
CHAPTER III

Generalized Rate Equations: The Liouville Space Approach

1 Introduction

the approach to be discussed focuses on the derivation of Generalized Rate Equations (General-

ized Master Equations) for the populations Pa(t) of the system eigenstates;

once such equations have been established one can easily extract the transition rates which are

valid in any order of perturbation theory;

to this end we will use the projection operator technique;

since the projection operator P is a superoperator acting in the Liouville space formed by the usual

operators, we will refer to the following treatment as the Liouville space approach;

in a first step we will separate the total system-reservoir Hamiltonian HS+HS−R+HR into a zeroth-

order and coupling term;

this separation starts from the expansion of HS−R with respect to the system eigenstates;

here, we assume that the diagonal elements of Φab = 〈a|HS−R|b〉 are much larger than the off-

diagonal ones;



therefore, a different treatment of the two types of couplings is reasonable;

in particular a perturbational description of the off-diagonal elements might be possible;

but the diagonal elements should be so large that they cannot be handled in a perturbation theory;

we write the system-reservoir Hamiltonian as follows

H = H0 + V̂

where the “zeroth-order” part is given by

H0 = HS +
∑

a

Φaa(Z)|a〉〈a| +HR ≡
∑

a

(

Ea +HR + Φaa(Z)
)

|a〉〈a|

the second part suggests that we can introduce the vibrational Hamiltonian

Ha = Ea +HR + Φaa(Z)

which describes the reservoir coordinate motion when the system is in its eigenstate |a〉; the

perturbation V̂ accounts for the off-diagonal elements of Φab(Z) and reads

V̂ =
∑

a,b

(1− δab)Φab(Z)|a〉〈b|

once the diagonal matrix elements Φaa can be accounted for exactly, a non-perturbative description

of the system-reservoir coupling has been achieved;



2 Projection Operator Technique

in order to establish a nonperturbative description of the system-reservoir coupling let us introduce

an appropriate projection operator;

since a simultaneous description of various states |a〉 is necessary, we generalize the projection

operator P introduced earlier;

if the latter acts on an arbitrary operator Ô it reads

PÔ = R̂eqtrR{Ô} ≡ R̂eq

∑

a,b

trR{〈a|Ô|b〉}|a〉〈b|

this projector is constructed in such a way as to introduce a common equilibrium state of the

reservoir modes represented by R̂eq;

in contrast, the new projection operator takes the form

P̃Ô =
∑

a

R̂a trR{〈a|Ô|a〉}|a〉〈a|

instead of including the full state space related to the system Hamiltonian as it would be the case

for the projection operator P the new quantity P̃ projects on the diagonal system states matrix

element; and, every system state is characterized by a separate equilibrium statistical operator

R̂a =
exp(−Ha/kBT )

trR{exp(−Ha/kBT )}



the introduction of the vibrational Hamiltonians Ha consequently results in such equilibrium statis-

tical operators;

for further use we introduce the projector Π̂a = |a〉〈a| and the combined system-reservoir equilib-

rium statistical operator

Ŵa = R̂aΠ̂a

if P̃ acts on the complete statistical operator we obtain

P̃Ŵ (t) =
∑

a

Pa(t)Ŵa

the expression indicates a specification to the various reservoir equilibrium states (with statistical

operators R̂a) controled by the actual population of the respective system states;

the state populations are extracted if we take the diagonal system state matrix element and the

trace with respect to the reservoir state space

Pa(t) = trR{〈a|P̃Ŵ (t)|a〉}



3 Generalized Rate Equations

we start with the Liouville-von Neumann equation

∂

∂t
Ŵ (t) = −iLŴ (t)

where

L... = [H, ...]−/~

introducing the orthogonal complement

Q̃ = 1− P̃

a separation into two orthogonal parts yields

∂

∂t
P̃Ŵ (t) = −iP̃L

(

P̃Ŵ (t) + Q̃Ŵ (t)
)

and
∂

∂t
Q̃Ŵ (t) = −iQ̃L

(

P̃Ŵ (t) + Q̃Ŵ (t)
)

the solution of the equation for Q̃Ŵ including the assumption Q̃Ŵ (t0) = 0 can be written as follows

Q̃Ŵ (t) = −i

t
∫

t0

dt̄ UQ̃(t− t̄)Q̃LP̃Ŵ (t̄)



where the time-propagation superoperator

UQ̃(t) = exp
{

−iQ̃Lt
}

has been introduced; the resulting equation for P̃Ŵ (the Nakjima-Zwanzig equation) is a closed

equation with respect to P̃Ŵ and reads

∂

∂t
P̃Ŵ (t) = −iP̃LP̃Ŵ (t)−

t
∫

t0

dt̄ P̃L UQ̃(t− t̄)Q̃L P̃Ŵ (t̄)

in order to derive the related equations of motion for the state populations we consider the general

expressions

trR

{

〈a|P̃LÔ|a〉
}

≡ trR

{

〈a|LÔ|a〉
}

Ô may take the form

Ô1 = P̃Ŵ (t)

as well as

Ô2 = UQ̃(t− t̄)Q̃LP̃Ŵ (t̄)

if we insert Ô1 we easily verify that the resulting expression vanishes;

the term with Ô2 suggests the definition of the so-called memory kernels Kab of the related Gen-

eralized Master Equation (GME);



we, first, get

trR

{

〈a|LÔ2|a〉
}

=
∑

b

trR{〈a|
(

LUQ̃(t− t̄)Q̃LŴb

)

|a〉}Pb(t̄)

to arrive at the memory kernel we multiply the trace expression by -1 and by the unit-step function

θ(t− t̄) and get

Kab(t− t̄) = −θ(t− t̄) trR{〈a|
(

LUQ̃(t− t̄)Q̃LŴb

)

|a〉}

to set up the GME we change to τ = t− t̄ and obtain the following compact relation

∂

∂t
Pa(t) =

∑

b

t−t0
∫

−∞

dτ Kab(τ )Pb(t− τ )

a closer inspection of the memory kernels leads to some simplifications;

first, we note that the introduction of the projector Π̂a allows to replace the trace with respect to the

reservoir states by a complete trace;

moreover, we introduce the Green’s superoperator

GQ̃(τ ) = −iθ(τ )UQ̃(τ )

and may write

Kab(τ ) = −itr{Π̂aLGQ̃(τ )Q̃LŴb}



for a further simplification we separate L into the zeroth-order part L0... = [H0, ...]−/~ as well as

into the coupling LV ... = [V̂ , ...]−/~ and arrive at

P̃L0 = L0P̃ = 0

these relations are is easily verified when being applied to an arbitrary operator Ô;

in the same way we may deduce

P̃LV P̃ = 0

using these identities and replacing Π̂aL again by Π̂aP̃L we have

P̃LGQ̃(t) = P̃LV GQ̃(t)

moreover, we note that

Q̃LŴb = Q̃LP̃Ŵb = LV Ŵb

resulting in the following notation of the memory kernels

Kab(τ ) = −itr{Π̂aLV GQ̃(τ )LV Ŵb} ≡ tr{Π̂aT (τ )Ŵb}

in the last expression we introduced the transfer superoperator

T (τ ) = −iLV GQ̃(τ )LV



it offers a suitable interpretation of the memory kernel as describing probability transfer from state

b to state a via time-evolution of the statistical operator Ŵb = R̂bΠ̂b;

the time-evolution starts at τ = 0 and proceeds to τ > 0 as specified by the transfer superoperator

T (τ );

the reservoir state-space trace and the diagonal state matrix element 〈a|...|a〉 gives the memory

kernel;

finally, we notice the existence of a particular sum-rule for the memory kernels:
∑

a

Kab(τ ) =
∑

a

tr{Π̂aT (τ )Ŵb} = tr{T (τ )Ŵb} = 0

the result follows if we take into consideration that T (τ )Ŵb can be written as LV acting on −iGQ̃(τ )LV Ŵb;

therefore, the trace of a commutator results which vanishes identical.



4 Rate Equations

before further dealing with the Kab(τ ) we briefly explain their relation to ordinary transition rates;

suppose that the kernels change fast compared to the time-dependence of the populations;

then, we can neglect memory effects and may write
∫

dτ Kab(τ )Pb(t− τ ) ≈

∫

dτ Kab(τ )Pb(t)

we introduce the Fourier-transformed kernels

Kab(ω) =

∫

dτ eiωτKab(τ )

and set

kab = Kab(ω = 0)

it follows an ordinary rate equation

∂

∂t
Pa(t) =

∑

b

kabPb(t)

the rates are interpreted as the zero-frequency part of the Fourier-transformed kernels; the rate

equations have to fulfill the conservation of total probability

∑

a

∂

∂t
Pa(t) = 0 =

∑

a,b

kabPb(t)



the conservation is guaranteed because of the memory kernel sum-rule, which apparently remains

valid after Fourier-transformation

0 =
∑

a

kab

this relation yields also

kbb = −
∑

a 6=b

kab

we introduce transition rates for a 6= b

kab = kb→a

and obtain rate equations in their standard form

∂

∂t
Pa = −

∑

b

(ka→bPa − kb→aPb)



4.1 The Memory Kernels

for calculating rate expressions its of importance to replace the Green’s superoperator GQ̃ by an

expression which doesn’t contain the projector Q̃;

in order to do this we, first, introduce the Fourier-transformed Green’s superoperator

GQ̃(ω) =

∫

dt eiωt GQ̃(t) =
(

ω − Q̃L + iε
)−1

the Fourier-transformed version of the kernel may be written as

Kab(ω) = −itr{Π̂aLV GQ̃(ω)LV Ŵb}

the Green’s superoperator which should replace GQ̃(ω) and which should be independent on the

projector Q̃ takes the form

G(ω) =
(

ω − L + iε
)−1

we note the identity

1 = G−1
Q̃
(ω)GQ̃(ω) =

(

G−1(ω) + P̃LV

)

GQ̃(ω)

and obtain after multiplying with G from the left

GQ̃(ω) = G(ω)− G(ω)P̃LV GQ̃(ω)

if this relation is inserted into the rate expression we arrive at

Kab(ω) = −itr{Π̂aLV G(ω)LV Ŵb} + itr{Π̂aLV G(ω)P̃LV GQ̃(ω)LV Ŵb}



noting the definition of P̃ the second trace on the right-hand side can be rewritten as

tr{Π̂aLV G(ω)P̃LV GQ̃(ω)LV Ŵb} =
∑

c

tr{Π̂aLV G(ω)Ŵc} tr{Π̂cLV GQ̃(ω)LV Ŵb}

the second trace in the c-sum is identical to iKca(ω);

to rewrite the first trace in the c-sum we introduce the zeroth-order Green’s superoperator

G0(ω) =
(

ω − L0 + iε
)−1

this allows us to set up the relations

G(ω) = G0(ω) + G0(ω)LV G(ω)

and

G(ω) = G0(ω) + G(ω)LV G0(ω)

both equations are a version of the ubiquitous Dyson equation; then, we can rearrange the first

trace expression on the right-hand side of the foregoing equation as

tr{Π̂aLV G(ω)Ŵc} = tr{Π̂aLV G0(ω)Ŵc} + tr{Π̂aLV G(ω)LV G0(ω)Ŵc}

=
1

ω + iε
tr{Π̂aLV G(ω)LV Ŵc}

the last line follows from the fact that trace expressions of first order in LV vanish and that G0(ω)

applied to Ŵc simply produces a frequency denominator;



we denote the kernel which doesn’t depend on the projector Q̃ as

Lab(ω) = −itr{Π̂aLV G(ω)LV Ŵb}

and arrive at the following equation which relates the two types of kernels to each other

Kab(ω) = Lab(ω)−
i

ω + iε

∑

c

Lac(ω)Kcb(ω)

once all Lab have been determined the rates Kab entering the rate equations can be computed

according to this equation;

let us consider a perturbation expansion of Lab in powers of the coupling V̂ ; this expansion would

be of even order in V̂ ; we count the orders with respect to V̂ by m, n and n′ and get a recursion

relation
∞
∑

m=1

K
(2m)
ab (ω) =

∞
∑

m=1

L
(2m)
ab (ω)−

i

ω + iε

∑

c

∞
∑

n=1

∞
∑

n′=1

L(2n)
ac (ω)K

(2n′)
cb (ω)

in particular, the relation indicates that

K
(2)
ab (ω) ≡ L

(2)
ab (ω) = −itr{Π̂aLV G0(ω)LV Ŵb}

however, all higher-order contributions K(2m) are not only determined by L(2m) but also by products

of lower-order rates;

when solving, for example, rate equations including rates up to a particular order m and computing

related state populations, the combination of L(2n) with K(2n′) (n, n′ < m) avoids multiple counting

of the lower-order rates;



4.2 Second-Order Rate Expressions

in the following we will specify the formal results of the foregoing discussion to the second-order

rate; we expect a zero-frequency expression which is identical to the Golden Rule rate;

noting the definition of G0(ω) we may write for the second-order rate

K
(2)
ba (ω) = −

∞
∫

0

dt eiωttrR{〈b|
(

LVU0(t)LV Ŵa

)

|b〉}

we may also write

K
(2)
ba (ω) =

∞
∫

0

dt eiωt
(

Cba(t) + c.c.
)

where the correlation function is formed as

Cba(t) =
1

~2
trR{〈b|U(t)V̂ ŴaU

+(t)V̂ |b〉} =
1

~2
trR{Ub(t)ΦbaR̂aU

+
a (t)Φab}

=
1

~2
trR{R̂aU

+
a (t)ΦabUb(t)Φba}

we note that

C∗
ba(t) =

1

~2
trR{ΦabUb(−t)ΦbaU

+
a (−t)R̂a} =

1

~2
trR{R̂aU

+
a (−t)ΦabUb(−t)Φba} = Cba(−t)

and obtain

K
(2)
ba (ω) =

∞
∫

0

dt eiωt
(

Cba(t) + Cba(−t)
)



it is also of interest to introduce the Fourier-transformed correlation function

Cba(ω) =

∫

dt eiωtCba(t)

its zero-frequency expression as well as that of K
(2)
ba give the transition rate

ka→b = Cba(ω = 0) = K
(2)
ba (ω = 0)

we analyze Cba(ω) in more detail by introducing the eigenstates (eigenvalues) χaµ(ωaµ) and χbν(ωbν)

of the Hamiltonians Ha and Hb, respectively; we, first, get

Cba(t) =
1

~2

∑

µ,ν

faµ|〈χaµ|Φab|χbν〉|
2ei(ωaµ−ωbν)t

what immediately results in

Cba(ω) =
2π

~2

∑

µ,ν

faµ|〈χaµ|Φab|χbν〉|
2δ(ω + ωaµ − ωbν)

this expression indicates that it is a real and positive function of frequency; the equilibrium dis-

tribution faµ takes the form exp(−~ωaµ/kBT )/Za (Za is the state sum); the zero-frequency limit

reproduces the Golden Rule rate formula;.



4.3 Fourth-Order Rate Expressions

the fourth-order (frequency-dependent) rate expression takes the form

K
(4)
ba (ω) = L

(4)
ba (ω)−

i

ω + iε

∑

c

K
(2)
bc (ω)K

(2)
ca (ω)

the fourth-order frequency-dependent rate L
(4)
ba forms the total rate K

(4)
ba after subtracting products

of two second order rates; those describe transitions from the initial state |a〉 to all intermediate

states |c〉 and, afterwards, from these intermediate states to the final state |b〉; the possible di-

vergence of the prefactor 1/(ω + iε) in the zero-frequency limit indicates the need for a careful

analysis; one expects a cancellation of the factorized part
∑

cK
(2)
bc K

(2)
ca by parts of L

(4)
ba to arrive at

a finite overall fourth-order rate;

to get an expression for L
(4)
ba (ω) we note the general form of Lba(ω); it indicates that the fourth-order

in V̂ is obtained if we compute the Green’s superoperator up to the second order

G(ω) ≈ G0(ω) + G0(ω)LV G0(ω) + G0(ω)LV G0(ω)LV G0(ω)

it results

L
(4)
ba (ω) = −itr{Π̂bLV G0(ω)LV G0(ω)LV G0(ω)LV Ŵa}



noting the definition of G0(ω) we may write

L
(4)
ba (ω) =

∞
∫

0

dt3 dt2 dt1 e
iω(t3+t2+t1)

×trR{〈b|
(

LVU0(t3)LVU0(t2)LVU0(t1)LV Ŵa

)

|b〉}


