b) and coherences

(a 6= b) it is reasonable to discuss Rab,cd according to its effect on the dynamics of ρaa and ρab;



6.1.1 Population transfer: a = b, c = d

the respective matrix elements of the Redfield tensor can be written as

Raa,cc = 2δa,c
∑

e

Γae,ea(ωae)− 2Γca,ac(ωca) = δa,c
∑

e

ka→e − kc→a

we introduced the rate ka→b for the transition from state |a〉 to state |b〉 according to

ka→b = 2Γab,ba(ωab) = 2Re

∞
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∞
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the two terms on the last line can be combined to give

ka→b =

∫

dτ eiωabτMab,ba(τ ) ≡ Mab,ba(ωab)

using the definition of the memory matrix we obtain an alternative expression for the energy relax-

ation rates

ka→b =
∑

u,v

Cuv(ωab)K
(u)
ab K

(v)
ba

the rate for a particular transition is determined by the matrix elements of the operators Ku and by

the value of the correlation function taken at the respective transition frequency, Cuv(ω = ωab);

this last dependence can be viewed as a “probing” of the spectral density at this frequency;



in terms of the harmonic reservoir model this implies that there has to be a reservoir oscillator

mode which can absorb or emit a reservoir quantum at the transition frequency of the system;

since the transitions between the system states are therefore accompanied by energy dissipation

into the reservoir, the rates are also called energy relaxation rates;

we can proof that the principle of detailed balance is fulfilled

ka→b =
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Cvu(ωab)K
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ab K
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6.1.2 Coherence dephasing: a 6= b, a = c, b = d

in this case we have

Rab,ab ≡ γab =
∑

e

(Γae,ea(ωae) + Γbe,eb(ωbe))− Γaa,bb(0)− Γbb,aa(0)

the expression determines the damping of the off–diagonal elements of the reduced density ma-

trix;

these are called coherences since they represent phase relations between different states;

the decay of coherences is known as the dephasing process, and the γab are called dephasing

rates;

we notice that the first part of the dephasing rate can be written as γa + γb where γa and γb equals

half of the relaxation rates;

within the present model energy relaxation is a source of coherence dephasing;

the second part denoted by γ
(pd)
ab is defined by the reservoir correlation function at zero frequency,

i.e., it represents an elastic type of collision where no energy is exchanged between system and

reservoir;

these rates are usually named pure dephasing rates and we write

γab =
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ab
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γ
(pd)
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K(u)
aa K
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6.1.3 Remaining Elements of Rab,cd

we can distinguish the following transitions induced by Rab,cd;

first coherences can be transferred between different pairs of states: ρab → ρcd (Rab,cd);

second, populations can change to coherences: ρaa → ρcd (Raa,cd);

and finally, the coherences can be transformed into populations: ρab → ρcc (Rab,cc);

as a consequence there is a mixing between different types of reduced density matrix elements;



6.2 The Secular Approximation

in order to see under what conditions the mixing between population and coherence type density

matrix elements can be neglected we change to the interaction representation
(

∂ρ
(I)
ab

∂t

)

diss

= −
∑

cd

Rab,cd e
i(ωab−ωcd)(t−t0)ρ

(I)
cd (t)

the right–hand side contains various contributions which oscillate with the combined frequency

ωab − ωcd;

all contributions to the equations of motion where 1/|ωab − ωcd| is much smaller than the time in-

crement ∆t for which the QME is solved will cancel each other upon integration of the equations

of motion due to destructive interference;

let us suppose that we can neglect all those contributions to the dissipative part for which the

condition 1/|ωab − ωcd| ≪ ∆t is fulfilled;

there are at first glance two types of contributions which cannot be neglected since |ωab − ωcd| = 0

holds;

these are related to those elements of Rab,cd which were discussed as cases (1) and (2) in the

previous section;



however, for systems with degenerate transition frequencies such as a harmonic oscillator |ωab −

ωcd| = 0 can be fulfilled even if Rab,cd belongs to the category (3) of the previous section;

in general the approximation which builds upon the consideration of only those terms in the dis-

sipative part of the QME for which |ωab − ωcd| = 0 holds is called secular approximation; it is also

often also termed

myred rotating wave approximation;

note that within the Markov approximation the smallest possible time step, ∆t, is determined by

the memory time τmem;

if, however, in systems with nearly degenerate transition frequencies the condition 1/|ωab − ωcd| >

τmem is realized the secular approximation determines the coarse graining of the time axis and

therefore imposes a lower limit on the time resolution of the reduced density matrix;

thus, we have seen that even in the secular approximation there is a chance that populations and

coherences are coupled via Rab,cd; if we neglect this coupling, i.e. if we suppose that |ωab−ωcd| = 0

holds only in the cases (1) and (2) of the previous section we are at the level of the so–called

Bloch model
(

∂Pa

∂t

)

diss

= −
∑

c

Raa,ccPc(t)

and
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∂ρab
∂t

)

diss

= −(1− δab)Rab,abρab



the Redfield tensor does not mix diagonal and off–diagonal elements of the reduced density ma-

trix; we can consider the equations for the populations and the coherences separately;



6.3 State Expansion of the System-Reservoir Coupling

we introduce an expansion of HS−R in the eigenstates of HS:

HS−R =
∑

a,b

〈a|HS−R|b〉|a〉〈b|

it is a special version of the factorized ansatz for the system–reservoir interaction Hamiltonian;

we have to identify the index u with (ab), Ku with |a〉〈b| (i.e. K
(u)
cd = δc,aδd,b), and Φu with 〈a|HS−R|b〉;

the Ku–operators do not represent Hermitian operators;

in a first step we set

〈a|HS−R|b〉 ≡ Φab =
∑

ξ

~ωξgab(ξ)Qξ

the (energy) relaxation rates are obtained as ka→b = Cab,ba(ωab)

we get for the correlation function

Cab,cd(ω) = 2πω2[1 + n(ω)] [Jab,cd(ω)− Jab,cd(−ω)]

where we introduced the generalized spectral density Jab,cd(ω) =
∑

ξ

gab(ξ)gcd(ξ)δ(ω − ωξ)

the relaxation rates follow as (be aware of the relation −n(−ω) = 1 + n(ω))

ka→b = 2πω2
ab

(

[1 + n(ωab)]Jab,ba(ωab) + n(ωba)Jab,ba(ωba)
)



finally, we demonstrate that in case of the Bloch model it is possible to change back from the

energy representation to the following operator notation of the QME

(

∂ρ̂(t)

∂t

)

diss

= −
∑

a,b

{1

2

[

ka→b|a〉〈a|, ρ̂(t)
]

+
− ka→b|b〉〈a|ρ̂(t)|a〉〈b|

}

−
∑

a,b

(1− δa,b)γ
(pd)
ab |a〉〈a|ρ̂(t)|b〉〈b|

the first sum including an anti–commutator is exclusively determined by the energy relaxation rate

ka→b whereas the second sum incorporates the pure dephasing part γ
(pd)
ab ;

once pure dephasing vanishes the whole dissipative part resembles what is often called the Lind-

blad form;

it is possible to derive this type of dissipative contribution to the equation of motion of the reduced

density operator in a more formal way starting from the assumption that the diagonal elements of

the reduced density operator have to be greater or equal to zero in any basis set;

this has been shown by Lindblad in the 1970s;

the advantage is that the condition ρaa(t) ≥ 0 is guaranteed by construction in contrast to the case

of the QME;



we proof the expression by changing to matrix elements
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}
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∑
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6.4 Lindblad Form of Density Matrix Equations

in order to simplify the notation somewhat we assume γ
(pd)
ab = 0 and Hmf = 0;

moreover we introduce so-called Lindblad operators as

L̂+
ab = |a〉〈b|

as a result the full quantum master equation takes the form

∂
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i
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[
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L̂+
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]

+
− 2L̂abρ̂(t)L̂

+
ab

)

finally, we demonstrate how this notation can be used to change from a density matrix equation to

an equation of motion for a particular observable;

we introduce Ô as an operator representing a particular observable and being defined in the

system state space;

it’s expectation value is obtained as

O(t) = trS{ρ̂(t)Ô} =< Ô > (t)

a related equation is immediately obtained as

∂
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+
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+
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we arrange the right–hand side somewhat and obtain

∂

∂t
O(t) =

i

~
trS

{

ρ̂(t)
[

HS, Ô
]

−
} −

1

2

∑
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ka→btrS{ρ̂(t)
(

[
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abL̂ab, Ô

]

+
− 2L̂+

abÔL̂ab

)}

this can be written in a more compact form as

∂

∂t
< Ô > (t) =

i

~
<
[

HS, Ô
]

−
> (t)−

1

2

∑

a,b

ka→b <
[

L̂+
abL̂ab, Ô

]

+
− 2L̂+

abÔL̂ab > (t)

the RDO is hidden in this notation what makes it ready for particular approximations (factoriza-

tions) of the bracket terms;


