3 Quantum State Diffusion Method I: Approach of Gaspar and Nagaoka

we follow the procedure of P. Gaspard and M. Nagaoka published in J. Chem. Phys. 111, 5676 (1999);

3.1 System-Reservoir Separation

to generate a stochastic Schrödinger equation we note the system-reservoir separation of the Hamiltonian what results in the following standard Schrödinger equation

$$
i \hbar \frac{\partial}{\partial t}|\Psi(t)\rangle=\left(H_{\mathrm{S}}+H_{\mathrm{S}-\mathrm{R}}+H_{\mathrm{R}}\right)|\Psi(t)\rangle
$$

we introduce the complete basis in the state space of the reservoir $|\alpha\rangle$

$$
H_{\mathrm{R}}|\alpha\rangle=E_{\alpha}|\alpha\rangle
$$

if the reservoir is considered as a huge set of decoupled harmonic oscillators we have

$$
E_{\alpha}=\sum_{\xi} \hbar \omega_{\xi}\left(N_{\xi}+1 / 2\right)
$$

due to the large number of oscillators which contribute, the degeneracy of the energy levels is huge; many reservoir states $|\alpha\rangle=\prod_{\xi}\left|N_{\xi}\right\rangle$ affect the active system in a similar way;
an expansion of the total state vector $|\Psi(t)\rangle$ with respect to the $|\alpha\rangle$ gives

$$
|\Psi(t)\rangle=\sum_{\alpha}\left|\phi_{\alpha}(t)\right\rangle|\alpha\rangle
$$

the state vector

$$
\left|\phi_{\alpha}(t)\right\rangle=\langle\alpha \mid \Psi(t)\rangle
$$

is the projection of the total state vector onto a particular reservoir state $|\alpha\rangle$; it is exclusively defined in the system state space; the normalization of $\Psi(t)$ results in

$$
1=\langle\Psi(t) \mid \Psi(t)\rangle=\sum_{\alpha}\left\langle\phi_{\alpha}(t) \mid \phi_{\alpha}(t)\right\rangle \equiv \sum_{\alpha} p_{\alpha}(t)
$$

$p_{\alpha}(t)=\left\langle\phi_{\alpha}(t) \mid \phi_{\alpha}(t)\right\rangle$ is the probability at time t to have the particular reservoir state $|\alpha\rangle$ involved in $|\Psi(t)\rangle$;
the idea behind the derivation of a stochastic Schrödinger equation is that the different state vectors $\phi_{\alpha}(t)$ behave in a random way not only because of their mutual interaction under the time-evolution but also because of the large number of these states; indeed, the bath's density of energy levels is very high so that the energy spectrum is very dense; since each eigenenergy of the bath is associated with a state vectors $\phi_{\alpha}(t)$ in the decomposition we may understand that the time evolution of a typical state vector is affected by a very large set of state vectors;

An Additional Remark

we consider \hat{O}_{S} as an operator which exclusively acts in the active system state space; it's expectation value follows as

$$
O_{\mathrm{S}}(t)=\langle\Psi(t)| \hat{O}_{\mathrm{S}}|\Psi(t)\rangle=\sum_{\alpha}\left\langle\phi_{\alpha}(t)\right| \hat{O}_{\mathrm{S}}\left|\phi_{\alpha}(t)\right\rangle=\operatorname{tr}\left\{\hat{\sigma}(t) \hat{O}_{\mathrm{S}}\right\}
$$

the density operator like expression $\hat{\sigma}(t)$ takes the form

$$
\hat{\sigma}(t)=\sum_{\alpha}\left|\phi_{\alpha}(t)\right\rangle\left\langle\phi_{\alpha}(t)\right|=\sum_{\alpha} p_{\alpha}(t)\left|\tilde{\phi}_{\alpha}(t)\right\rangle\left\langle\tilde{\phi}_{\alpha}(t)\right|
$$

we introduced

$$
p_{\alpha}(t)=\left\langle\phi_{\alpha}(t) \mid \phi_{\alpha}(t)\right\rangle
$$

and the normalized state vectors

$$
\left|\tilde{\phi}_{\alpha}(t)\right\rangle=\left|\phi_{\alpha}(t)\right\rangle / p_{\alpha}(t)
$$

we expand the time-dependent Schrödinger equation

$$
\begin{aligned}
i \hbar \frac{\partial}{\partial t}\langle\alpha \mid \Psi(t)\rangle=i \hbar \frac{\partial}{\partial t}\left|\phi_{\alpha}(t)\right\rangle & =\langle\alpha|\left(H_{\mathrm{S}}+H_{\mathrm{S}-\mathrm{R}}+H_{\mathrm{R}}\right) \sum_{\beta}\left|\phi_{\beta}(t)\right\rangle|\beta\rangle=\left(H_{\mathrm{S}}+E_{\alpha}\right)\left|\phi_{\alpha}(t)\right\rangle+\sum_{\beta}\langle\alpha| H_{\mathrm{S}-\mathrm{R}}|\beta\rangle\left|\phi_{\beta}(t)\right\rangle \\
& =\left(H_{\mathrm{S}}+E_{\alpha}\right)\left|\phi_{\alpha}(t)\right\rangle+\sum_{u} K_{u} \sum_{\beta}\langle\alpha| \Phi_{u}|\beta\rangle\left|\phi_{\beta}(t)\right\rangle
\end{aligned}
$$

the time evolution of a typical coefficient, such as $\phi_{k}(t)$ taken from all these coefficients, is affected by a very large set of coefficients which are coupled to it by the coupling matrix elements $\langle k| \Phi_{u}|\beta\rangle$; to highlight this we change to a modified interaction representation according to

$$
\left|\phi_{\kappa}(t)\right\rangle=e^{-i\left(H_{\mathrm{S}}+E_{\kappa}\right) t / \hbar}\left|\tilde{\phi}_{\kappa}(t)\right\rangle
$$

and obtain

$$
i \hbar \frac{\partial}{\partial t}\left|\tilde{\phi}_{\kappa}(t)\right\rangle=\sum_{u} K_{u}^{(\mathrm{I})}(t) \sum_{\beta}\langle\kappa| \Phi_{u}^{(\mathrm{I})}(t)|\beta\rangle\left|\tilde{\phi}_{\beta}(t)\right\rangle
$$

note

$$
K_{u}^{(1)}(t)=e^{i H_{5} t / \hbar} K_{u}(t) e^{-i H_{\mathrm{S}} t / \hbar}
$$

and

$$
\langle\kappa| \Phi_{u}^{(\mathrm{I})}(t)|\beta\rangle=e^{i \omega_{k \beta} \beta^{t}}\langle\kappa| \Phi_{u}|\beta\rangle
$$

we assume $\langle\kappa| \Phi_{u}|\kappa\rangle=0$; then, $\tilde{\phi}_{k}(t)$ does not appear on the right-hand side of the equation of motion for this function;
the aim of the subsequent manipulations is the derivation of a closed (and approximate) equation for $\tilde{\phi}_{k}(t)$ (an equation where $\tilde{\phi}_{k}(t)$ also appears on the right-hand side); therefore we start with the derivation of an equation for $\tilde{\phi}_{\beta}(t)$

$$
\left|\tilde{\phi}_{\beta}(t)\right\rangle=\left|\tilde{\phi}_{\beta}(0)\right\rangle-\frac{i}{\hbar} \int_{0}^{t} d \tau \sum_{v} K_{v}^{(\mathrm{I})}(\tau) \sum_{\beta^{\prime}}\langle\beta| \Phi_{v}^{(\mathrm{I})}(\tau)\left|\beta^{\prime}\right\rangle\left|\tilde{\phi}_{\beta^{\prime}}(\tau)\right\rangle
$$

we approximate the right-hand side by taking from the whole β^{\prime}-sum only the single term with $\beta^{\prime}=\kappa$

$$
\left|\tilde{\phi}_{\beta}(t)\right\rangle \approx\left|\tilde{\phi}_{\beta}(0)\right\rangle-\frac{i}{\hbar} \int_{0}^{t} d \tau \sum_{v} K_{v}^{(\mathrm{I})}(\tau)\langle\beta| \Phi_{v}^{(\mathrm{I})}(\tau)|\kappa\rangle\left|\tilde{\phi}_{\kappa}(\tau)\right\rangle
$$

the equation of motion for $\left|\tilde{\phi}_{k}(t)\right\rangle$ takes the form

$$
\begin{gathered}
i \hbar \frac{\partial}{\partial t}\left|\tilde{\phi}_{k}(t)\right\rangle=\sum_{u} K_{u}^{(\mathrm{I})}(t) \sum_{\beta}\langle\kappa| \Phi_{u}^{(\mathrm{I})}(t)|\beta\rangle\left|\tilde{\phi}_{\beta}(0)\right\rangle \\
-\frac{i}{\hbar} \sum_{u} K_{u}^{(\mathrm{I})}(t) \sum_{\beta}\langle\kappa| \Phi_{u}^{(\mathrm{I})}(t)|\beta\rangle \int_{0}^{t} d \tau \sum_{v} K_{v}^{(\mathrm{I})}(\tau)\langle\beta| \Phi_{v}^{(\mathrm{I})}(\tau)|\kappa\rangle\left|\tilde{\phi}_{\kappa}(\tau)\right\rangle \\
=\sum_{u} K_{u}^{(\mathrm{I})}(t) \sum_{\beta}\langle\kappa| \Phi_{u}^{(\mathrm{I})}(t)|\beta\rangle\left|\tilde{\phi}_{\beta}(0)\right\rangle-\frac{i}{\hbar} \int_{0}^{t} d \tau \sum_{u, v} K_{u}^{(\mathrm{I})}(t) K_{v}^{(\mathrm{I})}(\tau) \sum_{\beta}\langle\kappa| \Phi_{u}^{(\mathrm{I})}(t)|\beta\rangle\langle\beta| \Phi_{v}^{(\mathrm{I})}(\tau)|\kappa\rangle\left|\tilde{\phi}_{k}(\tau)\right\rangle
\end{gathered}
$$

the β-sum in the last term on the right-hand side can be removed and we finally obtain

$$
\begin{gathered}
i \hbar \frac{\partial}{\partial t}\left|\tilde{\phi}_{\kappa}(t)\right\rangle=\sum_{u} K_{u}^{(\mathrm{I})}(t) \sum_{\beta}\langle\kappa| \Phi_{u}^{(\mathrm{I})}(t)|\beta\rangle\left|\tilde{\phi}_{\beta}(0)\right\rangle \\
-\frac{i}{\hbar} \int_{0}^{t} d \tau \sum_{u, v} K_{u}^{(\mathrm{I})}(t) K_{v}^{(\mathrm{I})}(\tau)\langle\kappa| \Phi_{u}^{(\mathrm{I})}(t) \Phi_{v}^{(\mathrm{I})}(\tau)|\kappa\rangle\left|\tilde{\phi}_{\kappa}(\tau)\right\rangle
\end{gathered}
$$

we derived an equation of motion for $\left|\tilde{\phi}_{k}(t)\right\rangle$ where this particular state is only determined by matrix elements formed by the other states and by their initial values; an appropriate handling of these quantities will lead to the required stochastic Schrödinger equation;

3.2 Projection Operator Method

the procedure introduced in the preceding section is generalized by using the standard projection operator scheme: we introduce the projector on a representative reservoir state $|\lambda\rangle$

$$
\hat{P}=1_{\mathrm{S}}|\lambda\rangle\langle\lambda|
$$

the orthogonal complement is

$$
\hat{Q}=1-\hat{P}=1_{\mathrm{S}} \sum_{\alpha \neq \lambda}|\alpha\rangle\langle\alpha|
$$

it follows

$$
\hat{P}|\Psi(t)\rangle=\left|\phi_{\lambda}(t)\right\rangle|\lambda\rangle
$$

and

$$
\hat{Q}|\Psi(t)\rangle=\sum_{\alpha \neq \lambda}\left|\phi_{\alpha}(t)\right\rangle|\alpha\rangle
$$

we change to the interaction representation

$$
|\Psi(t)\rangle=U_{0}(t)\left|\Psi^{(\mathrm{I})}(t)\right\rangle
$$

with $U_{0}(t)=\exp \left(-i\left(H_{\mathrm{S}}+H_{\mathrm{R}}\right) t / \hbar\right)$ and arrive at

$$
\left|\Psi^{(\mathrm{I})}(t)\right\rangle=U_{0}^{+}(t) \sum_{\alpha}\left|\phi_{\alpha}(t)\right\rangle|\alpha\rangle=\sum_{\alpha} e^{i\left(H_{\mathrm{S}}+E_{\alpha}\right) t / \hbar}\left|\phi_{\alpha}(t)\right\rangle|\alpha\rangle=\sum_{\alpha}\left|\tilde{\phi}_{\alpha}(t)\right\rangle|\alpha\rangle
$$

we use

$$
\left|\tilde{\phi}_{\alpha}(t)\right\rangle=e^{i\left(H_{\mathrm{S}}+E_{\lambda}\right) t / \hbar}\left|\phi_{\alpha}(t)\right\rangle
$$

and obtain

$$
\hat{P}\left|\Psi^{(\mathrm{I})}(t)\right\rangle=1_{\mathrm{S}}|\lambda\rangle\langle\lambda|\left|\Psi^{(\mathrm{I})}(t)\right\rangle=\left|\tilde{\phi}_{\lambda}(t)\right\rangle|\lambda\rangle
$$

noting the time-dependent Schrödinger equation in the interaction representation

$$
i \hbar \frac{\partial}{\partial t}\left|\Psi^{(\mathrm{I})}(t)\right\rangle=H_{\mathrm{S}-\mathrm{R}}^{(\mathrm{I})}(t)\left|\Psi^{(\mathrm{I})}(t)\right\rangle
$$

we may deduce

$$
i \hbar \frac{\partial}{\partial t} \hat{P}\left|\Psi^{(\mathrm{I})}(t)\right\rangle=\hat{P} H_{\mathrm{S}-\mathrm{R}}^{(\mathrm{I})}(t) \hat{P} \times \hat{P}\left|\Psi^{(\mathrm{I})}(t)\right\rangle+\hat{P} H_{\mathrm{S}-\mathrm{R}}^{(\mathrm{I})}(t) \hat{Q} \times \hat{Q}\left|\Psi^{(\mathrm{I})}(t)\right\rangle
$$

and

$$
i \hbar \frac{\partial}{\partial t} \hat{Q}\left|\Psi^{(\mathrm{I})}(t)\right\rangle=\hat{Q} H_{\mathrm{S}-\mathrm{R}}^{(\mathrm{I})}(t) \hat{P} \times \hat{P}\left|\Psi^{(\mathrm{I})}(t)\right\rangle+\hat{Q} H_{\mathrm{S}-\mathrm{R}}^{(\mathrm{I})}(t) \hat{Q} \times \hat{Q}\left|\Psi^{(\mathrm{I})}(t)\right\rangle
$$

to achieve a formal solution of the latter equation we introduce

$$
\hat{S}_{Q}(t)=\hat{T} \exp \left(-\frac{i}{\hbar} \int_{0}^{t} d \tau \hat{Q} H_{\mathrm{S}-\mathrm{R}}^{(\mathrm{I})}(\tau) \hat{Q}\right)
$$

and get

$$
\hat{Q}\left|\Psi^{(\mathrm{I})}(t)\right\rangle=\hat{S}_{Q}(t) \hat{Q}\left|\Psi^{(\mathrm{I})}(0)\right\rangle-\frac{i}{\hbar} \int_{0}^{t} d \tau \hat{S}_{Q}(t-\tau) \hat{Q} H_{\mathrm{S}-\mathrm{R}}^{(\mathrm{I})}(\tau) \hat{P} \times \hat{P}\left|\Psi^{(\mathrm{I})}(\tau)\right\rangle
$$

inserting this equation into the one for $\hat{P}\left|\Psi^{(\mathrm{I})}(t)\right\rangle$ gives

$$
\begin{gathered}
i \hbar \frac{\partial}{\partial t} \hat{P}\left|\Psi^{(\mathrm{I})}(t)\right\rangle=\hat{P} H_{\mathrm{S}-\mathrm{R}}^{(\mathrm{I}}(t) \hat{P} \times \hat{P}\left|\Psi^{(\mathrm{I})}(t)\right\rangle+\hat{P} H_{\mathrm{S}-\mathrm{R}}^{(\mathrm{I})}(t) \hat{Q} \hat{S}_{Q}(t) \hat{Q}\left|\Psi^{(\mathrm{I})}(0)\right\rangle \\
-\frac{i}{\hbar} \int_{0}^{t} d \tau \hat{P} H_{\mathrm{S}-\mathrm{R}}^{(\mathrm{I})}(t) \hat{Q} \times \hat{S}_{Q}(t-\tau) \times \hat{Q} H_{\mathrm{S}-\mathrm{R}}^{(\mathrm{I})}(\tau) \hat{P} \times \hat{P}\left|\Psi^{(\mathrm{I})}(\tau)\right\rangle
\end{gathered}
$$

for a further treatment all expressions of $H_{\mathrm{S}-\mathrm{R}}^{(\mathrm{I})}$ combined with the projectors are calculated

$$
\hat{P} H_{\mathrm{S}-\mathrm{R}}^{(\mathrm{I}}(t) \hat{P}=1_{\mathrm{S}}|\lambda\rangle\langle\lambda| \sum_{u} K_{u}^{(\mathrm{I})}(t) \Phi_{u}^{(\mathrm{I})}(t) 1_{\mathrm{S}}|\lambda\rangle\langle\lambda|=\sum_{u} K_{u}^{(\mathrm{I})}(t)\langle\lambda| \Phi_{u}^{(\mathrm{I})}(t)|\lambda\rangle|\lambda\rangle\langle\lambda|
$$

and

$$
\begin{gathered}
\hat{P} H_{\mathrm{S}-\mathrm{R}}^{(\mathrm{I})}(t) \hat{Q}=1_{\mathrm{S}}|\lambda\rangle\langle\lambda| \sum_{u} K_{u}^{(\mathrm{I})}(t) \Phi_{u}^{(\mathrm{I})}(t) 1_{\mathrm{S}} \sum_{\alpha \neq \lambda}|\alpha\rangle\langle\alpha| \\
=\sum_{u} K_{u}^{(\mathrm{I})}(t) \sum_{\alpha \neq \lambda}\langle\lambda| \Phi_{u}^{\mathrm{I})}(t)|\alpha\rangle|\lambda\rangle\langle\alpha|
\end{gathered}
$$

and

$$
\hat{Q} H_{\mathrm{S}-\mathrm{R}}^{(\mathrm{I})}(t) \hat{P}=\sum_{u} K_{u}^{(\mathrm{I})+}(t) \sum_{\alpha \neq \lambda}\langle\alpha| \Phi_{u}^{(\mathrm{I})+}(t)|\lambda\rangle|\alpha\rangle\langle\lambda|
$$

and finally

$$
\hat{Q} H_{\mathrm{S}-\mathrm{R}}^{(\mathrm{I})}(t) \hat{Q}=\sum_{u} K_{u}^{(\mathrm{I})}(t) \sum_{\alpha \neq \lambda} \sum_{\beta \neq \lambda}\langle\alpha| \Phi_{u}^{(\mathrm{I})}(t)|\beta\rangle|\alpha\rangle\langle\beta|
$$

3.3 Second Order Expansion

for further considerations we concentrate on a second order with respect to the system reservoir coupling; therefore we approximate

$$
\hat{S}_{Q}(t) \approx 1-\frac{i}{\hbar} \int_{0}^{t} d \tau \hat{Q} H_{\mathrm{S}-\mathrm{R}}^{(\mathrm{I})}(\tau) \hat{Q}
$$

it gives

$$
\begin{gathered}
i \hbar \frac{\partial}{\partial t} \hat{P}\left|\Psi^{(\mathrm{I})}(t)\right\rangle \approx \hat{P} H_{\mathrm{S}-\mathrm{R}}^{(\mathrm{I})}(t) \hat{P} \times \hat{P}\left|\Psi^{(\mathrm{I})}(t)\right\rangle+\hat{P} H_{\mathrm{S}-\mathrm{R}}^{(\mathrm{I})}(t) \hat{Q}\left(1-\frac{i}{\hbar} \int_{0}^{t} d \tau \hat{Q} H_{\mathrm{S}-\mathrm{R}}^{(\mathrm{I})}(\tau) \hat{Q}\right) \hat{Q}\left|\Psi^{(\mathrm{I})}(0)\right\rangle \\
-\frac{i}{\hbar} \int_{0}^{t} d \tau \hat{P} H_{\mathrm{S}-\mathrm{R}}^{(\mathrm{I})}(t) \hat{Q} \times \hat{Q} H_{\mathrm{S}-\mathrm{R}}^{(\mathrm{I})}(\tau) \hat{P} \times \hat{P}\left|\Psi^{(\mathrm{I})}(\tau)\right\rangle
\end{gathered}
$$

we further note

$$
\frac{\partial}{\partial t} \hat{P}\left|\Psi^{(\mathrm{I})}(t)\right\rangle=|\lambda\rangle \frac{\partial}{\partial t}\left|\tilde{\phi}_{\lambda}(t)\right\rangle
$$

and

$$
\begin{gathered}
\hat{P} H_{\mathrm{S}-\mathrm{R}}^{(\mathrm{I})}(t) \hat{P} \times \hat{P}\left|\Psi^{(\mathrm{I})}(t)\right\rangle=\sum_{u} K_{u}^{(\mathrm{I})}(t)\langle\lambda| \Phi_{u}^{(\mathrm{I})}(t)|\lambda\rangle|\lambda\rangle\left\langle\lambda \| \tilde{\phi}_{\lambda}(t)\right\rangle|\lambda\rangle \\
=\sum_{u} K_{u}^{(\mathrm{I})}(t)\langle\lambda| \Phi_{u}^{(\mathrm{I})}(t)|\lambda\rangle\left|\tilde{\phi}_{\lambda}(t)\right\rangle|\lambda\rangle
\end{gathered}
$$

this term vanishes since we assume $\langle\lambda| \Phi_{u}^{(1)}(t)|\lambda\rangle=0$;
next we compute

$$
\begin{gathered}
\hat{P} H_{\mathrm{S}-\mathrm{R}}^{(\mathrm{I})}(t) \hat{Q}\left(1-\frac{i}{\hbar} \int_{0}^{t} d \tau \hat{Q} H_{\mathrm{S}-\mathrm{R}}^{(\mathrm{I})}(\tau) \hat{Q}\right) \hat{Q}\left|\Psi^{(\mathrm{I})}(0)\right\rangle= \\
\sum_{u} K_{u}^{(\mathrm{I})}(t) \sum_{\alpha \neq \lambda}\langle\lambda| \Phi_{u}^{(\mathrm{I})}(t)|\alpha\rangle|\lambda\rangle\langle\alpha|\left(1-\frac{i}{\hbar} \int_{0}^{t} d \tau \sum_{v} K_{v}^{(\mathrm{I})}(\tau) \sum_{\alpha^{\prime} \neq \lambda} \sum_{\beta^{\prime} \neq \lambda}\left\langle\alpha^{\prime}\right| \Phi_{v}^{(\mathrm{I})}(\tau)\left|\beta^{\prime}\right\rangle\left|\alpha^{\prime}\right\rangle\left\langle\beta^{\prime}\right|\right) \sum_{\beta \neq \lambda}\left|\tilde{\phi}_{\beta}(0)\right\rangle|\beta\rangle \\
=\sum_{u} K_{u}^{(\mathrm{I})}(t) \sum_{\alpha \neq \lambda}\langle\lambda| \Phi_{u}^{\mathrm{I})}(t)|\alpha\rangle|\lambda\rangle\left|\tilde{\phi}_{\alpha}(0)\right\rangle \\
-\frac{i}{\hbar} \int_{0}^{t} d \tau \sum_{u, v} K_{u}^{(\mathrm{I})}(t) \sum_{\alpha \neq \lambda} \sum_{\beta \neq \lambda}\langle\lambda| \Phi_{u}^{(\mathrm{I})}(t)|\alpha\rangle|\lambda\rangle K_{v}^{(\mathrm{I})}(\tau)\langle\alpha| \Phi_{v}^{(\mathrm{I})}(\tau)|\beta\rangle\left|\tilde{\phi}_{\beta}(0)\right\rangle \\
=|\lambda\rangle \sum_{u} K_{u}^{(\mathrm{I})}(t) \sum_{\alpha \neq \lambda}\langle\lambda| \Phi_{u}^{(\mathrm{I})}(t)|\alpha\rangle\left|\tilde{\phi}_{\alpha}(0)\right\rangle \\
-|\lambda\rangle \frac{i}{\hbar} \int_{0}^{t} d \tau \sum_{u, v} K_{u}^{(\mathrm{I})}(t) K_{v}^{(\mathrm{I})}(\tau) \sum_{\alpha \neq \lambda} \sum_{\beta \neq \lambda}\langle\lambda| \Phi_{u}^{(\mathrm{I})}(t)|\alpha\rangle\langle\alpha| \Phi_{v}^{(\mathrm{I})}(\tau)|\beta\rangle\left|\tilde{\phi}_{\beta}(0)\right\rangle
\end{gathered}
$$

we again assume $\langle\lambda| \Phi_{u}^{(\mathrm{I})}(t)|\lambda\rangle=0$ and obtain

$$
\sum_{\alpha \neq \lambda}\langle\lambda| \Phi_{u}^{(\mathrm{I})}(t)|\alpha\rangle\langle\alpha| \Phi_{v}^{(\mathrm{I})}(\tau)|\beta\rangle=\langle\lambda| \Phi_{u}^{(\mathrm{I})}(t) \Phi_{v}^{(\mathrm{I})}(\tau)|\beta\rangle
$$

finally we calculate

$$
\begin{gathered}
-\frac{i}{\hbar} \int_{0}^{t} d \tau \hat{P} H_{\mathrm{S}-\mathrm{R}}^{(\mathrm{I})}(t) \hat{Q} \times \hat{Q} H_{\mathrm{S}-\mathrm{R}}^{(\mathrm{I})}(\tau) \hat{P} \times \hat{P}\left|\Psi^{(\mathrm{I})}(\tau)\right\rangle= \\
-\frac{i}{\hbar} \int_{0}^{t} d \tau \sum_{u} K_{u}^{(\mathrm{I})}(t) \sum_{\alpha \neq \lambda}\langle\lambda| \Phi_{u}^{(\mathrm{I})}(t)|\alpha\rangle|\lambda\rangle\langle\alpha| \sum_{v} K_{v}^{(\mathrm{I})+}(\tau) \sum_{\beta \neq \lambda}\langle\beta| \Phi_{v}^{\mathrm{I})+}(\tau)|\lambda\rangle|\beta\rangle\langle\lambda|\left|\tilde{\phi}_{\lambda}(\tau)\right\rangle|\lambda\rangle \\
=-|\lambda\rangle \frac{i}{\hbar} \int_{0}^{t} d \tau \sum_{u, v} K_{u}^{(\mathrm{I})}(t) K_{v}^{(\mathrm{I})+}(\tau) \sum_{\alpha \neq \lambda}\langle\lambda| \Phi_{u}^{(\mathrm{I})}(t)|\alpha\rangle\langle\alpha| \Phi_{v}^{(\mathrm{I})+}(\tau)|\lambda\rangle\left|\tilde{\phi}_{\lambda}(\tau)\right\rangle
\end{gathered}
$$

multiplying the equation of motion with $\langle\lambda|$ gives (note the assumption $\Phi_{u}^{+}=\Phi_{u}$)

$$
\begin{aligned}
\frac{\partial}{\partial t}\left|\tilde{\phi}_{\lambda}(t)\right\rangle= & \sum_{u} K_{u}^{(\mathrm{I})}(t)\langle\lambda| \Phi_{u}^{(\mathrm{I})}(t)|\lambda\rangle\left|\tilde{\phi}_{\lambda}(t)\right\rangle+\sum_{u} K_{u}^{(\mathrm{I})}(t) \sum_{\alpha \neq \lambda}\langle\lambda| \Phi_{u}^{(\mathrm{I})}(t)|\alpha\rangle\left|\tilde{\phi}_{\alpha}(0)\right\rangle \\
- & \frac{i}{\hbar} \int_{0}^{t} d \tau \sum_{u, v} K_{u}^{(\mathrm{I})}(t) K_{v}^{(\mathrm{I})}(\tau) \sum_{\beta \neq \lambda}\langle\lambda| \Phi_{u}^{(\mathrm{I})}(t) \Phi_{v}^{(\mathrm{I})}(\tau)|\beta\rangle\left|\tilde{\phi}_{\beta}(0)\right\rangle \\
& -\frac{i}{\hbar} \int_{0}^{t} d \tau \sum_{u, v} K_{u}^{(\mathrm{I})}(t) K_{v}^{(\mathrm{I})+}(\tau)\langle\lambda| \Phi_{u}^{(\mathrm{I})}(t) \Phi_{v}^{(\mathrm{I})}(\tau)|\lambda\rangle\left|\tilde{\phi}_{\lambda}(\tau)\right\rangle
\end{aligned}
$$

we note $\langle\lambda| \Phi_{u}^{(\mathrm{I})}(t)|\lambda\rangle=0$ in the first term on the right-hand side and get

$$
\begin{gathered}
i \hbar \frac{\partial}{\partial t}\left|\tilde{\phi}_{\lambda}(t)\right\rangle=\sum_{u} K_{u}^{(\mathrm{I})}(t) \sum_{\alpha \neq \lambda}\langle\lambda| \Phi_{u}^{(\mathrm{I})}(t)|\alpha\rangle \times\left|\tilde{\phi}_{\alpha}(0)\right\rangle \\
-\frac{i}{\hbar} \int_{0}^{t} d \tau \sum_{u, v} K_{u}^{(\mathrm{I})}(t) K_{v}^{(\mathrm{I})}(\tau) \sum_{\beta \neq \lambda}\langle\lambda| \Phi_{u}^{(\mathrm{I})}(t) \Phi_{v}^{(\mathrm{I})}(\tau)|\beta\rangle \times\left|\tilde{\phi}_{\beta}(0)\right\rangle \\
-\frac{i}{\hbar} \int_{0}^{t} d \tau \sum_{u, v} K_{u}^{(\mathrm{I})}(t) K_{v}^{(\mathrm{I})+}(\tau)\langle\lambda| \Phi_{u}^{(\mathrm{I})}(t) \Phi_{v}^{(\mathrm{I})}(\tau)|\lambda\rangle \times\left|\tilde{\phi}_{\lambda}(\tau)\right\rangle
\end{gathered}
$$

we introduce the forcing term

$$
\begin{gathered}
\hat{F}_{\lambda}(t)=\sum_{u} K_{u}^{(\mathrm{I})}(t) \sum_{\alpha \neq \lambda}\langle\lambda| \Phi_{u}^{(\mathrm{I})}(t)|\alpha\rangle \times\left|\tilde{\phi}_{\alpha}(0)\right\rangle \\
-\frac{i}{\hbar} \int_{0}^{t} d \tau \sum_{u, v} K_{u}^{(\mathrm{I})}(t) K_{v}^{(\mathrm{I})}(\tau) \sum_{\alpha \neq \lambda}\langle\lambda| \Phi_{u}^{(\mathrm{I})}(t) \Phi_{v}^{(\mathrm{I})}(\tau)|\alpha\rangle \times\left|\tilde{\phi}_{\alpha}(0)\right\rangle
\end{gathered}
$$

it is determined by the initial state; it acts as a stochastic force due to the reservoir fluctuations; the remaining term with $\left|\tilde{\phi}_{\lambda}(\tau)\right\rangle$ at earlier time τ represents the damping term; it follows

$$
i \hbar \frac{\partial}{\partial t}\left|\tilde{\phi}_{\lambda}(t)\right\rangle=\hat{F}_{\lambda}(t)-\frac{i}{\hbar} \int_{0}^{t} d \tau \sum_{u, v} K_{u}^{(\mathrm{I})}(t) K_{v}^{(\mathrm{I})+}(\tau)\langle\lambda| \Phi_{u}^{(\mathrm{I})}(t) \Phi_{v}^{(\mathrm{I})+}(\tau)|\lambda\rangle\left|\tilde{क}_{\lambda}(\tau)\right\rangle
$$

the forcing term can be rewritten as

$$
\begin{gathered}
\hat{F}_{\lambda}(t)=\sum_{u} K_{u}^{(\mathrm{I})}(t) \sum_{\alpha \neq \lambda}\langle\lambda| \Phi_{u}^{(\mathrm{I})}(t)|\alpha\rangle \times\left|\tilde{\phi}_{\alpha}(0)\right\rangle \\
+\sum_{u} K_{u}^{(\mathrm{I})}(t) \sum_{\beta}\langle\lambda| \Phi_{u}^{(\mathrm{I})}(t)|\beta\rangle \frac{(-i)}{\hbar} \int_{0}^{t} d \tau \sum_{v} K_{v}^{(\mathrm{I})}(\tau) \sum_{\alpha \neq \lambda}\langle\beta| \Phi_{v}^{(\mathrm{I})}(\tau)|\alpha\rangle \times\left|\tilde{\phi}_{\alpha}(0)\right\rangle \\
=\sum_{u} K_{u}^{(\mathrm{I})}(t) \sum_{\alpha \neq \lambda}\langle\lambda| \Phi_{u}^{(\mathrm{I})}(t)|\alpha\rangle \\
\left\{\left|\tilde{\phi}_{\alpha}(0)\right\rangle-\frac{i}{\hbar} \int_{0}^{t} d \tau \sum_{v} K_{v}^{(\mathrm{I})}(\tau) \sum_{\beta \neq \lambda}\langle\alpha| \Phi_{v}^{(\mathrm{I})}(\tau)|\beta\rangle \times\left|\tilde{\phi}_{\beta}(0)\right\rangle\right\}
\end{gathered}
$$

in the last term an interchange of α and β has been taken; comparing the expression in the wavy bracket with the integrated time-dependent Schrödinger equation

$$
\left|\tilde{\phi}_{\alpha}(t)\right\rangle=\left|\tilde{\phi}_{\alpha}(0)\right\rangle-\frac{i}{\hbar} \int_{0}^{t} d \tau \sum_{v} K_{v}^{(\mathrm{I})}(\tau) \sum_{\beta}\langle\alpha| \Phi_{v}^{(\mathrm{I})}(\tau)|\beta\rangle\left|\tilde{\phi}_{\beta}(\tau)\right\rangle
$$

we realize the following notation

$$
\hat{F}_{\lambda}(t)=\sum_{u} K_{u}^{(\mathrm{I})}(t) \sum_{\alpha \neq \lambda}\langle\lambda| \Phi_{u}^{(\mathrm{I})}(t)|\alpha\rangle \times\left|\tilde{\phi}_{\alpha}^{(1)}(t)\right\rangle
$$

where $\left|\tilde{\phi}_{\alpha}^{(1)}(t)\right\rangle$ is the time-dependent state vector determined in the first order of the systemreservoir coupling; we will make use of this result later;

3.4 Statistical Typicality

in order to obtain a stochastic differential equation, we need to assume that the $\left|\tilde{\phi}_{\lambda}(t)\right\rangle$ represent statistically each one of the $\left|\tilde{\phi}_{\alpha}(t)\right\rangle$ of the linear decomposition

$$
\left|\Psi^{(\mathrm{I})}(t)\right\rangle=\sum_{\alpha}\left|\tilde{\phi}_{\alpha}(t)\right\rangle|\alpha\rangle
$$

of the total wave function in the interaction picture;
in this sense, we should assume that all the $\left|\tilde{\phi}_{\alpha}(t)\right\rangle$ behave similarly and form a statistical ensemble for which $\left|\tilde{\phi}_{\lambda}(t)\right\rangle$ is a typical representative; this assumption shall be called the assumption of statistical typicality;
the assumption of statistical typicality can be justified if the bath subsystem is classically chaotic; namely, the average of a bath operator \mathcal{B} over a typical eigenstate $|\lambda\rangle$ is essentially equivalent to a classical average over the microcanonical statistical ensemble at the energy equal to the eigenenergy E_{λ}; this behavior has its origin in the property that typical eigenfunctions are statistically irregular at high quantum numbers; moreover, since the bath is a large subsystem, this microcanonical average is essentially equivalent to a canonical average

$$
\langle\lambda| \mathcal{B}|\lambda\rangle \approx \operatorname{tr}_{\mathrm{R}}\left\{\hat{R}_{\mathrm{eq}} \mathcal{B}\right\}
$$

where

$$
\hat{R}_{\mathrm{eq}}=\frac{1}{\mathcal{Z}} e^{-H_{\mathrm{R}} / k_{\mathrm{B}} T}
$$

as a consequence of the assumption of statistical typicality of the $\left|\tilde{\phi}_{\lambda}(t)\right\rangle$ we obtain for the correlation function in the damping term of the time-dependent Schrödinger equation (note the assumption $\left.\Phi_{v}^{(\mathrm{II}+}=\Phi_{v}^{(\mathrm{I})}\right)$

$$
\langle\lambda| \Phi_{u}^{(\mathrm{I})}(t) \Phi_{v}^{(\mathrm{I})+}(\tau)|\lambda\rangle \approx \operatorname{tr}_{\mathrm{R}}\left\{\hat{R}_{\mathrm{eq}} \Phi_{u}^{(\mathrm{I})}(t) \Phi_{v}^{(\mathrm{I})}(\tau)\right\} \equiv \hbar^{2} C_{u v}(t-\tau)
$$

the form of the damping term should be essentially independent of the particular state vector that has been chosen among the ensemble of state vectors; obviously the correlation function is the one appearing in the standard quantum master equation;
in order to obtain the typical behavior of the forcing term, we need to make assumptions on the initial condition of the total wave function;
$|\Psi(t=0)\rangle$ is assumed to be a pure state; in order to construct it we assume

$$
\langle\Psi(0)| \hat{O}|\Psi(0)\rangle \approx \operatorname{tr}\left\{|\psi(0)\rangle\langle\psi(0)| \hat{R}_{\mathrm{eq}} \hat{O}\right\}
$$

$\psi(0)$ is the system wave function at the initial time (it is normalized to 1) and \hat{O} is an operator acting in the complete state space of the system plus the reservoir; we replace the reservoir part of the trace by an expansion with respect to the reservoir states $|\alpha\rangle$

$$
\langle\Psi(0)| \hat{O}|\Psi(0)\rangle \approx \sum_{\alpha}\langle\alpha| \operatorname{trs}_{s}\left\{|\psi(0)\rangle\langle\psi(0)| \hat{R}_{\mathrm{eq}} \hat{O}\right\}|\alpha\rangle=\sum_{\alpha} f_{\alpha} \operatorname{tr}_{s}\{|\psi(0)\rangle\langle\psi(0)|\langle\alpha| \hat{O}|\alpha\rangle\}
$$

note

$$
f_{\alpha}=\frac{1}{\mathcal{Z}} e^{-E_{\alpha} / k_{\mathrm{B}} T}
$$

the approximate equality for $\langle\Psi(0)| \hat{O}|\Psi(0)\rangle$ can be established under the assumption that the initial condition of the total wave function is given by

$$
|\Psi(0)\rangle \approx|\psi(0)\rangle \sum_{\alpha} \sqrt{f_{\alpha}} e^{i \theta_{\alpha}}|\alpha\rangle
$$

the θ_{α} are random phases distributed between 0 and 2π; we obtain

$$
\langle\Psi(0)| \hat{O}|\Psi(0)\rangle \approx \sum_{\alpha, \beta}\langle\psi(0)| \sqrt{f_{\alpha}} e^{-i \theta_{\alpha}}\langle\alpha| \hat{O} \sqrt{f_{\beta}} e^{i \theta_{\beta}}|\beta\rangle|\psi(0)\rangle
$$

an additional averaging with respect to the random phases would let remain the terms with $\alpha=\beta$ only; this gives the required result;
the introduced assumption for $\Psi(0)$ implies that the initial conditions of the $\phi_{\alpha}(t)$ related to the decomposition

$$
|\Psi(t)\rangle=\sum_{\alpha}\left|\phi_{\alpha}(t)\right\rangle|\alpha\rangle
$$

take the form

$$
\left|\phi_{\alpha}(0)\right\rangle=\left|\tilde{\phi}_{\alpha}(0)\right\rangle=|\psi(0)\rangle \sqrt{f_{\alpha}} e^{i \theta_{\alpha}}
$$

an important consequence of this relation is that all the initial functions are proportional to the same initial wave function of the system; in particular, the chosen state vector $\left|\tilde{\phi}_{\lambda}(t)\right\rangle$ is also proportional to the same initial wave function because the relation also holds for the special function with $\alpha=\lambda$; hence, we find that

$$
\left|\tilde{\phi}_{\alpha}(0)\right\rangle \approx\left|\tilde{\phi}_{\lambda}(0)\right\rangle e^{-\left(E_{\alpha}-E_{\lambda}\right) / 2 k_{\mathrm{B}} T} e^{i\left(\theta_{\alpha}-\theta_{\lambda}\right)}
$$

the forcing term becomes

$$
\begin{gathered}
\hat{F}_{\lambda}(t) \approx \sum_{u} K_{u}^{(\mathrm{I})}(t) \sum_{\alpha \neq \lambda}\langle\lambda| \Phi_{u}^{(\mathrm{I})}(t)|\alpha\rangle e^{-\left(E_{\alpha}-E_{\lambda}\right) / 2 k_{\mathrm{B}} T} e^{i\left(\theta_{\alpha}-\theta_{\lambda}\right)}\left|\tilde{\phi}_{\lambda}(0)\right\rangle \\
-\frac{i}{\hbar} \int_{0}^{t} d \tau \sum_{u, v} K_{u}^{(\mathrm{I})}(t) K_{v}^{(\mathrm{I})}(\tau) \sum_{\alpha \neq \lambda}\langle\lambda| \Phi_{u}^{(\mathrm{I})}(t) \Phi_{v}^{(\mathrm{I})}(\tau)|\alpha\rangle e^{-\left(E_{\alpha}-E_{\lambda}\right) / 2 k_{\mathrm{B}} T} e^{i\left(\theta_{\alpha}-\theta_{\lambda}\right)}\left|\tilde{\phi}_{\lambda}(0)\right\rangle \\
\approx \sum_{u} K_{u}^{(\mathrm{I})}(t) \sum_{\alpha \neq \lambda}\langle\lambda| \Phi_{u}^{(\mathrm{I})}(t)|\alpha\rangle e^{-\left(E_{\alpha}-E_{\lambda}\right) / 2 k_{\mathrm{B}} T} e^{i\left(\theta_{\alpha}-\theta_{\lambda}\right)}\left|\tilde{\phi}_{\lambda}(t)\right\rangle
\end{gathered}
$$

in the last step we have supposed that the second term in the perturbative expansion gives an approximation for the time evolution of $\left|\tilde{\phi}_{\lambda}(t)\right\rangle$;
we finally write

$$
\hat{F}_{\lambda}(t)=\sum_{u} \eta_{u}(t) K_{u}^{(\mathrm{I})}(t)\left|\tilde{\phi}_{\lambda}(t)\right\rangle
$$

with the noise terms

$$
\eta_{u}(t)=\sum_{\alpha \neq \lambda}\langle\lambda| \Phi_{u}^{(\mathrm{I})}(t)|\alpha\rangle e^{-\left(E_{\alpha}-E_{\lambda}\right) / 2 k_{\mathrm{B}} T} e^{i\left(\theta_{\alpha}-\theta_{\lambda}\right)}
$$

the Schrödinger equation can bewritten as

$$
i \hbar \frac{\partial}{\partial t}\left|\tilde{\phi}_{\lambda}(t)\right\rangle=\sum_{u} \eta_{u}(t) K_{u}^{(\mathrm{I})}(t)\left|\tilde{\phi}_{\lambda}(t)\right\rangle-\frac{i}{\hbar} \int_{0}^{t} d \tau \sum_{u, v} K_{u}^{(\mathrm{I})}(t) K_{v}^{(\mathrm{I})+}(\tau)\langle\lambda| \Phi_{u}^{(\mathrm{I})}(t) \Phi_{v}^{(\mathrm{I})+}(\tau)|\lambda\rangle\left|\tilde{\phi}_{\lambda}(\tau)\right\rangle
$$

we may use the earlier derived relation

$$
\langle\lambda| \Phi_{u}^{(\mathrm{II})}(t) \Phi_{v}^{(\mathrm{I})+}(\tau)|\lambda\rangle \approx \operatorname{tr}_{\mathrm{R}}\left\{\hat{R}_{\mathrm{eq}} \Phi_{u}^{(\mathrm{I})}(t) \Phi_{v}^{(\mathrm{I})}(\tau)\right\} \equiv \hbar^{2} C_{u v}(t-\tau)
$$

3.5 Averaging with Respect to the Noise

the random distribution of the phases between 0 and 2π results in the following simple phase averaging formula

$$
<f(\theta)>_{\mathrm{ph}}=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \theta f(\theta)
$$

it simply results

$$
<e^{i \theta}>_{\mathrm{ph}}=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \theta e^{i \theta}=0
$$

next we consider $<e^{i\left(\theta+\theta^{\prime}\right)}>_{\mathrm{ph}}$; here, θ and θ^{\prime} may belong to different states of the reservoir; in this case we get

$$
<e^{i\left(\theta+\theta^{\prime}\right)}>_{\mathrm{ph}}=<e^{i \theta}>_{\mathrm{ph}} \times<e^{i \theta^{\prime}}>_{\mathrm{ph}}=0
$$

if they belong to the same state we arrive at

$$
<e^{i 2 \theta}>_{\mathrm{ph}}=0
$$

if one considers, however $<e^{i\left(\theta-\theta^{\prime}\right)}>_{\text {ph }}$ we get also zero for the case that θ and θ^{\prime} belong to different states of the reservoir; we get 1 if they belong to the same reservoir state; turning to an averaging of expressions including different $\eta_{u}(t)$ we first consider

$$
<\eta_{u}(t)>_{\mathrm{ph}}=\sum_{\alpha \neq \lambda}\langle\lambda| \Phi_{u}^{(\mathrm{I})}(t)|\alpha\rangle e^{-\left(E_{\alpha}-E_{\lambda}\right) / 2 k_{\mathrm{B}} T}<e^{i\left(\theta_{\alpha}-\theta_{\lambda}\right)}>_{\mathrm{ph}}=0
$$

the result is obtained since $\alpha \neq \lambda$;
next, we consider

$$
\begin{gathered}
<\eta_{u}(t) \eta_{v}(\tau)>_{\mathrm{ph}}=\sum_{\alpha \neq \lambda}\langle\lambda| \Phi_{u}^{(\mathrm{I})}(t)|\alpha\rangle e^{-\left(E_{\alpha}-E_{\lambda}\right) / 2 k_{\mathrm{B}} T} \sum_{\beta \neq \lambda}\langle\lambda| \Phi_{v}^{(\mathrm{I})}(\tau)|\beta\rangle e^{-\left(E_{\beta}-E_{\lambda}\right) / 2 k_{\mathrm{B}} T} \\
<e^{i\left(\theta_{\alpha}-\theta_{\lambda}\right)} e^{i\left(\theta_{\beta}-\theta_{\lambda}\right)}>_{\mathrm{ph}}=0
\end{gathered}
$$

finally we consider

$$
\begin{gathered}
<\eta_{u}(t) \eta_{v}^{*}(\tau)>_{\mathrm{ph}}=\sum_{\alpha \neq \lambda}\langle\lambda| \Phi_{u}^{(\mathrm{I})}(t)|\alpha\rangle e^{-\left(E_{\alpha}-E_{\lambda}\right) / 2 k_{\mathrm{B}} T} \sum_{\beta \neq \lambda}\langle\beta| \Phi_{v}^{(\mathrm{I})}(\tau)|\lambda\rangle e^{-\left(E_{\beta}-E_{\lambda}\right) / 2 k_{\mathrm{B}} T} \\
=e^{E_{\lambda} / k_{\mathrm{B}} T} \sum_{\alpha \neq \lambda}\langle\lambda| \Phi_{u}^{i\left(\theta_{\alpha}-\theta_{\lambda}\right)} e^{-i\left(\theta_{\beta}-\theta_{\lambda}\right)}>_{\mathrm{ph}} \\
=\mathcal{Z} e^{E_{\lambda} / k_{\mathrm{B}} T}\langle\lambda| e^{-E_{\alpha} / k_{\mathrm{B}} T}\langle\alpha| \Phi_{v}^{(\mathrm{I})}(\tau)|\lambda\rangle \\
\hat{R}_{\mathrm{eq}} \Phi_{v}^{(\mathrm{I})}(\tau)|\lambda\rangle
\end{gathered}
$$

in order to obtain a typical value for these correlation functions we perform a thermal average

$$
\begin{gathered}
\sum_{\lambda} \frac{e^{-E_{\lambda} / k_{\mathrm{B}} T}}{\mathcal{Z}}<\eta_{u}(t) \eta_{v}^{*}(\tau)>_{\mathrm{ph}}=\sum_{\lambda}\langle\lambda| \Phi_{u}^{(\mathrm{I})}(t) \hat{R}_{\mathrm{eq}} \Phi_{v}^{\mathrm{I})}(\tau)|\lambda\rangle \\
\quad=\operatorname{tr}_{\mathrm{R}}\left\{\hat{R}_{\mathrm{eq}} \Phi_{v}^{(\mathrm{I})}(\tau) \Phi_{u}^{(\mathrm{I})}(t)\right\}=\hbar^{2} C_{v u}(\tau, t)=\hbar^{2} C_{u v}^{*}(t, \tau)
\end{gathered}
$$

so we identify

$$
<\eta_{u}(t) \eta_{v}^{*}(\tau)>_{\mathrm{ph}}=\hbar^{2} C_{v u}(\tau, t)
$$

and

$$
<\eta_{u}^{*}(t) \eta_{v}(\tau)>_{\mathrm{ph}}=\hbar^{2} C_{u v}(t, \tau)
$$

3.6 The Stochastic Schrödinger Equation

the reasoning used in the preceding section also allows to introduce the correlation funtion in the damping term of the time-dependent Schrödinger equation; it follows

$$
i \hbar \frac{\partial}{\partial t}\left|\tilde{\phi}_{\lambda}(t)\right\rangle=\sum_{u} \eta_{u}(t) K_{u}^{(\mathrm{I})}(t)\left|\tilde{\phi}_{\lambda}(t)\right\rangle-i \hbar \int_{0}^{t} d \tau \sum_{u, v} K_{u}^{(\mathrm{I})}(t) K_{v}^{(\mathrm{I})+}(\tau) C_{u v}(t-\tau)\left|\tilde{\phi}_{\lambda}(\tau)\right\rangle
$$

a single $\left|\tilde{\phi}_{\lambda}(t)\right\rangle$ is representative for all $\left|\tilde{\phi}_{\lambda}(t)\right\rangle$; so the quantum number λ can be removed; we introduce

$$
|\psi(t)\rangle=e^{-i H_{\mathrm{S}} t / \hbar}\left|\tilde{\phi}_{\lambda}(t)\right\rangle=e^{i E_{\kappa} t / \hbar}\left|\phi_{\lambda}(t)\right\rangle
$$

and arrive at

$$
i \hbar \frac{\partial}{\partial t}|\psi(t)\rangle=H_{\mathrm{S}}|\psi(t)\rangle+\sum_{u} \eta_{u}(t) K_{u}|\psi(t)\rangle-i \hbar \int_{0}^{t} d \tau \sum_{u, v} C_{u v}(t-\tau) K_{u} e^{-i H_{\mathrm{S}}(t-\tau) / \hbar} K_{v}|\psi(\tau)\rangle
$$

if a statistical ensemble of initial states $\psi_{j}(0)$ is considered, the different $\psi_{j}(t)$ obey the stochastic Schrödinger equation (note the change from τ to $t-\tau$)

$$
i \hbar \frac{\partial}{\partial t}\left|\psi_{j}(t)\right\rangle=H_{S}\left|\psi_{j}(t)\right\rangle+\sum_{u} \eta_{u}(t) K_{u}\left|\psi_{j}(t)\right\rangle-i \hbar \int_{0}^{t} d \tau \sum_{u, v} C_{u v}(\tau) K_{u} e^{-i H_{\mathrm{S}}(\tau) / \hbar} K_{v}\left|\psi_{j}(t-\tau)\right\rangle
$$

the related density operator follows as

$$
\hat{\rho}(t)=\sum_{j} w_{j} \frac{<\left|\psi_{j}(t)\right\rangle\left\langle\psi _ { j } \left(t \mid>_{\mathrm{ph}}\right.\right.}{<\left\langle\psi _ { j } \left(t\left|\psi_{j}(t)\right\rangle>_{\mathrm{ph}}\right.\right.}
$$

the stochastic terms are defined via colored Gaussian noise (a single u is considered here only)

$$
<\eta(t)>=0 \quad<\eta(t) \eta(0)>=0 \quad<\eta^{*}(t) \eta(0)>=C(t)
$$

such a noise can be generated according to

$$
\eta(t)=\int d \tau R(\tau) \frac{\xi_{1}(t-\tau)+i \xi_{2}(t-\tau)}{\sqrt{2}}
$$

ξ_{1} and ξ_{2} are two indipendent Gaussian white noise processes

$$
<\xi_{1,2}(t)>=0 \quad<\xi_{1}(t) \xi_{2}(0)>=0 \quad<\xi_{1}(t) \xi_{1}(0)>=<\xi_{2}(t) \xi_{2}(0)>=\delta(t)
$$

the function $R(\tau)$ which translates Gaussian white noise into colored Gaussian noise is defined by

$$
C(t)=\int_{0}^{\infty} d \tau R^{*}(t+\tau) R(\tau)
$$

3.7 The Master Equation of the Stochastic Schrödinger Equation
we change back to $|\tilde{\phi}(t)\rangle$ and write

$$
i \hbar \frac{\partial}{\partial t}|\tilde{\phi}(t)\rangle=\Delta H^{(\mathrm{I})}(t)|\tilde{\phi}(t)\rangle-i \hbar \int_{0}^{t} d \tau M^{(\mathrm{I})}(t, \tau)|\tilde{\phi}(\tau)\rangle
$$

where we introduced

$$
\Delta H^{(\mathrm{I})}(t)=\sum_{u} \eta_{u}(t) K_{u}^{(\mathrm{I})}(t)
$$

and

$$
M^{(\mathrm{I})}(t, \tau)=\sum_{u, v} K_{u}^{(\mathrm{I})}(t) K_{v}^{(\mathrm{I})}(\tau) C_{u v}(t-\tau)
$$

we construct a noise averaged density operator

$$
\hat{\sigma}(t)=\langle\mid \tilde{\phi}(t)\rangle\langle\tilde{\phi}(t)|>_{\mathrm{ph}}
$$

and derive an equation of motion; the solution of the Schrödinger equation up to the second order in the system-reservoir coupling reads

$$
\begin{gathered}
|\tilde{\phi}(t)\rangle=|\tilde{\phi}(0)\rangle-\frac{i}{\hbar} \int_{0}^{t} d t_{1} \Delta H^{(\mathrm{I})}\left(t_{1}\right)|\tilde{\phi}(0)\rangle-\frac{1}{\hbar^{2}} \int_{0}^{t} d t_{1} \int_{0}^{t_{1}} d t_{2} \Delta H^{(\mathrm{I})}\left(t_{1}\right) \Delta H^{(\mathrm{I})}\left(t_{2}\right)|\tilde{\phi}(0)\rangle \\
-\int_{0}^{t} d t_{1} \int_{0}^{t_{1}} d t_{2} M^{(\mathrm{I})}\left(t_{1}, t_{2}\right)|\tilde{\phi}(0)\rangle
\end{gathered}
$$

the noise averaged density operator follows as

$$
\begin{gathered}
\hat{\sigma}(t)=\hat{\sigma}(0)+\frac{1}{\hbar^{2}} \int_{0}^{t} d t_{1} \int_{0}^{t} d t_{2}<\Delta H^{(\mathrm{I})}\left(t_{1}\right) \hat{\sigma}(0) \Delta H^{(\mathrm{I})+}\left(t_{2}\right)>_{\mathrm{ph}} \\
-\frac{1}{\hbar^{2}} \int_{0}^{t} d t_{1} \int_{0}^{t_{1}} d t_{2}<\Delta H^{(\mathrm{I})}\left(t_{1}\right) \Delta H^{(\mathrm{I})}\left(t_{2}\right)>_{\mathrm{ph}} \hat{\sigma}(0)-\frac{1}{\hbar^{2}} \int_{0}^{t} d t_{1} \int_{0}^{t_{1}} d t_{2} \hat{\sigma}(0)<\Delta H^{(\mathrm{I})+}\left(t_{2}\right) \Delta H^{(\mathrm{I})+}\left(t_{1}\right)>_{\mathrm{ph}} \\
-\int_{0}^{t} d t_{1} \int_{0}^{t_{1}} d t_{2} M^{(\mathrm{I})}\left(t_{1}, t_{2}\right) \hat{\sigma}(0)-\int_{0}^{t} d t_{1} \int_{0}^{t_{1}} d t_{2} \hat{\sigma}(0) M^{(\mathrm{I})+}\left(t_{1}, t_{2}\right)
\end{gathered}
$$

we note

$$
<\Delta H^{(\mathrm{I})}\left(t_{1}\right) \Delta H^{(\mathrm{I})}\left(t_{2}\right)>_{\mathrm{ph}}=<\Delta H^{(\mathrm{I})+}\left(t_{2}\right) \Delta H^{(\mathrm{I})+}\left(t_{1}\right)>_{\mathrm{ph}}=0
$$

and

$$
\begin{gathered}
I(t)=\int_{0}^{t} d t_{1} \int_{0}^{t} d t_{2}<\Delta H^{(\mathrm{I})}\left(t_{1}\right) \hat{\sigma}(0) \Delta H^{(\mathrm{I})+}\left(t_{2}\right)>_{\mathrm{ph}} \\
=\int_{0}^{t} d t_{1} \int_{0}^{t_{1}} d t_{2}\left(<\Delta H^{(\mathrm{I})}\left(t_{1}\right) \hat{\sigma}(0) \Delta H^{(\mathrm{I})+}\left(t_{2}\right)>_{\mathrm{ph}}+<\Delta H^{(\mathrm{I})}\left(t_{2}\right) \hat{\sigma}(0) \Delta H^{(\mathrm{I})+}\left(t_{1}\right)>_{\mathrm{ph}}\right)
\end{gathered}
$$

note that the norm of $|\tilde{\phi}(t)\rangle$ does not change up to the second order in the system-reservoir coupling;
so the density operator takes the form

$$
\begin{gathered}
\hat{\sigma}(t)=\hat{\sigma}(0) \\
\Delta H^{(\mathrm{I})}\left(t_{1}\right) \hat{\sigma}(0) \Delta H^{(\mathrm{I})+}\left(t_{2}\right)>_{\mathrm{ph}}+\frac{1}{\hbar^{2}} \int_{0}^{t} d t_{1} \int_{0}^{t_{1}} d t_{2}<\Delta H^{(} \\
-\int_{0}^{t} d t_{1} \int_{0}^{t_{1}} d t_{2}\left(M^{(\mathrm{I})}\left(t_{1}, t_{2}\right) \hat{\sigma}(0)+\hat{\sigma}(0) M^{(\mathrm{I})+}\left(t_{1}, t_{2}\right)\right)
\end{gathered}
$$

$$
+\frac{1}{\hbar^{2}} \int_{0}^{t} d t_{1} \int_{0}^{t_{1}} d t_{2}<\Delta H^{(\mathrm{I})}\left(t_{1}\right) \hat{\sigma}(0) \Delta H^{(\mathrm{I})+}\left(t_{2}\right)>_{\mathrm{ph}}+\frac{1}{\hbar^{2}} \int_{0}^{t} d t_{1} \int_{0}^{t_{1}} d t_{2}<\Delta H^{(\mathrm{I})}\left(t_{2}\right) \hat{\sigma}(0) \Delta H^{(\mathrm{I})+}\left(t_{1}\right)>_{\mathrm{ph}}
$$

we remember $<\eta_{u}(t) \eta_{v}^{*}(\tau)>_{\mathrm{ph}} \sim C_{v u}(\tau, t)$ and get

$$
\begin{gathered}
<\Delta H^{(\mathrm{I})}\left(t_{1}\right) \hat{\sigma}(0) \Delta H^{(\mathrm{I})+}\left(t_{2}\right)>_{\mathrm{ph}}=\hbar^{2} \sum_{u, v} C_{v u}\left(t_{2}-t_{1}\right) K_{u}^{(\mathrm{I})}\left(t_{1}\right) \hat{\sigma}(0) K_{v}^{(\mathrm{I})}\left(t_{2}\right) \\
<\Delta H^{(\mathrm{I})}\left(t_{2}\right) \hat{\sigma}(0) \Delta H^{(\mathrm{I})+}\left(t_{1}\right)>_{\mathrm{ph}}=\hbar^{2} \sum_{u, v} C_{u v}\left(t_{1}-t_{2}\right) K_{v}^{(\mathrm{I})}\left(t_{2}\right) \hat{\sigma}(0) K_{u}^{(\mathrm{I})}\left(t_{1}\right) \\
M^{(\mathrm{I})}\left(t_{1}, t_{2}\right)=\sum_{u, v} K_{u}^{(\mathrm{I})}\left(t_{1}\right) K_{v}^{(\mathrm{I})}\left(t_{2}\right) C_{u v}\left(t_{1}-t_{2}\right)
\end{gathered}
$$

and

$$
M^{(\mathrm{I})+}\left(t_{1}, t_{2}\right)=\sum_{u, v} K_{v}^{(\mathrm{I})}\left(t_{2}\right) K_{u}^{(\mathrm{I})}\left(t_{1}\right) C_{u v}^{*}\left(t_{1}-t_{2}\right)
$$

before using these relations we change to $\tau=t_{1}$ and $\tau^{\prime}=t_{1}-t_{2}$, i.e. $t_{2}=\tau-\tau^{\prime}$

$$
\begin{gathered}
\hat{\sigma}(t)=\hat{\sigma}(0) \\
+\int_{0}^{t} d \tau \int_{0}^{\tau} d \tau^{\prime}\left\{\frac{1}{\hbar^{2}}<\Delta H^{(\mathrm{I})}(\tau) \hat{\sigma}(0) \Delta H^{(\mathrm{I})+}\left(\tau-\tau^{\prime}\right)>_{\mathrm{ph}}+\frac{1}{\hbar^{2}}<\Delta H^{(\mathrm{I})}\left(\tau-\tau^{\prime}\right) \hat{\sigma}(0) \Delta H^{(\mathrm{I})+}(\tau)>_{\mathrm{ph}}\right. \\
\left.-M^{(\mathrm{I})}\left(\tau, \tau-\tau^{\prime}\right) \hat{\sigma}(0)-\hat{\sigma}(0) M^{(\mathrm{I})+}\left(\tau, \tau-\tau^{\prime}\right)\right\}
\end{gathered}
$$

and arrive at

$$
\begin{aligned}
\hat{\sigma}(t)=\hat{\sigma}(0)+ & \int_{0}^{t} d \tau \int_{0}^{\tau} d \tau^{\prime} \sum_{u, v}\left\{C_{u v}^{*}\left(\tau^{\prime}\right) K_{u}^{(\mathrm{I})}(\tau) \hat{\sigma}(0) K_{v}^{(\mathrm{I})}\left(\tau-\tau^{\prime}\right)+C_{u v}\left(\tau^{\prime}\right) K_{v}^{(\mathrm{I})}\left(\tau-\tau^{\prime}\right) \hat{\sigma}(0) K_{u}^{(\mathrm{I})}(\tau)\right. \\
& \left.-C_{u v}\left(\tau^{\prime}\right) K_{u}^{(\mathrm{I})}(\tau) K_{v}^{(\mathrm{I})}\left(\tau-\tau^{\prime}\right) \hat{\sigma}(0)-C_{u v}^{*}\left(\tau^{\prime}\right) \hat{\sigma}(0) K_{v}^{(\mathrm{I})}\left(\tau-\tau^{\prime}\right) K_{u}^{(\mathrm{I})}(\tau)\right\}
\end{aligned}
$$

the time-derivative gives

$$
\begin{aligned}
\frac{\partial}{\partial t} \hat{\sigma}(t)= & \int_{0}^{t} d \tau^{\prime} \sum_{u, v}\left\{C_{u v}^{*}\left(\tau^{\prime}\right) K_{u}^{(\mathrm{I})}(t) \hat{\sigma}(0) K_{v}^{(\mathrm{I})}\left(t-\tau^{\prime}\right)+C_{u v}\left(\tau^{\prime}\right) K_{v}^{(\mathrm{I})}\left(t-\tau^{\prime}\right) \hat{\sigma}(0) K_{u}^{(\mathrm{I})}(t)\right. \\
& \left.-C_{u v}\left(\tau^{\prime}\right) K_{u}^{(\mathrm{I})}(t) K_{v}^{(\mathrm{I})}\left(t-\tau^{\prime}\right) \hat{\sigma}(0)-C_{u v}^{*}\left(\tau^{\prime}\right) \hat{\sigma}(0) K_{v}^{(\mathrm{I})}\left(t-\tau^{\prime}\right) K_{u}^{(\mathrm{I})}(t)\right\}
\end{aligned}
$$

next, we remember

$$
|\psi(t)\rangle=e^{-i H_{\mathrm{S}} t / \hbar}|\tilde{\phi}(t)\rangle
$$

and the fact that the reduced density operator $\hat{\rho}(t)$ which is related to the stochastic Schrödinger equation is defined by $|\psi(t)\rangle$; it follows

$$
\hat{\rho}(t)=e^{-i H_{\mathrm{S}} t / \hbar} \hat{\sigma}(t) e^{-i H_{\mathrm{S}} t / \hbar}
$$

we derive an equation for $\hat{\rho}(t)$

$$
\frac{\partial}{\partial t} \hat{\rho}(t)=-\frac{i}{\hbar}\left[H_{\mathrm{S}}, \hat{\rho}(t)\right]_{-}+\int_{0}^{t} d \tau \sum_{u, v}\left\{C_{u v}^{*}(\tau) K_{u} U_{\mathrm{S}}(t) \hat{\sigma}(0) U_{\mathrm{S}}^{+}(t) K_{v}^{(\mathrm{I})}(-\tau)\right.
$$

$\left.+C_{u v}(\tau) K_{v}^{(\mathrm{I})}(\tau) U_{\mathrm{S}}(t) \hat{\sigma}(0) U_{\mathrm{S}}^{+}(t) K_{u}-C_{u v}(\tau) K_{u} K_{v}(-\tau) U_{\mathrm{S}}(t) \hat{\sigma}(0) U_{\mathrm{S}}^{+}(t)-C_{u v}^{*}(\tau) U_{\mathrm{S}}(t) \hat{\sigma}(0) U_{\mathrm{S}}^{+}(t) K_{v}^{(\mathrm{I})}(-\tau) K_{u}\right\}$
if in a consequent second-order theory the following identifcation is taken in the right-hand side of the foregoing equation

$$
U_{\mathrm{S}}(t) \hat{\sigma}(0) U_{\mathrm{S}}^{+}(t) \approx \hat{\rho}(t)
$$

we have obtained the standard quantum master equation

