3 Quantum State Diffusion Method I: Approach of Gaspar and Nagaoka

we follow the procedure of P. Gaspard and M. Nagaoka published in J. Chem. Phys. 111, 5676
(1999);

3.1 System—Reservoir Separation

to generate a stochastic Schrodinger equation we note the system—reservoir separation of the
Hamiltonian what results in the following standard Schrodinger equation
O \W(8)) = (s + Hs s + H) ()
we introduce the complete basis in the state space of the reservoir |«a)
Hg|o) = Eq|a)
if the reservoir is considered as a huge set of decoupled harmonic oscillators we have

Eo =) hwe(Ne+1/2)
3

due to the large number of oscillators which contribute, the degeneracy of the energy levels is
huge; many reservoir states |a) = [ [ | V) affect the active system in a similar way;



an expansion of the total state vector |U(¢)) with respect to the |«) gives
U(t)) =) [éalt))|a

the state vector

[a(t)) = (| (1))
is the projection of the total state vector onto a particular reservoir state |«); it is exclusively defined
in the system state space; the normalization of W(t) results in

L= (UOU(®) =) (da(t)|alt) Zpa

(07

pa(t) = (0a(t)|Pa(t)) is the probability at time ¢ to have the particular reservoir state |a) involved in

the idea behind the derivation of a stochastic Schrodinger equation is that the different state
vectors ¢,(t) behave in a random way not only because of their mutual interaction under the
time-evolution but also because of the large number of these states;

indeed, the bath’s density of energy levels is very high so that the energy spectrum is very dense;
since each eigenenergy of the bath is associated with a state vectors ¢,(t) in the decomposition
we may understand that the time evolution of a typical state vector is affected by a very large set
of state vectors;



An Additional Remark

we consider Og as an operator which exclusively acts in the active system state space; it's ex-
pectation value follows as

Os(t) = (U()|O0s[ (1)) = > (a(t)|Os|a(t)) = trs{5(t)Os}

(0%

the density operator like expression () takes the form
&(t) - Z ‘¢a(t)><¢a(t)‘ - Zpa(t)|§ga(t)><§ga(t)|

we introduced
Pa(t) = (@a(t)]|Palt))
and the normalized state vectors

‘q;a(t» = |¢a(t)>/pa(t)



we expand the time—dependent Schrddinger equation

i (@ (1)) = i [} = (o (Hs+ Hs_n+ Hr) 5 69(0018) = (st B oult)+3 (ol Hs-al )10}
8

= (Hs + E,)|a(t) +§‘K Y (@|®,|8)| 65 (t)

the time evolution of a typical coefficient, such as ¢,(t) taken from all these coefficients, is affected
by a very large set of coefficients which are coupled to it by the coupling matrix elements (x|, |5);
to highlight this we change to a modified interaction representation according to

[Gi(t)) = e ST g (1))

and obtain 5
zham( ) =>_ K@) (k0P (t)]8)ds(t))
u B
note
KI(LI) (t) _ eiHSt/hKu(t)e—iHSt/h
and

(k|OD()|8) = e (5] Py|B)
we assume (k|®,|k) = 0; then, ¢,(t) does not appear on the right-hand side of the equation of
motion for this function;



the aim of the subsequent manipulations is the derivation of a closed (and approximate) equation
for ¢,.(t) (an equation where ¢,(t) also appears on the right-hand side); therefore we start with the
derivation of an equation for ¢4(t)

165()) = |35(0 /wzw 1S (8100 ()8 (7))
g

we approximate the right—hand side by taking from the whole g’—sum only the single term with

B =k
65(1)) ~ [d5(0) /mZKIﬂ@>www

the equation of motion for \éﬁ( t)) takes the form

O 16.(0) = 32 KD Y {s180(0)]9) 65(0)

B

.%megy@ /WZK15@>MWW

B

= SR Y B (0)]8)165(0) /mzw WEL(E) Y kIO O18) 8100 ()] (7))
u 8



the p—sum in the last term on the right—hand side can be removed and we finally obtain

m%@ﬁ(t» =Y K1) Y (w2 (1)18)]6(0))

B
5 [ a3 KPOED 60080 (7)10) 6.(7)

we derived an equation of motion for |4, (t)) where this particular state is only determined by matrix
elements formed by the other states and by their initial values; an appropriate handling of these
quantities will lead to the required stochastic Schrodinger equation;



3.2 Projection Operator Method

the procedure introduced in the preceding section is generalized by using the standard projection
operator scheme: we introduce the projector on a representative reservoir state |\)

P = 15|\ (|
the orthogonal complement is
—1-P=15) |a){al
)
it follows
PU(1)) = [éa(1))|N)
and

QU(t) = [a(t))

aFN
we change to the interaction representation

U (t)) = Uo(t)|W(t))
with Uy(t) = exp(—i(Hs + Hg)t/h) and arrive at

(W) = U (t) ) I¢a(t) Z e ISR M6, (1)) Z [ba(t)



we use

[Ga(t)) = e ISRV 6, (1))
and obtain
PlUO(t)) = 15| A) (A[[D (1)) = [9a(£)) |N)
noting the time—dependent Schrodinger equation in the interaction representation

i U0(0) = HYn(0)] 200

we may deduce

o .

iha PO () = PH ()P x PIUO(0) + PHY(Q x QUUW(1)

and
i QUI(1) = QHSy ()P x PIVO (1) + QH,()Q x Qv (1))
to achieve a formal solution of the latter equation we introduce
A ?

So(t) = Texp( - /0 dr QH@R(T)Q)

and get

QM) = oA ~ 5 | dr Solt = IQHL (1P x PIYO(r)



inserting this equation into the one for P|U((t)) gives

mgﬂwwmzﬁm&ﬁwxﬁww»+Pmnxm 2(1)Qr(0))

i [ ar PHL0Q % Solt — 1) x QHg(r)P x PO
0

for a further treatment all expressions of HS)R combined with the projectors are calculated

PH{ (6)P = 14 \) MZKI () 1| AV (A = ZK JIONE S GIRVIPION
and A )
PHY L (1)Q = 1IN KD 0)2D ()15 Y |a)(a
U aFEN
=Y KLY APD(H)]e) A al
U aFN
and ) )
QHY ()P =" KM (1) Y (aldl* () A)a) (A
U aFEN
and finally

QHS ()@ =D K1) YD (al®()|8)]a) (8

aAN BAN



3.3 Second Order Expansion

for further considerations we concentrate on a second order with respect to the system reservoir
coupling; therefore we approximate
A )

t R I R
Solt) ~ 1~ = / dr QHY . (T)Q

0

it gives
D . S . . ot
ihse PV () &~ PHY (1P x PROO(®) + PHY (0Q(1 - / dr QHY(1)Q) Q¥ (0))

we further note

and

A

PH{ ()P x P ZKI PPNV A (A (1)) | A)
—ZKI IGINENGIEY

this term vanishes since we assume <>\|<I>u (t)|A) = 0;



next we compute

P 0Q(1- 5 [ dr QH(Q) QIO -

S KPS MBI (0)]o) ) (o 1——/dTZK ) S (el @I) 1) S 80

u a# QAN BIAN B#N

—ZK ) ) (AR (D)) [A)@a(0))

aFN

L / ir 3RO 303 (8D (010} W) o) 19),(0)

AN\ BEN

N D 3 AR 0]l

aF#N\
-t
1 ~
W3 [ dr S EDOKDD T Y Mol B]a) (ale(n)])16,0)
0 U A\ BEN
we again assume (\|®\”(#)|\) = 0 and obtain

> (e Dlay(alel) (7)18) = (Aol ()2 (1)]5)

aFN



finally we calculate |
[ ar PHO 0@ < QHE P x P =
L / dr SR S (OOl ) el 32K ) 3 (0 IS Al )
a#\ B4N

— e / a2 EPOET ) S (el elel (I )

aFEN



multiplying the equation of motion with (\| gives (note the assumption ¢/ = ®,)

%\QBA@»—ZKI()Q@ (1) A)|a(t) +ZK ) > (A2 (B)]a)|oa(0))

aF#N
“/ dr 3 KDOKD) S (N0 I3 ds(0)
B#A
L / a3 EPOET OO

we note ()\|<I>§}>(t)])\> = () in the first term on the right—hand side and get

o161 = KO3 (e0]a) x [6(0)

aF\

__/ dr ZK OED(T) D AR ) (7)18) x [65(0)

B#A

__/ dr ZK YA PD (DD (T)|A) x (7))



we introduce the forcing term

= D EDO 3 (ol Dla) x 6,0}

aF#N\
__/ dr ZKI (KW (r ; APW()DD (T)]ar) X |da(0))

it is determined by the initial state, it acts as a stochastic force due to the reservoir fluctuations;
the remaining term with |, (7)) at earlier time 7 represents the damping term; it follows

o 16a(1)) = Fa(t) — 1 /dTZK P MR (1)@ (r) A) (1)

the forcing term can be rewritten as

= D EDO 3 (ol la) x 6,0}

aFEN
+) KDY (A0 dT (7)Y {Ble(T)]e) x |64 (0))
u B aF\
= ZKfLI)(t) > (Al% (H)|a)
u aFN

{6u0)) —+ [ dr S KDY (]2l (n)]8) x 165(0))

v BF#N



in the last term an interchange of « and 5 has been taken; comparing the expression in the wavy
bracket with the integrated time—dependent Schrodinger equation

6a(t) = 16,(0) = 5 [ 4 ST KPR) S (ko) 13)165(7)

B
we realize the following notation
Byt) =Y KDY (el 0)]a) x |66 (1))
u aFN

where |$S)(t)> is the time—dependent state vector determined in the first order of the system—
reservoir coupling; we will make use of this result later;



3.4 Statistical Typicality

in order to obtain a stochastic differential equation, we need to assume that the [0A(1)) represent
statistically each one of the |¢,(t)) of the linear decomposition

[TO(@) = [6alt))]e)

of the total wave function in the interaction picture;

in this sense, we should assume that all the |4, (t)) behave similarly and form a statistical ensem-
ble for which |¢,(t)) is a typical representative; this assumption shall be called the assumption of
statistical typicality;

the assumption of statistical typicality can be justified if the bath subsystem is classically chaotic;
namely, the average of a bath operator B over a typical eigenstate |)\) is essentially equivalent
to a classical average over the microcanonical statistical ensemble at the energy equal to the
eigenenergy FE,; this behavior has its origin in the property that typical eigenfunctions are sta-
tistically irregular at high quantum numbers; moreover, since the bath is a large subsystem, this
microcanonical average is essentially equivalent to a canonical average

(AB|A) & trp{ Re B}

where |
Req = ge—HR/kBT



as a consequence of the assumption of statistical typicality of the |¢,(t)) we obtain for the correla-
tion function in the damping term of the time—dependent Schrédinger equation (note the assump-
tion o'V = o)

AR (1)|A) & trr{ Reg® (1) (1)} = B2 Cun(t — 7)

)
J

the form of the damping term should be essentially independent of the particular state vector that
has been chosen among the ensemble of state vectors; obviously the correlation function is the
one appearing in the standard quantum master equation;

in order to obtain the typical behavior of the forcing term, we need to make assumptions on the
initial condition of the total wave function;
|W(t =0)) is assumed to be a pure state; in order to construct it we assume

(W(0)]O]W(0)) = tr{|1(0)) (1 (0)| RegO}

¥(0) is the system wave function at the initial time (it is normalized to 1) and O is an operator
acting in the complete state space of the system plus the reservoir;
we replace the reservoir part of the trace by an expansion with respect to the reservoir states |«)

(W(0)[O1W(0)) = > (altrs{|(0))((0)| RegO} ) = D fatrs{[(0)) (¥ (0)|{e]Ola)}

«

note
fa _ ie—Ea/kBT



the approximate equality for (¥(0)|O|¥(0)) can be established under the assumption that the initial
condition of the total wave function is given by

0(0) Z Vot )
the 6, are random phases distributed between 0 and 27; wWe obtain
(T()O[(0)) = Y (W(0)]\/Fae (| O/ f5¢"7|8) [1:(0))

.

an additional averaging with respect to the random phases would let remain the terms with o =
only; this gives the required result;
the introduced assumption for W (0) implies that the initial conditions of the ¢,(¢) related to the

decomposition
- Z 9a(l)) |

take the form N

[6(0)) = [6a(0)) = [¥(0)) v/ fae™
an important consequence of this relation is that all the initial functions are proportional to the
same initial wave function of the system; in particular, the chosen state vector |¢,(t)) is also pro-

portional to the same initial wave function because the relation also holds for the special function
with a = \; hence, we find that

‘qga(()» ~ ‘¢~)A(O)>6—(Ea—E)\)/2k:BT€z'(9a—9)\)



the forcing term becomes

~ 3K X PIEGla)e B BTG, 0)

aFEN
— / dr ZK DK (7)Y (AP ()0 (1) ayeFam PRI =006, (0))
aFN
R ZK D) Y (A@D(b)]aye Fam T ella=00| g, (1))
aFEN

in the last step we have supposed that the second term in the perturbative expansion gives an
approximation for the time evolution of |¢,(t));

we finally write 7
= 0KV (1)|6:(8))

nu(t) - Z <>\|(D§LI) (t)‘Q>e*(Ea*E,\)/QkBTei(eafe)\)

with the noise terms

aFEN
the Schrédinger equation can bewritten as
i (1) = SR 010 ~ / ir S KD OKD ORI OB W)

we may use the earl|er derived relation
AP (1)|A) ~ trp{Reg @) (1)) (7)} = K*Cou(t — 7)



3.5 Averaging with Respect to the Noise

the random distribution of the phases between 0 and 27 results in the following simple phase
averaging formula

21
< f6) = o /O a0 1(9)

it simply results
1 2

10 16
<e’ >op=— df e” =0
e ph o . (&
next we consider < ¢(¢+?) >on; here, 6 and ¢ may belong to different states of the reservoir; in this
case we get
it/

<) 5 =< > x < > =0
if they belong to the same state we arrive at

<e? > =0

if one considers, however < ¢i(0—¢) >,n We get also zero for the case that 6 and ¢’ belong to
different states of the reservoir; we get 1 if they belong to the same reservoir state; turning to an
averaging of expressions including different 7, (¢) we first consider

< nu(t) >pn= Y (AOP(t)]a)e FamPURRT < ¢illa=b) ) = 0
aFEN
the result is obtained since o # A;



next, we consider
< u(O)nu(7) >pn= Y (A@P(B)]a)e Fa BTN = (Ao D ()| g)eFo= /2T
A\ B
< a=0)),i(03—0)) > =0
finally we consider
< (1) >pn= Y (AP (t)]a)eFa BRI = (5100 (7)|\) e Fom P/ 2tnT
A\ B
< ¢a=0)) ,—i(05—0)) >
= PITN (Aol (t)]aye /T (o (1) A)
a#\
= ZePVBT (N0 () Reg @ (7)|A)
in order to obtain a typical value for these correlation functions we perform a thermal average
o~ Ex/kBT
< (7)) >pn= D (AP (1) Reg® M (7)|A)

Z
A A

= trr{ Req @ (1)@ (1)} = B*Cou(7,t) = K*C; (1, 7)

so we identify

< ()0 (1) >pn= R Cou(T, 1)
and

< Du()nu(7) >pn= B Cu(t, 7)



3.6 The Stochastic Schrodinger Equation

the reasoning used in the preceding section also allows to introduce the correlation funtion in the
damping term of the time—dependent Schrodinger equation; it follows

O 16:(1)) = 32 mOKD(Ol(0) — in / dr 3 KPOED (1)Cu(t = 7)l6n(r)

a single |¢\(t)) is representative for all |¢,(t)); so the quantum number \ can be removed; we
introduce

(1)) = e 0|6\ (1)) = B gy (1))

and arrive at
9 t ‘
i) = HSJU) + S mAn ) = ih [ dr 3 Cult = 1)Ko IS ()

if a statistical ensemble of initial states ;(0) is considered, the different ¢ ;(¢) obey the stochastic
Schrodinger equation (note the change from 7 to ¢t — 7)

0 ! ;
Zﬁa\%(t» = Hg|;(t)) + Znu(t)Ku‘¢/<t)> - Z.h/O dr Z Cuv(T)Kue_LHS(T)/hKvWj(t — 7))

U,V

the related density operator follows as

o < [95()) (%5t >pn
A = ij < (Qi(tl;(t)) >pn

J




the stochastic terms are defined via colored Gaussian noise (a single u is considered here only)
<n(t) >=0 < n(t)n(0) >=0 <" (t)n(0) >=C(¢)

such a noise can be generated according to
&t —7)+i&(t— 1)

oft) = [ dr (o =

& and & are two indipendent Gaussian white noise processes
< &i2(t) >=0 < &1(1)&(0) >=0 < &1(t)&1(0) >=< &(t)62(0) >=4(t)

the function R(7) which translates Gaussian white noise into colored Gaussian noise is defined by

(1) = /O S dr Rt +)R(7)



3.7 The Master Equation of the Stochastic Schrodinger Equation

we change back to |4(t)) and write

iﬁ%!@@» = AHY(1)|9(1)) —ih/O dr MY(t, 7)[(7))
— Z nu(t)Kng (t>

= Z KI(LI) (t>KZ(JI> (7)Cun(t — 7)
we construct a noise averaged density operator

o (t) =< () {S(t)] >pn

and derive an equation of motion; the solution of the Schrédinger equation up to the second order
in the system-—reservoir coupling reads

where we introduced

and

~ 1

500 = 160) & [t OG0 — 5, / ity [ des SHO ()0 H(1)/600)

0
1
/ it / dts MU (t1, ,)|6(0))



the noise averaged density operator follows as

6(t) = 5(0) + -5 / dt, / dty < AHY(t)a(0)AHD (1) >4

1 1
/dtl/ dty < AHY(t)AHY (1)) >, 6(0)— /dtl/ dty 5(0) < AHYDT(t)AHDF(8)) >
t1 1
/ dt1/ dtz tl,tg / dt1/ dtzO’ (tl,tz)

< AHYt)AHD (L) > =< AHVT () AHOT (1)) > =0

we note

and . t
— / dt, / dty < AHD(t)(0)AHY (1) >,
0 0
t t1
= / dt, / dty (< AHD(#)6(0)AHYT () >pn + < AHY ()6 (0)AHDT (¢1) >1)
0 0

note that the norm of |¢(¢)) does not change up to the second order in the system—reservoir
coupling;



so the density operator takes the form
o(t) = o(0)

1 t] 1 t t1
+ dt1 / dty < AHD(t)6(0)AHD () > | dt, /0 dty < AHD(t)6(0)AHD () >

3]
_/ dt, / dty (MW (t1,2)5(0) + 6(0) M (21, 1))
0 0

we remember < n,(t)ni(T) >pn~ CW(T t) and get

< AHD(t)6(0)AHD+ — 1 Z Choults — t1) KW (£)6(0) K V()

< AHO )6 (0)AHD* (1)) > = 2 Z Cuolts — t2) KD (£2)6(0) KD (1))

u

D(ty,t) = ZKI t1) KD (t2)Cl(t — to)

and
Tty ) = ZK (t2) KD (4)C* (£ — to)



before using these relations we changetor =t;and 7' =t; — ty, i.e. to =7 — 7
a(t) =a(0)

1
/ﬂh/nm ——<AHU()QMHmﬂT—%ﬁ%yW?<AHW&—%ﬁ@MH®Wﬂ>m

~MO (7,7 = )5(0) = 6(O)M (7, 7 — )}

and arrive at

tT ' T’ * (VKW (1)6 O (r — NKED(+ — 6 (0 (7
v [ [ S {Cu RN s KD =)+ Cule KD (= o0

—CW<7'/)KQ(LI)(T)K5D(T . 7_/)5_( ) C* ( )5.( >K<I)(T — T')K(D(T)}

the time—derivative gives

- / 'y {CL KD KD @ =) + Conl VKD (E = 7)o O)KD(2)
0 U, v



next, we remember

[(t)) = e 6(t))
and the fact that the reduced density operator p(t) which is related to the stochastic Schrodinger
equation is defined by |y (¢)); it follows

ﬁ(t) _ e—iHSt/hé_(t)e—iHst/h

we derive an equation for ﬁ( )

Sty = —5lts, o)+ [ dr S {umrLsto 0 O£

+CU,U(T)K5D(T)Us(t)&(())Ug(t)Ku_OW(T)KUKU(—T)Us(t)&(O)Ug(t)—O;U(T)Us(t)&(O)U;(t)Kgn(—T)Ku}

if in a consequent second—order theory the following identifcation is taken in the right—hand side
of the foregoing equation

Us(t)6(0)US (1) ~ p(t)
we have obtained the standard quantum master equation



