
3 Quantum State Diffusion Method I: Approach of Gaspar and Nagaoka

we follow the procedure of P. Gaspard and M. Nagaoka published in J. Chem. Phys. 111, 5676

(1999);

3.1 System–Reservoir Separation

to generate a stochastic Schrödinger equation we note the system–reservoir separation of the

Hamiltonian what results in the following standard Schrödinger equation

i~
∂

∂t
|Ψ(t)〉 = (HS +HS−R +HR)|Ψ(t)〉

we introduce the complete basis in the state space of the reservoir |α〉
HR|α〉 = Eα|α〉

if the reservoir is considered as a huge set of decoupled harmonic oscillators we have

Eα =
∑

ξ

~ωξ(Nξ + 1/2)

due to the large number of oscillators which contribute, the degeneracy of the energy levels is

huge; many reservoir states |α〉 = ∏

ξ |Nξ〉 affect the active system in a similar way;



an expansion of the total state vector |Ψ(t)〉 with respect to the |α〉 gives

|Ψ(t)〉 =
∑

α

|φα(t)〉|α〉

the state vector

|φα(t)〉 = 〈α|Ψ(t)〉
is the projection of the total state vector onto a particular reservoir state |α〉; it is exclusively defined

in the system state space; the normalization of Ψ(t) results in

1 = 〈Ψ(t)|Ψ(t)〉 =
∑

α

〈φα(t)|φα(t)〉 ≡
∑

α

pα(t)

pα(t) = 〈φα(t)|φα(t)〉 is the probability at time t to have the particular reservoir state |α〉 involved in

|Ψ(t)〉;

the idea behind the derivation of a stochastic Schrödinger equation is that the different state

vectors φα(t) behave in a random way not only because of their mutual interaction under the

time-evolution but also because of the large number of these states;

indeed, the bath’s density of energy levels is very high so that the energy spectrum is very dense;

since each eigenenergy of the bath is associated with a state vectors φα(t) in the decomposition

we may understand that the time evolution of a typical state vector is affected by a very large set

of state vectors;



An Additional Remark

we consider ÔS as an operator which exclusively acts in the active system state space; it’s ex-

pectation value follows as

OS(t) = 〈Ψ(t)|ÔS|Ψ(t)〉 =
∑

α

〈φα(t)|ÔS|φα(t)〉 = trS{σ̂(t)ÔS}

the density operator like expression σ̂(t) takes the form

σ̂(t) =
∑

α

|φα(t)〉〈φα(t)| =
∑

α

pα(t)|φ̃α(t)〉〈φ̃α(t)|

we introduced

pα(t) = 〈φα(t)|φα(t)〉
and the normalized state vectors

|φ̃α(t)〉 = |φα(t)〉/pα(t)



we expand the time–dependent Schrödinger equation

i~
∂

∂t
〈α|Ψ(t)〉 = i~

∂

∂t
|φα(t)〉 = 〈α|(HS+HS−R+HR)

∑

β

|φβ(t)〉|β〉 = (HS+Eα)|φα(t)〉+
∑

β

〈α|HS−R|β〉|φβ(t)〉

= (HS + Eα)|φα(t)〉 +
∑

u

Ku

∑

β

〈α|Φu|β〉|φβ(t)〉

the time evolution of a typical coefficient, such as φκ(t) taken from all these coefficients, is affected

by a very large set of coefficients which are coupled to it by the coupling matrix elements 〈κ|Φu|β〉;
to highlight this we change to a modified interaction representation according to

|φκ(t)〉 = e−i(HS+Eκ)t/~|φ̃κ(t)〉
and obtain

i~
∂

∂t
|φ̃κ(t)〉 =

∑

u

K(I)
u (t)

∑

β

〈κ|Φ(I)
u (t)|β〉|φ̃β(t)〉

note

K(I)
u (t) = eiHSt/~Ku(t)e

−iHSt/~

and

〈κ|Φ(I)
u (t)|β〉 = eiωκβt〈κ|Φu|β〉

we assume 〈κ|Φu|κ〉 = 0; then, φ̃κ(t) does not appear on the right–hand side of the equation of

motion for this function;



the aim of the subsequent manipulations is the derivation of a closed (and approximate) equation

for φ̃κ(t) (an equation where φ̃κ(t) also appears on the right–hand side); therefore we start with the

derivation of an equation for φ̃β(t)

|φ̃β(t)〉 = |φ̃β(0)〉 −
i

~

∫ t

0

dτ
∑

v

K(I)
v (τ )

∑

β′
〈β|Φ(I)

v (τ )|β′〉|φ̃β′(τ )〉

we approximate the right–hand side by taking from the whole β′–sum only the single term with

β′ = κ

|φ̃β(t)〉 ≈ |φ̃β(0)〉 −
i

~

∫ t

0

dτ
∑

v

K(I)
v (τ )〈β|Φ(I)

v (τ )|κ〉|φ̃κ(τ )〉

the equation of motion for |φ̃κ(t)〉 takes the form

i~
∂

∂t
|φ̃κ(t)〉 =

∑

u

K(I)
u (t)

∑

β

〈κ|Φ(I)
u (t)|β〉|φ̃β(0)〉

− i

~

∑

u

K(I)
u (t)

∑

β

〈κ|Φ(I)
u (t)|β〉

∫ t

0

dτ
∑

v

K(I)
v (τ )〈β|Φ(I)

v (τ )|κ〉|φ̃κ(τ )〉

=
∑

u

K(I)
u (t)

∑

β

〈κ|Φ(I)
u (t)|β〉|φ̃β(0)〉 −

i

~

∫ t

0

dτ
∑

u,v

K(I)
u (t)K(I)

v (τ )
∑

β

〈κ|Φ(I)
u (t)|β〉〈β|Φ(I)

v (τ )|κ〉|φ̃κ(τ )〉



the β–sum in the last term on the right–hand side can be removed and we finally obtain

i~
∂

∂t
|φ̃κ(t)〉 =

∑

u

K(I)
u (t)

∑

β

〈κ|Φ(I)
u (t)|β〉|φ̃β(0)〉

− i

~

∫ t

0

dτ
∑

u,v

K(I)
u (t)K(I)

v (τ )〈κ|Φ(I)
u (t)Φ(I)

v (τ )|κ〉|φ̃κ(τ )〉

we derived an equation of motion for |φ̃κ(t)〉 where this particular state is only determined by matrix

elements formed by the other states and by their initial values; an appropriate handling of these

quantities will lead to the required stochastic Schrödinger equation;



3.2 Projection Operator Method

the procedure introduced in the preceding section is generalized by using the standard projection

operator scheme: we introduce the projector on a representative reservoir state |λ〉
P̂ = 1S|λ〉〈λ|

the orthogonal complement is

Q̂ = 1− P̂ = 1S
∑

α 6=λ
|α〉〈α|

it follows

P̂ |Ψ(t)〉 = |φλ(t)〉|λ〉
and

Q̂|Ψ(t)〉 =
∑

α 6=λ
|φα(t)〉|α〉

we change to the interaction representation

|Ψ(t)〉 = U0(t)|Ψ(I)(t)〉
with U0(t) = exp(−i(HS +HR)t/~) and arrive at

|Ψ(I)(t)〉 = U+
0 (t)

∑

α

|φα(t)〉|α〉 =
∑

α

ei(HS+Eα)t/~|φα(t)〉|α〉 =
∑

α

|φ̃α(t)〉|α〉



we use

|φ̃α(t)〉 = ei(HS+Eλ)t/~|φα(t)〉
and obtain

P̂ |Ψ(I)(t)〉 = 1S|λ〉〈λ||Ψ(I)(t)〉 = |φ̃λ(t)〉|λ〉
noting the time–dependent Schrödinger equation in the interaction representation

i~
∂

∂t
|Ψ(I)(t)〉 = H

(I)
S−R(t)|Ψ(I)(t)〉

we may deduce

i~
∂

∂t
P̂ |Ψ(I)(t)〉 = P̂H

(I)
S−R(t)P̂ × P̂ |Ψ(I)(t)〉 + P̂H

(I)
S−R(t)Q̂× Q̂|Ψ(I)(t)〉

and

i~
∂

∂t
Q̂|Ψ(I)(t)〉 = Q̂H

(I)
S−R(t)P̂ × P̂ |Ψ(I)(t)〉 + Q̂H

(I)
S−R(t)Q̂× Q̂|Ψ(I)(t)〉

to achieve a formal solution of the latter equation we introduce

ŜQ(t) = T̂ exp
(

− i

~

∫ t

0

dτ Q̂H
(I)
S−R(τ )Q̂

)

and get

Q̂|Ψ(I)(t)〉 = ŜQ(t)Q̂|Ψ(I)(0)〉 − i

~

∫ t

0

dτ ŜQ(t− τ )Q̂H
(I)
S−R(τ )P̂ × P̂ |Ψ(I)(τ )〉



inserting this equation into the one for P̂ |Ψ(I)(t)〉 gives

i~
∂

∂t
P̂ |Ψ(I)(t)〉 = P̂H

(I)
S−R(t)P̂ × P̂ |Ψ(I)(t)〉 + P̂H

(I)
S−R(t)Q̂ŜQ(t)Q̂|Ψ(I)(0)〉

− i

~

∫ t

0

dτ P̂H
(I)
S−R(t)Q̂× ŜQ(t− τ )× Q̂H

(I)
S−R(τ )P̂ × P̂ |Ψ(I)(τ )〉

for a further treatment all expressions of H
(I)
S−R combined with the projectors are calculated

P̂H
(I)
S−R(t)P̂ = 1S|λ〉〈λ|

∑

u

K(I)
u (t)Φ(I)

u (t)1S|λ〉〈λ| =
∑

u

K(I)
u (t)〈λ|Φ(I)

u (t)|λ〉|λ〉〈λ|

and

P̂H
(I)
S−R(t)Q̂ = 1S|λ〉〈λ|

∑

u

K(I)
u (t)Φ(I)

u (t)1S
∑

α 6=λ
|α〉〈α|

=
∑

u

K(I)
u (t)

∑

α 6=λ
〈λ|Φ(I)

u (t)|α〉|λ〉〈α|

and

Q̂H
(I)
S−R(t)P̂ =

∑

u

K(I)+
u (t)

∑

α 6=λ
〈α|Φ(I)+

u (t)|λ〉|α〉〈λ|

and finally

Q̂H
(I)
S−R(t)Q̂ =

∑

u

K(I)
u (t)

∑

α 6=λ

∑

β 6=λ
〈α|Φ(I)

u (t)|β〉|α〉〈β|



3.3 Second Order Expansion

for further considerations we concentrate on a second order with respect to the system reservoir

coupling; therefore we approximate

ŜQ(t) ≈ 1− i

~

∫ t

0

dτ Q̂H
(I)
S−R(τ )Q̂

it gives

i~
∂

∂t
P̂ |Ψ(I)(t)〉 ≈ P̂H

(I)
S−R(t)P̂ × P̂ |Ψ(I)(t)〉 + P̂H

(I)
S−R(t)Q̂

(

1− i

~

∫ t

0

dτ Q̂H
(I)
S−R(τ )Q̂

)

Q̂|Ψ(I)(0)〉

− i

~

∫ t

0

dτ P̂H
(I)
S−R(t)Q̂× Q̂H

(I)
S−R(τ )P̂ × P̂ |Ψ(I)(τ )〉

we further note
∂

∂t
P̂ |Ψ(I)(t)〉 = |λ〉 ∂

∂t
|φ̃λ(t)〉

and

P̂H
(I)
S−R(t)P̂ × P̂ |Ψ(I)(t)〉 =

∑

u

K(I)
u (t)〈λ|Φ(I)

u (t)|λ〉|λ〉〈λ||φ̃λ(t)〉|λ〉

=
∑

u

K(I)
u (t)〈λ|Φ(I)

u (t)|λ〉|φ̃λ(t)〉|λ〉

this term vanishes since we assume 〈λ|Φ(I)
u (t)|λ〉 = 0;



next we compute

P̂H
(I)
S−R(t)Q̂

(

1− i

~

∫ t

0

dτ Q̂H
(I)
S−R(τ )Q̂

)

Q̂|Ψ(I)(0)〉 =
∑

u

K(I)
u (t)

∑

α 6=λ
〈λ|Φ(I)

u (t)|α〉|λ〉〈α|
(

1− i

~

∫ t

0

dτ
∑

v

K(I)
v (τ )

∑

α′ 6=λ

∑

β′ 6=λ
〈α′|Φ(I)

v (τ )|β′〉|α′〉〈β′|
)

∑

β 6=λ
|φ̃β(0)〉|β〉

=
∑

u

K(I)
u (t)

∑

α 6=λ
〈λ|Φ(I)

u (t)|α〉|λ〉|φ̃α(0)〉

− i

~

∫ t

0

dτ
∑

u,v

K(I)
u (t)

∑

α 6=λ

∑

β 6=λ
〈λ|Φ(I)

u (t)|α〉|λ〉K(I)
v (τ )〈α|Φ(I)

v (τ )|β〉|φ̃β(0)〉

= |λ〉
∑

u

K(I)
u (t)

∑

α 6=λ
〈λ|Φ(I)

u (t)|α〉|φ̃α(0)〉

−|λ〉 i
~

∫ t

0

dτ
∑

u,v

K(I)
u (t)K(I)

v (τ )
∑

α 6=λ

∑

β 6=λ
〈λ|Φ(I)

u (t)|α〉〈α|Φ(I)
v (τ )|β〉|φ̃β(0)〉

we again assume 〈λ|Φ(I)
u (t)|λ〉 = 0 and obtain
∑

α 6=λ
〈λ|Φ(I)

u (t)|α〉〈α|Φ(I)
v (τ )|β〉 = 〈λ|Φ(I)

u (t)Φ(I)
v (τ )|β〉



finally we calculate

− i

~

∫ t

0

dτ P̂H
(I)
S−R(t)Q̂× Q̂H

(I)
S−R(τ )P̂ × P̂ |Ψ(I)(τ )〉 =

− i

~

∫ t

0

dτ
∑

u

K(I)
u (t)

∑

α 6=λ
〈λ|Φ(I)

u (t)|α〉|λ〉〈α|
∑

v

K(I)+
v (τ )

∑

β 6=λ
〈β|Φ(I)+

v (τ )|λ〉|β〉〈λ||φ̃λ(τ )〉|λ〉

= −|λ〉 i
~

∫ t

0

dτ
∑

u,v

K(I)
u (t)K(I)+

v (τ )
∑

α 6=λ
〈λ|Φ(I)

u (t)|α〉〈α|Φ(I)+
v (τ )|λ〉|φ̃λ(τ )〉



multiplying the equation of motion with 〈λ| gives (note the assumption Φ+
u = Φu)

∂

∂t
|φ̃λ(t)〉 =

∑

u

K(I)
u (t)〈λ|Φ(I)

u (t)|λ〉|φ̃λ(t)〉 +
∑

u

K(I)
u (t)

∑

α 6=λ
〈λ|Φ(I)

u (t)|α〉|φ̃α(0)〉

− i

~

∫ t

0

dτ
∑

u,v

K(I)
u (t)K(I)

v (τ )
∑

β 6=λ
〈λ|Φ(I)

u (t)Φ(I)
v (τ )|β〉|φ̃β(0)〉

− i

~

∫ t

0

dτ
∑

u,v

K(I)
u (t)K(I)+

v (τ )〈λ|Φ(I)
u (t)Φ(I)

v (τ )|λ〉|φ̃λ(τ )〉

we note 〈λ|Φ(I)
u (t)|λ〉 = 0 in the first term on the right–hand side and get

i~
∂

∂t
|φ̃λ(t)〉 =

∑

u

K(I)
u (t)

∑

α 6=λ
〈λ|Φ(I)

u (t)|α〉 × |φ̃α(0)〉

− i

~

∫ t

0

dτ
∑

u,v

K(I)
u (t)K(I)

v (τ )
∑

β 6=λ
〈λ|Φ(I)

u (t)Φ(I)
v (τ )|β〉 × |φ̃β(0)〉

− i

~

∫ t

0

dτ
∑

u,v

K(I)
u (t)K(I)+

v (τ )〈λ|Φ(I)
u (t)Φ(I)

v (τ )|λ〉 × |φ̃λ(τ )〉



we introduce the forcing term

F̂λ(t) =
∑

u

K(I)
u (t)

∑

α 6=λ
〈λ|Φ(I)

u (t)|α〉 × |φ̃α(0)〉

− i

~

∫ t

0

dτ
∑

u,v

K(I)
u (t)K(I)

v (τ )
∑

α 6=λ
〈λ|Φ(I)

u (t)Φ(I)
v (τ )|α〉 × |φ̃α(0)〉

it is determined by the initial state; it acts as a stochastic force due to the reservoir fluctuations;

the remaining term with |φ̃λ(τ )〉 at earlier time τ represents the damping term; it follows

i~
∂

∂t
|φ̃λ(t)〉 = F̂λ(t)−

i

~

∫ t

0

dτ
∑

u,v

K(I)
u (t)K(I)+

v (τ )〈λ|Φ(I)
u (t)Φ(I)+

v (τ )|λ〉|φ̃λ(τ )〉

the forcing term can be rewritten as

F̂λ(t) =
∑

u

K(I)
u (t)

∑

α 6=λ
〈λ|Φ(I)

u (t)|α〉 × |φ̃α(0)〉

+
∑

u

K(I)
u (t)

∑

β

〈λ|Φ(I)
u (t)|β〉(−i)

~

∫ t

0

dτ
∑

v

K(I)
v (τ )

∑

α 6=λ
〈β|Φ(I)

v (τ )|α〉 × |φ̃α(0)〉

=
∑

u

K(I)
u (t)

∑

α 6=λ
〈λ|Φ(I)

u (t)|α〉

{

|φ̃α(0)〉 −
i

~

∫ t

0

dτ
∑

v

K(I)
v (τ )

∑

β 6=λ
〈α|Φ(I)

v (τ )|β〉 × |φ̃β(0)〉
}



in the last term an interchange of α and β has been taken; comparing the expression in the wavy

bracket with the integrated time–dependent Schrödinger equation

|φ̃α(t)〉 = |φ̃α(0)〉 −
i

~

∫ t

0

dτ
∑

v

K(I)
v (τ )

∑

β

〈α|Φ(I)
v (τ )|β〉|φ̃β(τ )〉

we realize the following notation

F̂λ(t) =
∑

u

K(I)
u (t)

∑

α 6=λ
〈λ|Φ(I)

u (t)|α〉 × |φ̃(1)α (t)〉

where |φ̃(1)α (t)〉 is the time–dependent state vector determined in the first order of the system–

reservoir coupling; we will make use of this result later;



3.4 Statistical Typicality

in order to obtain a stochastic differential equation, we need to assume that the |φ̃λ(t)〉 represent

statistically each one of the |φ̃α(t)〉 of the linear decomposition

|Ψ(I)(t)〉 =
∑

α

|φ̃α(t)〉|α〉

of the total wave function in the interaction picture;

in this sense, we should assume that all the |φ̃α(t)〉 behave similarly and form a statistical ensem-

ble for which |φ̃λ(t)〉 is a typical representative; this assumption shall be called the assumption of

statistical typicality;

the assumption of statistical typicality can be justified if the bath subsystem is classically chaotic;

namely, the average of a bath operator B over a typical eigenstate |λ〉 is essentially equivalent

to a classical average over the microcanonical statistical ensemble at the energy equal to the

eigenenergy Eλ; this behavior has its origin in the property that typical eigenfunctions are sta-

tistically irregular at high quantum numbers; moreover, since the bath is a large subsystem, this

microcanonical average is essentially equivalent to a canonical average

〈λ|B|λ〉 ≈ trR{R̂eqB}
where

R̂eq =
1

Z e
−HR/kBT



as a consequence of the assumption of statistical typicality of the |φ̃λ(t)〉 we obtain for the correla-

tion function in the damping term of the time–dependent Schrödinger equation (note the assump-

tion Φ
(I)+
v = Φ

(I)
v )

〈λ|Φ(I)
u (t)Φ(I)+

v (τ )|λ〉 ≈ trR{R̂eqΦ
(I)
u (t)Φ(I)

v (τ )} ≡ ~
2Cuv(t− τ )

the form of the damping term should be essentially independent of the particular state vector that

has been chosen among the ensemble of state vectors; obviously the correlation function is the

one appearing in the standard quantum master equation;

in order to obtain the typical behavior of the forcing term, we need to make assumptions on the

initial condition of the total wave function;

|Ψ(t = 0)〉 is assumed to be a pure state; in order to construct it we assume

〈Ψ(0)|Ô|Ψ(0)〉 ≈ tr{|ψ(0)〉〈ψ(0)|R̂eqÔ}
ψ(0) is the system wave function at the initial time (it is normalized to 1) and Ô is an operator

acting in the complete state space of the system plus the reservoir;

we replace the reservoir part of the trace by an expansion with respect to the reservoir states |α〉

〈Ψ(0)|Ô|Ψ(0)〉 ≈
∑

α

〈α|trS{|ψ(0)〉〈ψ(0)|R̂eqÔ}|α〉 =
∑

α

fαtrS{|ψ(0)〉〈ψ(0)|〈α|Ô|α〉}

note

fα =
1

Z e
−Eα/kBT



the approximate equality for 〈Ψ(0)|Ô|Ψ(0)〉 can be established under the assumption that the initial

condition of the total wave function is given by

|Ψ(0)〉 ≈ |ψ(0)〉
∑

α

√

fαe
iθα|α〉

the θα are random phases distributed between 0 and 2π; we obtain

〈Ψ(0)|Ô|Ψ(0)〉 ≈
∑

α,β

〈ψ(0)|
√

fαe
−iθα〈α|Ô

√

fβe
iθβ |β〉|ψ(0)〉

an additional averaging with respect to the random phases would let remain the terms with α = β

only; this gives the required result;

the introduced assumption for Ψ(0) implies that the initial conditions of the φα(t) related to the

decomposition

|Ψ(t)〉 =
∑

α

|φα(t)〉|α〉

take the form

|φα(0)〉 = |φ̃α(0)〉 = |ψ(0)〉
√

fαe
iθα

an important consequence of this relation is that all the initial functions are proportional to the

same initial wave function of the system; in particular, the chosen state vector |φ̃λ(t)〉 is also pro-

portional to the same initial wave function because the relation also holds for the special function

with α = λ; hence, we find that

|φ̃α(0)〉 ≈ |φ̃λ(0)〉e−(Eα−Eλ)/2kBTei(θα−θλ)



the forcing term becomes

F̂λ(t) ≈
∑

u

K(I)
u (t)

∑

α 6=λ
〈λ|Φ(I)

u (t)|α〉e−(Eα−Eλ)/2kBTei(θα−θλ)|φ̃λ(0)〉

− i

~

∫ t

0

dτ
∑

u,v

K(I)
u (t)K(I)

v (τ )
∑

α 6=λ
〈λ|Φ(I)

u (t)Φ(I)
v (τ )|α〉e−(Eα−Eλ)/2kBTei(θα−θλ)|φ̃λ(0)〉

≈
∑

u

K(I)
u (t)

∑

α 6=λ
〈λ|Φ(I)

u (t)|α〉e−(Eα−Eλ)/2kBTei(θα−θλ)|φ̃λ(t)〉

in the last step we have supposed that the second term in the perturbative expansion gives an

approximation for the time evolution of |φ̃λ(t)〉;
we finally write

F̂λ(t) =
∑

u

ηu(t)K
(I)
u (t)|φ̃λ(t)〉

with the noise terms

ηu(t) =
∑

α 6=λ
〈λ|Φ(I)

u (t)|α〉e−(Eα−Eλ)/2kBTei(θα−θλ)

the Schrödinger equation can bewritten as

i~
∂

∂t
|φ̃λ(t)〉 =

∑

u

ηu(t)K
(I)
u (t)|φ̃λ(t)〉 −

i

~

∫ t

0

dτ
∑

u,v

K(I)
u (t)K(I)+

v (τ )〈λ|Φ(I)
u (t)Φ(I)+

v (τ )|λ〉|φ̃λ(τ )〉

we may use the earlier derived relation

〈λ|Φ(I)
u (t)Φ(I)+

v (τ )|λ〉 ≈ trR{R̂eqΦ
(I)
u (t)Φ(I)

v (τ )} ≡ ~
2Cuv(t− τ )



3.5 Averaging with Respect to the Noise

the random distribution of the phases between 0 and 2π results in the following simple phase

averaging formula

< f (θ) >ph=
1

2π

∫ 2π

0

dθ f (θ)

it simply results

< eiθ >ph=
1

2π

∫ 2π

0

dθ eiθ = 0

next we consider < ei(θ+θ
′) >ph; here, θ and θ′ may belong to different states of the reservoir; in this

case we get

< ei(θ+θ
′) >ph=< eiθ >ph × < eiθ

′
>ph= 0

if they belong to the same state we arrive at

< ei2θ >ph= 0

if one considers, however < ei(θ−θ
′) >ph we get also zero for the case that θ and θ′ belong to

different states of the reservoir; we get 1 if they belong to the same reservoir state; turning to an

averaging of expressions including different ηu(t) we first consider

< ηu(t) >ph=
∑

α 6=λ
〈λ|Φ(I)

u (t)|α〉e−(Eα−Eλ)/2kBT < ei(θα−θλ) >ph= 0

the result is obtained since α 6= λ;



next, we consider

< ηu(t)ηv(τ ) >ph=
∑

α 6=λ
〈λ|Φ(I)

u (t)|α〉e−(Eα−Eλ)/2kBT
∑

β 6=λ
〈λ|Φ(I)

v (τ )|β〉e−(Eβ−Eλ)/2kBT

< ei(θα−θλ)ei(θβ−θλ) >ph= 0

finally we consider

< ηu(t)η
∗
v(τ ) >ph=

∑

α 6=λ
〈λ|Φ(I)

u (t)|α〉e−(Eα−Eλ)/2kBT
∑

β 6=λ
〈β|Φ(I)

v (τ )|λ〉e−(Eβ−Eλ)/2kBT

< ei(θα−θλ)e−i(θβ−θλ) >ph

= eEλ/kBT
∑

α 6=λ
〈λ|Φ(I)

u (t)|α〉e−Eα/kBT 〈α|Φ(I)
v (τ )|λ〉

= ZeEλ/kBT 〈λ|Φ(I)
u (t)R̂eqΦ

(I)
v (τ )|λ〉

in order to obtain a typical value for these correlation functions we perform a thermal average
∑

λ

e−Eλ/kBT

Z < ηu(t)η
∗
v(τ ) >ph=

∑

λ

〈λ|Φ(I)
u (t)R̂eqΦ

(I)
v (τ )|λ〉

= trR{R̂eqΦ
(I)
v (τ )Φ(I)

u (t)} = ~
2Cvu(τ, t) = ~

2C∗
uv(t, τ )

so we identify

< ηu(t)η
∗
v(τ ) >ph= ~

2Cvu(τ, t)

and

< η∗u(t)ηv(τ ) >ph= ~
2Cuv(t, τ )



3.6 The Stochastic Schrödinger Equation

the reasoning used in the preceding section also allows to introduce the correlation funtion in the

damping term of the time–dependent Schrödinger equation; it follows

i~
∂

∂t
|φ̃λ(t)〉 =

∑

u

ηu(t)K
(I)
u (t)|φ̃λ(t)〉 − i~

∫ t

0

dτ
∑

u,v

K(I)
u (t)K(I)+

v (τ )Cuv(t− τ )|φ̃λ(τ )〉

a single |φ̃λ(t)〉 is representative for all |φ̃λ(t)〉; so the quantum number λ can be removed; we

introduce

|ψ(t)〉 = e−iHSt/~|φ̃λ(t)〉 = eiEκt/~|φλ(t)〉
and arrive at

i~
∂

∂t
|ψ(t)〉 = HS|ψ(t)〉 +

∑

u

ηu(t)Ku|ψ(t)〉 − i~

∫ t

0

dτ
∑

u,v

Cuv(t− τ )Kue
−iHS(t−τ)/~Kv|ψ(τ )〉

if a statistical ensemble of initial states ψj(0) is considered, the different ψj(t) obey the stochastic

Schrödinger equation (note the change from τ to t− τ )

i~
∂

∂t
|ψj(t)〉 = HS|ψj(t)〉 +

∑

u

ηu(t)Ku|ψj(t)〉 − i~

∫ t

0

dτ
∑

u,v

Cuv(τ )Kue
−iHS(τ)/~Kv|ψj(t− τ )〉

the related density operator follows as

ρ̂(t) =
∑

j

wj
< |ψj(t)〉〈ψj(t| >ph

< 〈ψj(t|ψj(t)〉 >ph



the stochastic terms are defined via colored Gaussian noise (a single u is considered here only)

< η(t) >= 0 < η(t)η(0) >= 0 < η∗(t)η(0) >= C(t)

such a noise can be generated according to

η(t) =

∫

dτ R(τ )
ξ1(t− τ ) + iξ2(t− τ )√

2

ξ1 and ξ2 are two indipendent Gaussian white noise processes

< ξ1,2(t) >= 0 < ξ1(t)ξ2(0) >= 0 < ξ1(t)ξ1(0) >=< ξ2(t)ξ2(0) >= δ(t)

the function R(τ ) which translates Gaussian white noise into colored Gaussian noise is defined by

C(t) =

∫ ∞

0

dτ R∗(t + τ )R(τ )



3.7 The Master Equation of the Stochastic Schrödinger Equation

we change back to |φ̃(t)〉 and write

i~
∂

∂t
|φ̃(t)〉 = ∆H(I)(t)|φ̃(t)〉 − i~

∫ t

0

dτ M (I)(t, τ )|φ̃(τ )〉

where we introduced

∆H(I)(t) =
∑

u

ηu(t)K
(I)
u (t)

and

M (I)(t, τ ) =
∑

u,v

K(I)
u (t)K(I)

v (τ )Cuv(t− τ )

we construct a noise averaged density operator

σ̂(t) =< |φ̃(t)〉〈φ̃(t)| >ph

and derive an equation of motion; the solution of the Schrödinger equation up to the second order

in the system–reservoir coupling reads

|φ̃(t)〉 = |φ̃(0)〉 − i

~

∫ t

0

dt1 ∆H
(I)(t1)|φ̃(0)〉 −

1

~2

∫ t

0

dt1

∫ t1

0

dt2 ∆H
(I)(t1)∆H

(I)(t2)|φ̃(0)〉

−
∫ t

0

dt1

∫ t1

0

dt2 M
(I)(t1, t2)|φ̃(0)〉



the noise averaged density operator follows as

σ̂(t) = σ̂(0) +
1

~2

∫ t

0

dt1

∫ t

0

dt2 < ∆H(I)(t1)σ̂(0)∆H
(I)+(t2) >ph

− 1

~2

∫ t

0

dt1

∫ t1

0

dt2 < ∆H(I)(t1)∆H
(I)(t2) >ph σ̂(0)−

1

~2

∫ t

0

dt1

∫ t1

0

dt2 σ̂(0) < ∆H(I)+(t2)∆H
(I)+(t1) >ph

−
∫ t

0

dt1

∫ t1

0

dt2 M
(I)(t1, t2)σ̂(0)−

∫ t

0

dt1

∫ t1

0

dt2 σ̂(0)M
(I)+(t1, t2)

we note

< ∆H(I)(t1)∆H
(I)(t2) >ph=< ∆H(I)+(t2)∆H

(I)+(t1) >ph= 0

and

I(t) =

∫ t

0

dt1

∫ t

0

dt2 < ∆H(I)(t1)σ̂(0)∆H
(I)+(t2) >ph

=

∫ t

0

dt1

∫ t1

0

dt2
(

< ∆H(I)(t1)σ̂(0)∆H
(I)+(t2) >ph + < ∆H(I)(t2)σ̂(0)∆H

(I)+(t1) >ph

)

note that the norm of |φ̃(t)〉 does not change up to the second order in the system–reservoir

coupling;



so the density operator takes the form

σ̂(t) = σ̂(0)

+
1

~2

∫ t

0

dt1

∫ t1

0

dt2 < ∆H(I)(t1)σ̂(0)∆H
(I)+(t2) >ph +

1

~2

∫ t

0

dt1

∫ t1

0

dt2 < ∆H(I)(t2)σ̂(0)∆H
(I)+(t1) >ph

−
∫ t

0

dt1

∫ t1

0

dt2
(

M (I)(t1, t2)σ̂(0) + σ̂(0)M (I)+(t1, t2)
)

we remember < ηu(t)η
∗
v(τ ) >ph∼ Cvu(τ, t) and get

< ∆H(I)(t1)σ̂(0)∆H
(I)+(t2) >ph= ~

2
∑

u,v

Cvu(t2 − t1)K
(I)
u (t1)σ̂(0)K

(I)
v (t2)

< ∆H(I)(t2)σ̂(0)∆H
(I)+(t1) >ph= ~

2
∑

u,v

Cuv(t1 − t2)K
(I)
v (t2)σ̂(0)K

(I)
u (t1)

M (I)(t1, t2) =
∑

u,v

K(I)
u (t1)K

(I)
v (t2)Cuv(t1 − t2)

and

M (I)+(t1, t2) =
∑

u,v

K(I)
v (t2)K

(I)
u (t1)C

∗
uv(t1 − t2)



before using these relations we change to τ = t1 and τ ′ = t1 − t2, i.e. t2 = τ − τ ′

σ̂(t) = σ̂(0)

+

∫ t

0

dτ

∫ τ

0

dτ ′
{ 1

~2
< ∆H(I)(τ )σ̂(0)∆H(I)+(τ − τ ′) >ph +

1

~2
< ∆H(I)(τ − τ ′)σ̂(0)∆H(I)+(τ ) >ph

−M (I)(τ, τ − τ ′)σ̂(0)− σ̂(0)M (I)+(τ, τ − τ ′)
}

and arrive at

σ̂(t) = σ̂(0) +

∫ t

0

dτ

∫ τ

0

dτ ′
∑

u,v

{

C∗
uv(τ

′)K(I)
u (τ )σ̂(0)K(I)

v (τ − τ ′) + Cuv(τ
′)K(I)

v (τ − τ ′)σ̂(0)K(I)
u (τ )

−Cuv(τ ′)K(I)
u (τ )K(I)

v (τ − τ ′)σ̂(0)− C∗
uv(τ

′)σ̂(0)K(I)
v (τ − τ ′)K(I)

u (τ )
}

the time–derivative gives

∂

∂t
σ̂(t) =

∫ t

0

dτ ′
∑

u,v

{

C∗
uv(τ

′)K(I)
u (t)σ̂(0)K(I)

v (t− τ ′) + Cuv(τ
′)K(I)

v (t− τ ′)σ̂(0)K(I)
u (t)

−Cuv(τ ′)K(I)
u (t)K(I)

v (t− τ ′)σ̂(0)− C∗
uv(τ

′)σ̂(0)K(I)
v (t− τ ′)K(I)

u (t)
}



next, we remember

|ψ(t)〉 = e−iHSt/~|φ̃(t)〉
and the fact that the reduced density operator ρ̂(t) which is related to the stochastic Schrödinger

equation is defined by |ψ(t)〉; it follows

ρ̂(t) = e−iHSt/~σ̂(t)e−iHSt/~

we derive an equation for ρ̂(t)

∂

∂t
ρ̂(t) = − i

~
[HS, ρ̂(t)]− +

∫ t

0

dτ
∑

u,v

{

C∗
uv(τ )KuUS(t)σ̂(0)U

+
S (t)K

(I)
v (−τ )

+Cuv(τ )K
(I)
v (τ )US(t)σ̂(0)U

+
S (t)Ku−Cuv(τ )KuKv(−τ )US(t)σ̂(0)U

+
S (t)−C∗

uv(τ )US(t)σ̂(0)U
+
S (t)K

(I)
v (−τ )Ku

}

if in a consequent second–order theory the following identifcation is taken in the right–hand side

of the foregoing equation

US(t)σ̂(0)U
+
S (t) ≈ ρ̂(t)

we have obtained the standard quantum master equation


