
CHAPTER II

Open System Stochastic Schrödinger Equation

1 Introduction

the open system description via a stochastic Schrödinger equation is based on the assumption

that a set of properly generated state vectors |ψζ(t)〉 are ready to defined the RDO

ρ̂(t) =
1

N

∑

ζ

|ψζ(t)〉〈ψζ(t)|

the |ψζ(t)〉 are the solution of a time-dependent Schrödinger equation extended by terms due to

the system-reservoir coupling;

those have some random character;

if the related time-dependent but random contributions to the Schrödinger equation are counted

by ζ, the RDO is obtained as an average with respect to these random (stochastic) processes;

the determination of the RDO by the various |ψζ(t)〉 is called stochastic unraveling of the RDO

dynamics;

two variants of stochastic Schrödinger equations exist:

(a) approach based on so-called quantum jumps

(b) approach based quantum state diffusion



while it is of general interest if such a view on open system quantum dynamics is possible there is

also a practical (computational) aspect;

let us denote the states used to form density matrix elements as |a〉;
their total number to be considered is N ;

accordingly N ×N density matrix elements have to be computed;

if we expand the stochastic Schrödinger equation with respect to the |a〉 we need to compute N

expansion coefficients;

however, this has to be done several times to carry out the average with respect to the different

realizations of the stochastic process;

there are various examples where this number is much smaller than N ; it may result much less

overall propagation than N 2;



1.1 Unraveling of the RDO Dynamics

non-Markaovian equation of motion for the RDO (mean-field contributions shall not exist; t0 = 0)

∂

∂t
ρ̂(t) = − i

~
[HS, ρ̂(t)]−

−
∑

u,v

t
∫

0

dτ
(

Cuv(τ )
[

Ku, US(τ )Kvρ̂(t− τ )U+

S
(τ )

]

−
− Cvu(−τ )

[

Ku, US(τ )ρ̂(t− τ )KvU
+

S
(τ )

]

−

)

respective RDO dynamics can be obtained by the solutions of the non-Markovian stochastic

Schrödinger equation

i~
∂

∂t
|ψ(t)〉 = HS|ψ(t)〉 +

∑

u

ηu(t)Ku|ψ(t)〉 − i~
∑

u,v

t
∫

0

dτCuv(τ )KuUS(τ )Kv|ψ(t− τ )〉

wave function depends on the realization of the complex noise ηu(t): |ψ(t)〉 → |ψ(t; η)〉
RDO shall follow as the stochastic average

ρ̂(t) =< |ψ(t; η)〉〈ψ(t; η)| >η

properties of the complex coloured noise

< ηu(t) >η= 0 < ηu(t)ηu(τ ) >η= 0 < η∗u(t)ηu(τ ) >η= Cuv(t− τ )

how this scheme works in detail has to be derived;



2 Quantum Jump Description: Monte Carlo Wave-Function Propagation

the procedure to be described is named quantum jump method in contrast to the quantum diffusion

method where the wave function changes continuously in times;

we take the dissipative part of the density operator equation in the Lindblad-form

−DL ρ̂(t) = −
∑

A

{1

2

(

LAL
+

A, ρ̂
)

+

− L+

Aρ̂LA

}

it has to be specified separately in which manner the Lindblad-operators L+

A and LA act and what

the meaning of the labels A is;

based on this type of dissipative superoperator one determines a bundle of N different time-

dependent wave-functions (state vectors) |ψη(t)〉 which are generated according t0 the so-called

Monte Carlo Wave-Function (MCWF) method time-step δt by time-step δt; the resulting RDO shall

fulfill
∂

∂t
ρ̂ = − i

~

(

(HS +∆H)ρ̂− ρ̂(HS +∆H+)
)

+
∑

A

L+

Aρ̂LA

the anti-Hermitian contribution

∆H = −i~
∑

A

LAL
+

A/2

is added to the Hamiltonian HS;



if one starts with |ψ(t)〉 at time t one determines the change of the state vector linear in δt; we get

a state vector at time t + δt which is not normalized to one

|ψ̃(t + δt)〉 =
(

1− i

~
(HS +∆H)δt

)

|ψ(t)〉

instead we get the norm as

〈ψ̃(t + δt)|ψ̃(t + δt)〉 ≈ 1 + 〈ψ(t)|
( i

~
(HS +∆H+)− i

~
(HS +∆H+)|ψ(t)〉δt = 1− δN

the reduction δN of the proper normalization (linear in δt) reads

δN = − i

~
〈ψ(t)|∆H+ −∆H|ψ(t)〉δt =

∑

A

〈ψ(t)|LAL+

A|ψ(t)〉δt ≡
∑

A

δNA

choosing a random number ε between zero and one we introduce a so-called quantum jump if

ε < δN (since δN is a small number the quantum jump is a relatively rare event); this jump has to

be carried out according to

|ψ(t + δt)〉 = 1
√

δNA/δt
L+

A|ψ(t)〉

which operator L+

A has to be used is decided in proportion to the probability distribution δNA/δN ;



if ε > δN the obtained state vector is only normalized , and we set at time t + δt

|ψ(t + δt)〉 = 1√
1− δN

|ψ̃(t + δt)〉

according to the randomness of this procedure one may generate different time-dependent state

vectors |ψη(t)〉; then, the density matrix can be constructed as indicated above;

the given procedure has not been directly derived; accordingly we cannot decide if the time-

evolution of a single wave function has any meaning; but its reliability to produce the correct RDO

is justified by the fact that the RDO generated in this way obeys the standard quantum master

equation;

in order to demonstrate this the time-evolution from t to t + δt is analyzed;

we consider a |ψη(t)〉 of a particular propagation up to time t;

the average at time t + δt with respect to the random numbers ε is obtained as (η is not written)

< |ψ(t + δt)〉〈ψ(t + δt)| >= (1− δN )
|ψ̃(t + δt)〉√

1− δN
〈ψ̃(t + δt)|√

1− δN
+ δN

∑

A

δNA

δN
L+

A|ψ(t)〉
√

δNA/δt

〈ψ(t)|LA
√

δNA/δt

the term ∼ 1 − δN corresponds to the averaged contribution of that part of the evolution which

proceeds in the absence of quantum jumps (the overall probability is 1− δN ); quantum jumps are

considered via the term ∼ δN (the overall probability of quantum jumps is δN );



it follows

< |ψ(t + δt)〉〈ψ(t + δt)| >= |ψ̃(t + δt)〉〈ψ̃(t + δt)| +
∑

A

L+

A|ψ(t)〉〈ψ(t)|LAδt

=
(

1− i(HS +∆H)δt/~
)

|ψ(t)〉〈ψ(t)|
(

1 + i(HS +∆H+)δt/~
)

+
∑

A

L+

A|ψ(t)〉〈ψ(t)|LAδt

≈ |ψ(t)〉〈ψ(t)| − δt
i

~

[

HS, |ψ(t)〉〈ψ(t)|
]

− − δt
1

2

∑

A

[

LAL
+

A, |ψ(t)〉〈ψ(t)|
]

+
+ δt

∑

A

L+

A|ψ(t)〉〈ψ(t)|LA

according to the relation

ρ̂(t) = lim
N→∞

N
∑

η=1

1

N
|ψη(t)〉〈ψη(t)|

we average over all values of |ψη(t)〉 and arrive at the original quantum master equation

1

δt
lim
N→∞

N
∑

η=1

1

N

(

|ψη(t + δt)〉〈ψη(t + δt)| − |ψη(t)〉〈ψη(t)|
)

=
∂

∂t
ρ̂(t) = − i

~
[HS, ρ̂(t)]− −DLρ̂(t)


