CHAPTER III

Generalized Rate Equations: The Liouville Space Approach

1 Introduction

the approach to be discussed focuses on the derivation of Generalized Rate Equations (Generalized Master Equations) for the populations $P_{a}(t)$ of the system eigenstates;
once such equations have been established one can easily extract the transition rates which are valid in any order of perturbation theory;
to this end we will use the projection operator technique;
since the projection operator \mathcal{P} is a superoperator acting in the Liouville space formed by the usual operators, we will refer to the following treatment as the Liouville space approach;
in a first step we will separate the total system-reservoir Hamiltonian $H_{\mathrm{S}}+H_{\mathrm{S}-\mathrm{R}}+H_{\mathrm{R}}$ into a zerothorder and coupling term;
this separation starts from the expansion of $H_{\mathrm{S}-\mathrm{R}}$ with respect to the system eigenstates; here, we assume that the diagonal elements of $\Phi_{a b}=\langle a| H_{\mathrm{S}-\mathrm{R}}|b\rangle$ are much larger than the offdiagonal ones;
therefore, a different treatment of the two types of couplings is reasonable; in particular a perturbational description of the off-diagonal elements might be possible; but the diagonal elements should be so large that they cannot be handled in a perturbation theory;
we write the system-reservoir Hamiltonian as follows

$$
H=H_{0}+\hat{V}
$$

where the "zeroth-order" part is given by

$$
H_{0}=H_{\mathrm{S}}+\sum_{a} \Phi_{a a}(Z)|a\rangle\langle a|+H_{\mathrm{R}} \equiv \sum_{a}\left(E_{a}+H_{\mathrm{R}}+\Phi_{a a}(Z)\right)|a\rangle\langle a|
$$

the second part suggests that we can introduce the vibrational Hamiltonian

$$
H_{a}=E_{a}+H_{\mathrm{R}}+\Phi_{a a}(Z)
$$

which describes the reservoir coordinate motion when the system is in its eigenstate $|a\rangle$; the perturbation \hat{V} accounts for the off-diagonal elements of $\Phi_{a b}(Z)$ and reads

$$
\hat{V}=\sum_{a, b}\left(1-\delta_{a b}\right) \Phi_{a b}(Z)|a\rangle\langle b|
$$

once the diagonal matrix elements $\Phi_{a a}$ can be accounted for exactly, a non-perturbative description of the system-reservoir coupling has been achieved;

2 Projection Operator Technique

in order to establish a nonperturbative description of the system-reservoir coupling let us introduce an appropriate projection operator;
since a simultaneous description of various states $|a\rangle$ is necessary, we generalize the projection operator \mathcal{P} introduced earlier;
if the latter acts on an arbitrary operator \hat{O} it reads

$$
\mathcal{P} \hat{O}=\hat{R}_{\mathrm{eq}} \operatorname{tr}_{\mathrm{R}}\{\hat{O}\} \equiv \hat{R}_{\mathrm{eq}} \sum_{a, b} \operatorname{tr}_{\mathrm{R}}\{\langle a| \hat{O}|b\rangle\}|a\rangle\langle b|
$$

this projector is constructed in such a way as to introduce a common equilibrium state of the reservoir modes represented by $\hat{R}_{\text {eq }}$;
in contrast, the new projection operator takes the form

$$
\tilde{\mathcal{P}} \hat{O}=\sum_{a} \hat{R}_{a} \operatorname{tr}_{\mathrm{R}}\{\langle a| \hat{O}|a\rangle\}|a\rangle\langle a|
$$

instead of including the full state space related to the system Hamiltonian as it would be the case for the projection operator \mathcal{P} the new quantity $\tilde{\mathcal{P}}$ projects on the diagonal system states matrix element; and, every system state is characterized by a separate equilibrium statistical operator

$$
\hat{R}_{a}=\frac{\exp \left(-H_{a} / k_{\mathrm{B}} T\right)}{\operatorname{tr}_{\mathrm{R}}\left\{\exp \left(-H_{a} / k_{\mathrm{B}} T\right)\right\}}
$$

the introduction of the vibrational Hamiltonians H_{a} consequently results in such equilibrium statistical operators;
for further use we introduce the projector $\hat{\Pi}_{a}=|a\rangle\langle a|$ and the combined system-reservoir equilibrium statistical operator

$$
\hat{W}_{a}=\hat{R}_{a} \hat{\Pi}_{a}
$$

if $\tilde{\mathcal{P}}$ acts on the complete statistical operator we obtain

$$
\tilde{\mathcal{P}} \hat{W}(t)=\sum_{a} P_{a}(t) \hat{W}_{a}
$$

the expression indicates a specification to the various reservoir equilibrium states (with statistical operators \hat{R}_{a}) controled by the actual population of the respective system states;
the state populations are extracted if we take the diagonal system state matrix element and the trace with respect to the reservoir state space

$$
P_{a}(t)=\operatorname{tr}_{\mathrm{R}}\{\langle a| \tilde{\mathcal{P}} \hat{W}(t)|a\rangle\}
$$

3 Generalized Rate Equations

we start with the Liouville-von Neumann equation

$$
\frac{\partial}{\partial t} \hat{W}(t)=-i \mathcal{L} \hat{W}(t)
$$

where

$$
\mathcal{L} \ldots=[H, \ldots]_{-} / \hbar
$$

introducing the orthogonal complement

$$
\tilde{\mathcal{Q}}=1-\tilde{\mathcal{P}}
$$

a separation into two orthogonal parts yields

$$
\frac{\partial}{\partial t} \tilde{\mathcal{P}} \hat{W}(t)=-i \tilde{\mathcal{P}} \mathcal{L}(\tilde{\mathcal{P}} \hat{W}(t)+\tilde{\mathcal{Q}} \hat{W}(t))
$$

and

$$
\frac{\partial}{\partial t} \tilde{\mathcal{Q}} \hat{W}(t)=-i \tilde{\mathcal{Q}} \mathcal{L}(\tilde{\mathcal{P}} \hat{W}(t)+\tilde{\mathcal{Q}} \hat{W}(t))
$$

the solution of the equation for $\tilde{\mathcal{Q}} \hat{W}$ including the assumption $\tilde{\mathcal{Q}} \hat{W}\left(t_{0}\right)=0$ can be written as follows

$$
\tilde{\mathcal{Q}} \hat{W}(t)=-i \int_{t_{0}}^{t} d \bar{t} \mathcal{U}_{\tilde{\mathcal{Q}}}(t-\bar{t}) \tilde{\mathcal{Q}} \mathcal{L} \tilde{\mathcal{P}} \hat{W}(\bar{t})
$$

where the time-propagation superoperator

$$
\mathcal{U}_{\tilde{\mathcal{Q}}}(t)=\exp \{-i \tilde{\mathcal{Q}} \mathcal{L} t\}
$$

has been introduced; the resulting equation for $\tilde{\mathcal{P}} \hat{W}$ (the Nakjima-Zwanzig equation) is a closed equation with respect to $\tilde{\mathcal{P}} \hat{W}$ and reads

$$
\frac{\partial}{\partial t} \tilde{\mathcal{P}} \hat{W}(t)=-i \tilde{\mathcal{P}} \mathcal{L} \tilde{\mathcal{P}} \hat{W}(t)-\int_{t_{0}}^{t} d \bar{t} \tilde{\mathcal{P}} \mathcal{L} \mathcal{U}_{\tilde{\mathcal{Q}}}(t-\bar{t} \tilde{\mathcal{Q}} \mathcal{L} \tilde{\mathcal{P}} \hat{W}(t)
$$

in order to derive the related equations of motion for the state populations we consider the general expressions

$$
\operatorname{tr}_{\mathrm{R}}\{\langle a| \tilde{\mathcal{P}} \mathcal{L} \hat{O}|a\rangle\} \equiv \operatorname{tr}_{\mathrm{R}}\{\langle a| \mathcal{L} \hat{O}|a\rangle\}
$$

Ô may take the form

$$
\hat{O}_{1}=\tilde{\mathcal{P}} \hat{W}(t)
$$

as well as

$$
\hat{O}_{2}=\mathcal{U}_{\tilde{\mathcal{Q}}}(t-\bar{t}) \tilde{\mathcal{Q}} \mathcal{L} \tilde{\mathcal{P}} \hat{W}(\hat{t})
$$

if we insert \hat{O}_{1} we easily verify that the resulting expression vanishes; the term with \hat{O}_{2} suggests the definition of the so-called memory kernels $K_{a b}$ of the related Generalized Master Equation (GME);
we, first, get

$$
\operatorname{tr}_{\mathrm{R}}\left\{\langle a| \mathcal{L} \hat{O}_{2}|a\rangle\right\}=\sum_{b} \operatorname{tr}_{\mathrm{R}}\left\{\langle a|\left(\mathcal{L} \mathcal{U}_{\tilde{\mathcal{Q}}}(t-\bar{t}) \tilde{\mathcal{Q}} \mathcal{L} \hat{W}_{b}\right)|a\rangle\right\} P_{b}(\bar{t})
$$

to arrive at the memory kernel we multiply the trace expression by -1 and by the unit-step function $\theta(t-\bar{t})$ and get

$$
K_{a b}(t-\bar{t})=-\theta(t-\bar{t}) \operatorname{tr}_{R}\left\{\langle a|\left(\mathcal{L} \mathcal{U}_{\tilde{\mathcal{Q}}}(t-\bar{t}) \tilde{\mathcal{Q}} \mathcal{L} \hat{W}_{b}\right)|a\rangle\right\}
$$

to set up the GME we change to $\tau=t-\bar{t}$ and obtain the following compact relation

$$
\frac{\partial}{\partial t} P_{a}(t)=\sum_{b} \int_{-\infty}^{t-t_{0}} d \tau K_{a b}(\tau) P_{b}(t-\tau)
$$

a closer inspection of the memory kernels leads to some simplifications; first, we note that the introduction of the projector $\hat{\Pi}_{a}$ allows to replace the trace with respect to the reservoir states by a complete trace;
moreover, we introduce the Green's superoperator

$$
\mathcal{G}_{\tilde{\mathcal{Q}}}(\tau)=-i \theta(\tau) \mathcal{U}_{\tilde{\mathcal{Q}}}(\tau)
$$

and may write

$$
K_{a b}(\tau)=-i \operatorname{tr}\left\{\hat{\Pi}_{a} \mathcal{L} \mathcal{G}_{\tilde{\mathcal{Q}}}(\tau) \tilde{\mathcal{Q}} \mathcal{L} \hat{W}_{b}\right\}
$$

for a further simplification we separate \mathcal{L} into the zeroth-order part $\mathcal{L}_{0} \ldots=\left[H_{0}, \ldots\right]_{-} / \hbar$ as well as into the coupling $\mathcal{L}_{V} \ldots=[\hat{V}, \ldots]_{-} / \hbar$ and arrive at

$$
\tilde{\mathcal{P}} \mathcal{L}_{0}=\mathcal{L}_{0} \tilde{\mathcal{P}}=0
$$

these relations are is easily verified when being applied to an arbitrary operator \hat{O}; in the same way we may deduce

$$
\tilde{\mathcal{P}} \mathcal{L}_{V} \tilde{\mathcal{P}}=0
$$

using these identities and replacing $\hat{\Pi}_{a} \mathcal{L}$ again by $\hat{\Pi}_{a} \tilde{\mathcal{P}} \mathcal{L}$ we have

$$
\tilde{\mathcal{P}} \mathcal{L G}_{\tilde{\mathfrak{Q}}}(t)=\tilde{\mathcal{P}} \mathcal{L}_{V} \mathcal{G}_{\tilde{\mathfrak{Q}}}(t)
$$

moreover, we note that

$$
\tilde{\mathcal{Q}} \mathcal{L} \hat{W}_{b}=\tilde{\mathcal{Q}} \mathcal{\mathcal { P }} \tilde{W_{b}}=\mathcal{L}_{V} \hat{W}_{b}
$$

resulting in the following notation of the memory kernels

$$
K_{a b}(\tau)=-i \operatorname{tr}\left\{\hat{\Pi}_{a} \mathcal{L}_{V} \mathcal{G}_{\tilde{\mathcal{Q}}}(\tau) \mathcal{L}_{V} \hat{W}_{b}\right\} \equiv \operatorname{tr}\left\{\hat{\Pi}_{a} \mathcal{T}(\tau) \hat{W}_{b}\right\}
$$

in the last expression we introduced the transfer superoperator

$$
\mathcal{T}(\tau)=-i \mathcal{L}_{V} \mathcal{G}_{\tilde{\mathcal{Q}}}(\tau) \mathcal{L}_{V}
$$

it offers a suitable interpretation of the memory kernel as describing probability transfer from state b to state a via time-evolution of the statistical operator $\hat{W}_{b}=\hat{R}_{b} \hat{\Pi}_{b}$; the time-evolution starts at $\tau=0$ and proceeds to $\tau>0$ as specified by the transfer superoperator $\mathcal{T}(\tau)$;
the reservoir state-space trace and the diagonal state matrix element $\langle a| \ldots|a\rangle$ gives the memory kernel;
finally, we notice the existence of a particular sum-rule for the memory kernels:

$$
\sum_{a} K_{a b}(\tau)=\sum_{a} \operatorname{tr}\left\{\hat{\Pi}_{a} \mathcal{T}(\tau) \hat{W}_{b}\right\}=\operatorname{tr}\left\{\mathcal{T}(\tau) \hat{W}_{b}\right\}=0
$$

the result follows if we take into consideration that $\mathcal{T}(\tau) \hat{W}_{b}$ can be written as \mathcal{L}_{V} acting on $-i \mathcal{G}_{\hat{\mathcal{Q}}}(\tau) \mathcal{L}_{V} \hat{W}_{b}$; therefore, the trace of a commutator results which vanishes identical.

4 Rate Equations

before further dealing with the $K_{a b}(\tau)$ we briefly explain their relation to ordinary transition rates; suppose that the kernels change fast compared to the time-dependence of the populations; then, we can neglect memory effects and may write

$$
\int d \tau K_{a b}(\tau) P_{b}(t-\tau) \approx \int d \tau K_{a b}(\tau) P_{b}(t)
$$

we introduce the Fourier-transformed kernels

$$
K_{a b}(\omega)=\int d \tau e^{i \omega \tau} K_{a b}(\tau)
$$

and set

$$
k_{a b}=K_{a b}(\omega=0)
$$

it follows an ordinary rate equation

$$
\frac{\partial}{\partial t} P_{a}(t)=\sum_{b} k_{a b} P_{b}(t)
$$

the rates are interpreted as the zero-frequency part of the Fourier-transformed kernels; the rate equations have to fulfill the conservation of total probability

$$
\sum_{a} \frac{\partial}{\partial t} P_{a}(t)=0=\sum_{a, b} k_{a b} P_{b}(t)
$$

the conservation is guaranteed because of the memory kernel sum-rule, which apparently remains valid after Fourier-transformation

$$
0=\sum_{a} k_{a b}
$$

this relation yields also

$$
k_{b b}=-\sum_{a \neq b} k_{a b}
$$

we introduce transition rates for $a \neq b$

$$
k_{a b}=k_{b \rightarrow a}
$$

and obtain rate equations in their standard form

$$
\frac{\partial}{\partial t} P_{a}=-\sum_{b}\left(k_{a \rightarrow b} P_{a}-k_{b \rightarrow a} P_{b}\right)
$$

4.1 The Memory Kernels

for calculating rate expressions its of importance to replace the Green's superoperator $\mathcal{G}_{\mathcal{Q}}$ by an expression which doesn't contain the projector \mathcal{Q};
in order to do this we, first, introduce the Fourier-transformed Green's superoperator

$$
\mathcal{G}_{\tilde{\mathcal{Q}}}(\omega)=\int d t e^{i \omega t} \mathcal{G}_{\tilde{\mathcal{Q}}}(t)=(\omega-\tilde{\mathcal{Q}} \mathcal{L}+i \varepsilon)^{-1}
$$

the Fourier-transformed version of the kernel may be written as

$$
K_{a b}(\omega)=-i \operatorname{tr}\left\{\hat{\Pi}_{a} \mathcal{L}_{V} \mathcal{G}_{\tilde{\mathcal{Q}}}(\omega) \mathcal{L}_{V} \hat{W}_{b}\right\}
$$

the Green's superoperator which should replace $\mathcal{G}_{\tilde{\mathcal{Q}}}(\omega)$ and which should be independent on the projector $\tilde{\mathcal{Q}}$ takes the form

$$
\mathcal{G}(\omega)=(\omega-\mathcal{L}+i \varepsilon)^{-1}
$$

we note the identity

$$
1=\mathcal{G}_{\tilde{\mathcal{Q}}}^{-1}(\omega) \mathcal{G}_{\tilde{\mathcal{Q}}}(\omega)=\left(\mathcal{G}^{-1}(\omega)+\tilde{\mathcal{P}} \mathcal{L}_{V}\right) \mathcal{G}_{\tilde{\mathcal{Q}}}(\omega)
$$

and obtain after multiplying with \mathcal{G} from the left

$$
\mathcal{G}_{\tilde{\mathcal{Q}}}(\omega)=\mathcal{G}(\omega)-\mathcal{G}(\omega) \tilde{\mathcal{P}} \mathcal{L}_{V} \mathcal{G}_{\tilde{\mathcal{Q}}}(\omega)
$$

if this relation is inserted into the rate expression we arrive at

$$
K_{a b}(\omega)=-i \operatorname{tr}\left\{\hat{\Pi}_{a} \mathcal{L}_{V} \mathcal{G}(\omega) \mathcal{L}_{V} \hat{W}_{b}\right\}+i \operatorname{tr}\left\{\hat{\Pi}_{a} \mathcal{L}_{V} \mathcal{G}(\omega) \tilde{\mathcal{P}} \mathcal{L}_{V} \mathcal{G}_{\tilde{Q}}(\omega) \mathcal{L}_{V} \hat{W}_{b}\right\}
$$

noting the definition of $\tilde{\mathcal{P}}$ the second trace on the right-hand side can be rewritten as

$$
\operatorname{tr}\left\{\hat{\Pi}_{a} \mathcal{L}_{V} \mathcal{G}(\omega) \tilde{\mathcal{P}} \mathcal{L}_{V} \mathcal{G}_{\tilde{\mathcal{Q}}}(\omega) \mathcal{L}_{V} \hat{W}_{b}\right\}=\sum_{c} \operatorname{tr}\left\{\hat{\Pi}_{a} \mathcal{L}_{V} \mathcal{G}(\omega) \hat{W}_{c}\right\} \operatorname{tr}\left\{\hat{\Pi}_{c} \mathcal{L}_{V} \mathcal{G}_{\tilde{\mathcal{Q}}}(\omega) \mathcal{L}_{V} \hat{W}_{b}\right\}
$$

the second trace in the c-sum is identical to $i K_{c a}(\omega)$; to rewrite the first trace in the c-sum we introduce the zeroth-order Green's superoperator

$$
\mathcal{G}_{0}(\omega)=\left(\omega-\mathcal{L}_{0}+i \varepsilon\right)^{-1}
$$

this allows us to set up the relations

$$
\mathcal{G}(\omega)=\mathcal{G}_{0}(\omega)+\mathcal{G}_{0}(\omega) \mathcal{L}_{V} \mathcal{G}(\omega)
$$

and

$$
\mathcal{G}(\omega)=\mathcal{G}_{0}(\omega)+\mathcal{G}(\omega) \mathcal{L}_{V} \mathcal{G}_{0}(\omega)
$$

both equations are a version of the ubiquitous Dyson equation; then, we can rearrange the first trace expression on the right-hand side of the foregoing equation as

$$
\begin{aligned}
\operatorname{tr}\left\{\hat{\Pi}_{a} \mathcal{L}_{V} \mathcal{G}(\omega) \hat{W}_{c}\right\} & =\operatorname{tr}\left\{\hat{\Pi}_{a} \mathcal{L}_{V} \mathcal{G}_{0}(\omega) \hat{W}_{c}\right\}+\operatorname{tr}\left\{\hat{\Pi}_{a} \mathcal{L}_{V} \mathcal{G}(\omega) \mathcal{L}_{V} \mathcal{G}_{0}(\omega) \hat{W}_{c}\right\} \\
& =\frac{1}{\omega+i \varepsilon} \operatorname{tr}\left\{\hat{\Pi}_{a} \mathcal{L}_{V} \mathcal{G}(\omega) \mathcal{L}_{V} \hat{W}_{c}\right\}
\end{aligned}
$$

the last line follows from the fact that trace expressions of first order in \mathcal{L}_{V} vanish and that $\mathcal{G}_{0}(\omega)$ applied to \hat{W}_{c} simply produces a frequency denominator;
we denote the kernel which doesn't depend on the projector $\tilde{\mathcal{Q}}$ as

$$
L_{a b}(\omega)=-i \operatorname{tr}\left\{\hat{\Pi}_{a} \mathcal{L}_{V} \mathcal{G}(\omega) \mathcal{L}_{V} \hat{W}_{b}\right\}
$$

and arrive at the following equation which relates the two types of kernels to each other

$$
K_{a b}(\omega)=L_{a b}(\omega)-\frac{i}{\omega+i \varepsilon} \sum_{c} L_{a c}(\omega) K_{c b}(\omega)
$$

once all $L_{a b}$ have been determined the rates $K_{a b}$ entering the rate equations can be computed according to this equation;
let us consider a perturbation expansion of $L_{a b}$ in powers of the coupling \hat{V}; this expansion would be of even order in \hat{V}; we count the orders with respect to \hat{V} by m, n and n^{\prime} and get a recursion relation

$$
\sum_{m=1}^{\infty} K_{a b}^{(2 m)}(\omega)=\sum_{m=1}^{\infty} L_{a b}^{(2 m)}(\omega)-\frac{i}{\omega+i \varepsilon} \sum_{c} \sum_{n=1}^{\infty} \sum_{n^{\prime}=1}^{\infty} L_{a c}^{(2 n)}(\omega) K_{c b}^{\left(2 n^{\prime}\right)}(\omega)
$$

in particular, the relation indicates that

$$
K_{a b}^{(2)}(\omega) \equiv L_{a b}^{(2)}(\omega)=-i \operatorname{tr}\left\{\hat{\Pi}_{a} \mathcal{L}_{V} \mathcal{G}_{0}(\omega) \mathcal{L}_{V} \hat{W}_{b}\right\}
$$

however, all higher-order contributions $K^{(2 m)}$ are not only determined by $L^{(2 m)}$ but also by products of lower-order rates;
when solving, for example, rate equations including rates up to a particular order m and computing related state populations, the combination of $L^{(2 n)}$ with $K^{\left(2 n^{\prime}\right)}\left(n, n^{\prime}<m\right)$ avoids multiple counting of the lower-order rates;

4.2 Second-Order Rate Expressions

in the following we will specify the formal results of the foregoing discussion to the second-order rate; we expect a zero-frequency expression which is identical to the Golden Rule rate; noting the definition of $\mathcal{G}_{0}(\omega)$ we may write for the second-order rate

$$
K_{b a}^{(2)}(\omega)=-\int_{0}^{\infty} d t e^{i \omega t} \operatorname{tr}_{\mathrm{R}}\left\{\langle b|\left(\mathcal{L}_{V} \mathcal{U}_{0}(t) \mathcal{L}_{V} \hat{W}_{a}\right)|b\rangle\right\}
$$

we may also write

$$
K_{b a}^{(2)}(\omega)=\int_{0}^{\infty} d t e^{i \omega t}\left(C_{b a}(t)+\text { c.c. }\right)
$$

where the correlation function is formed as

$$
\begin{gathered}
C_{b a}(t)=\frac{1}{\hbar^{2}} \operatorname{tr}_{\mathrm{R}}\left\{\langle b| U(t) \hat{V} \hat{W}_{a} U^{+}(t) \hat{V}|b\rangle\right\}=\frac{1}{\hbar^{2}} \operatorname{tr}_{\mathrm{R}}\left\{U_{b}(t) \Phi_{b a} \hat{R}_{a} U_{a}^{+}(t) \Phi_{a b}\right\} \\
=\frac{1}{\hbar^{2}} \operatorname{tr}_{\mathrm{R}}\left\{\hat{R}_{a} U_{a}^{+}(t) \Phi_{a b} U_{b}(t) \Phi_{b a}\right\}
\end{gathered}
$$

we note that

$$
C_{b a}^{*}(t)=\frac{1}{\hbar^{2}} \operatorname{tr}_{\mathrm{R}}\left\{\Phi_{a b} U_{b}(-t) \Phi_{b a} U_{a}^{+}(-t) \hat{R}_{a}\right\}=\frac{1}{\hbar^{2}} \operatorname{tr}_{\mathrm{R}}\left\{\hat{R}_{a} U_{a}^{+}(-t) \Phi_{a b} U_{b}(-t) \Phi_{b a}\right\}=C_{b a}(-t)
$$

and obtain

$$
K_{b a}^{(2)}(\omega)=\int_{0}^{\infty} d t e^{i \omega t}\left(C_{b a}(t)+C_{b a}(-t)\right)
$$

it is also of interest to introduce the Fourier-transformed correlation function

$$
C_{b a}(\omega)=\int d t e^{i \omega t} C_{b a}(t)
$$

its zero-frequency expression as well as that of $K_{b a}^{(2)}$ give the transition rate

$$
k_{a \rightarrow b}=C_{b a}(\omega=0)=K_{b a}^{(2)}(\omega=0)
$$

we analyze $C_{b a}(\omega)$ in more detail by introducing the eigenstates (eigenvalues) $\chi_{a \mu}\left(\omega_{a \mu}\right)$ and $\chi_{b \nu}\left(\omega_{b \nu}\right)$ of the Hamiltonians H_{a} and H_{b}, respectively; we, first, get

$$
\left.C_{b a}(t)=\frac{1}{\hbar^{2}} \sum_{\mu, \nu} f_{a \mu}\left|\left\langle\chi_{a \mu}\right| \Phi_{a b}\right| \chi_{b \nu}\right\rangle\left.\right|^{2} e^{i\left(\omega_{a \mu}-\omega_{b \nu}\right) t}
$$

what immediately results in

$$
\left.C_{b a}(\omega)=\frac{2 \pi}{\hbar^{2}} \sum_{\mu, \nu} f_{a \mu}\left|\left\langle\chi_{a \mu}\right| \Phi_{a b}\right| \chi_{b \nu}\right\rangle\left.\right|^{2} \delta\left(\omega+\omega_{a \mu}-\omega_{b \nu}\right)
$$

this expression indicates that it is a real and positive function of frequency; the equilibrium distribution $f_{a \mu}$ takes the form $\exp \left(-\hbar \omega_{a \mu} / k_{\mathrm{B}} T\right) / Z_{a}$ (Z_{a} is the state sum); the zero-frequency limit reproduces the Golden Rule rate formula;.

4.3 Fourth-Order Rate Expressions

the fourth-order (frequency-dependent) rate expression takes the form

$$
K_{b a}^{(4)}(\omega)=L_{b a}^{(4)}(\omega)-\frac{i}{\omega+i \varepsilon} \sum_{c} K_{b c}^{(2)}(\omega) K_{c a}^{(2)}(\omega)
$$

the fourth-order frequency-dependent rate $L_{b a}^{(4)}$ forms the total rate $K_{b a}^{(4)}$ after subtracting products of two second order rates; those describe transitions from the initial state $|a\rangle$ to all intermediate states $|c\rangle$ and, afterwards, from these intermediate states to the final state $|b\rangle$; the possible divergence of the prefactor $1 /(\omega+i \varepsilon)$ in the zero-frequency limit indicates the need for a careful analysis; one expects a cancellation of the factorized part $\sum_{c} K_{b c}^{(2)} K_{c a}^{(2)}$ by parts of $L_{b a}^{(4)}$ to arrive at a finite overall fourth-order rate;
to get an expression for $L_{b a}^{(4)}(\omega)$ we note the general form of $L_{b a}(\omega)$; it indicates that the fourth-order in \hat{V} is obtained if we compute the Green's superoperator up to the second order

$$
\mathcal{G}(\omega) \approx \mathcal{G}_{0}(\omega)+\mathcal{G}_{0}(\omega) \mathcal{L}_{V} \mathcal{G}_{0}(\omega)+\mathcal{G}_{0}(\omega) \mathcal{L}_{V} \mathcal{G}_{0}(\omega) \mathcal{L}_{V} \mathcal{G}_{0}(\omega)
$$

it results

$$
L_{b a}^{(4)}(\omega)=-i \operatorname{tr}\left\{\hat{\Pi}_{b} \mathcal{L}_{V} \mathcal{G}_{0}(\omega) \mathcal{L}_{V} \mathcal{G}_{0}(\omega) \mathcal{L}_{V} \mathcal{G}_{0}(\omega) \mathcal{L}_{V} \hat{W}_{a}\right\}
$$

noting the definition of $\mathcal{G}_{0}(\omega)$ we may write

$$
\begin{gathered}
L_{b a}^{(4)}(\omega)=\int_{0}^{\infty} d t_{3} d t_{2} d t_{1} e^{i \omega\left(t_{3}+t_{2}+t_{1}\right)} \\
\times \operatorname{tr}_{\mathrm{R}}\left\{\langle b|\left(\mathcal{L}_{V} \mathcal{U}_{0}\left(t_{3}\right) \mathcal{L}_{V} \mathcal{U}_{0}\left(t_{2}\right) \mathcal{L}_{V} \mathcal{U}_{0}\left(t_{1}\right) \mathcal{L}_{V} \hat{W}_{a}\right)|b\rangle\right\}
\end{gathered}
$$

