CHAPTER I

Generalized Rate Equations: The Liouville Space Approach

1 Introduction

the approach to be discussed focuses on the derivation of Generalized Rate Equations (General-
ized Master Equations) for the populations P,(t) of the system eigenstates;

once such equations have been established one can easily extract the transition rates which are
valid in any order of perturbation theory;

to this end we will use the projection operator technique;
since the projection operator P is a superoperator acting in the Liouville space formed by the usual
operators, we will refer to the following treatment as the Liouville space approach;

in a first step we will separate the total system-reservoir Hamiltonian Hs+ Hs_g + Hy into a zeroth-
order and coupling term;

this separation starts from the expansion of Hg_r with respect to the system eigenstates;

here, we assume that the diagonal elements of ¢, = (a|Hs_gr|b) are much larger than the off-
diagonal ones;



therefore, a different treatment of the two types of couplings is reasonable;
in particular a perturbational description of the off-diagonal elements might be possible;
but the diagonal elements should be so large that they cannot be handled in a perturbation theory;

we write the system-reservoir Hamiltonian as follows
H=H,+ ‘7

where the “zeroth-order” part is given by

Hy = Hs+ Y @u(Z)afal + Hn = > (Eo+ Hy+ 0ul(2))[a)al

a

the second part suggests that we can introduce the vibrational Hamiltonian
H,=FE,+ Hg + ®., (%)

which describes the reservoir coordinate motion when the system is in its eigenstate |a); the
perturbation V' accounts for the off-diagonal elements of ¢,,(Z) and reads

V=> (1= 6u)Pu(Z)|a)(b

a,b

once the diagonal matrix elements ¢,, can be accounted for exactly, a non-perturbative description
of the system-reservoir coupling has been achieved;



2 Projection Operator Technique

in order to establish a nonperturbative description of the system-reservoir coupling let us introduce
an appropriate projection operator;

since a simultaneous description of various states |a) is necessary, we generalize the projection
operator P introduced earlier;

if the latter acts on an arbitrary operator O it reads

PO = Regtrr{O} = Req Yy _ trr{(alO[b) }a) (b

a,b

this projector is constructed in such a way as to introduce a common equilibrium state of the
reservoir modes represented by R.;
in contrast, the new projection operator takes the form

PO =) R,trp{(a|Ola)}|a){al

instead of including the full state space related to the system Hamiltonian as it would be the case
for the projection operator P the new quantity P projects on the diagonal system states matrix
element; and, every system state is characterized by a separate equilibrium statistical operator
D eXp(—Ha/kBT>
“ trp{exp(—H,/kgT)}




the introduction of the vibrational Hamiltonians H, consequently results in such equilibrium statis-
tical operators;
for further use we introduce the projector I1, = |a)(a| and the combined system-reservoir equilib-
rium statistical operator
W, = R.1,
if P acts on the complete statistical operator we obtain
PW(t) = Put)W,

the expression indicates a specification to the various reservoir equilibrium states (with statistical
operators R,) controled by the actual population of the respective system states;

the state populations are extracted if we take the diagonal system state matrix element and the
trace with respect to the reservoir state space

P (t) = trp{(a[PW (1)|a)}



3 Generalized Rate Equations

we start with the Liouville-von Neumann equation

0 - S
where
L..=[H ] /h
introducing the orthogonal complement
Q=1-7P
a separation into two orthogonal parts yields

0 ~ - 5 (B i
- PW(t) = —iPL (PW (1) + QW(t))
and

%QW(t) = —iQL (75W(t) + QW(t))

the solution of the equation for QW including the assumption QI (t,) = 0 can be written as follows
t

~ A

QW@%>4/QH@@—BQEﬁW®

to



where the time-propagation superoperator
Us(t) = exp {—iQLt}

has been introduced; the resulting equation for PW (the Nakjima-Zwanzig equation) is a closed
equation with respect to PW and reads

t
%ﬁW(t) = —iPLPW(t) — / dt PL Ut — 1) QL PW(7)

lo

in order to derive the related equations of motion for the state populations we consider the general
expressions

trg {(a|75£0|a>} = trg {<a|a>\a>}
O may take the form o
O, =PW(t)
as well as A o
Oy = Ué(t — t)QLPW (t)
if we insert O, we easily verify that the resulting expression vanishes;

the term with O, suggests the definition of the so-called memory kernels K, of the related Gen-
eralized Master Equation (GME);



we, first, get
trR {<ayc(>2\a>} =S trr{(al (cué(t _ i)Qch) a)y Py(7)
b
to arrive at the memory kernel we multiply the trace expression by -1 and by the unit-step function
6(t — t) and get
Kt — 1) = —0(t — ) trg{{al (wé(t _ t‘)Qch) )}
to set up the GME we change to =t — ¢ and obtain the following compact relation

t—1g

0
i =3 [ dr Ku(npe - )

a closer inspection of the memory kernels leads to some simplifications;

first, we note that the introduction of the projector I1, allows to replace the trace with respect to the
reservoir states by a complete trace;
moreover, we introduce the Green’s superoperator

Go(T) = —iB(1)Ug(7)

and may write A o
Ku(T) = —itr{HaﬁgQ(T) QLW }



for a further simplification we separate £ into the zeroth-order part Ly... = [Hy,...|-/h as well as
into the coupling Ly... = [V, ...]_/h and arrive at

PLy = LyP =0

these relations are is easily verified when being applied to an arbitrary operator O;
in the same way we may deduce

PLyP =0
using these identities and replacing II,£ again by II,P£ we have
PLGs(t) = PLyGa(t)
moreover, we note that o o A
QLW = QLPW, = Ly W,
resulting in the following notation of the memory kernels
K1) = —itr{IL.LyGs(T) Ly Wi} = tr{I1, T (1)W3}
in the last expression we introduced the transfer superoperator

T(1) = —iLlyGs(T)Lv



it offers a suitable interpretation of the memory kernel as describing probability transfer from state
b to state a via time-evolution of the statistical operator W, = R;I1;;

the time-evolution starts at = = 0 and proceeds to 7 > 0 as specified by the transfer superoperator
T(7);

the reservoir state-space trace and the diagonal state matrix element (a|...|a) gives the memory
kernel;

finally, we notice the existence of a particular sum-rule for the memory kernels:

> Kulr) =Y t{ll, T(r)W} = to{T(r)W} =0

the result follows if we take into consideration that 7/(7)WW;, can be written as £ acting on —z’QQ(T)Eva;
therefore, the trace of a commutator results which vanishes identical.



4 Rate Equations

before further dealing with the K,,(7) we briefly explain their relation to ordinary transition rates;
suppose that the kernels change fast compared to the time-dependence of the populations;
then, we can neglect memory effects and may write

/ dr Ko(r)By(t — 7) ~ / dr Ko(7) Py(t)
we introduce the Fourier-transformed kernels
Kyp(w) = / dr e Ko(7)
and set
kapy = Kap(w = 0)

it follows an ordinary rate equation

%pa(w = kaBy(t)

b

the rates are interpreted as the zero-frequency part of the Fourier-transformed kernels; the rate
equations have to fulfill the conservation of total probability

Z %Pa(t) =0= Z kabpb(t)
a a,b



the conservation is guaranteed because of the memory kernel sum-rule, which apparently remains
valid after Fourier-transformation
0= ks

Fpy = — Z Kab

this relation yields also

a#b
we introduce transition rates for a # b
kab - kb%a
and obtain rate equations in their standard form
0

aP(L = — %:(ka%bpa - kb—mpb)



41 The Memory Kernels

for calculating rate expressions its of importancg to replace the Green’s superoperator G by an
expression which doesn’t contain the projector 9;
in order to do this we, first, introduce the Fourier-transformed Green’s superoperator

g@(w) _ /dt eiwt g@(t) — ((U — Q,C + '1;5)_1
the Fourier-transformed version of the kernel may be written as
Kp(w) = —itr{Il.LyGs(w) Ly W3}

the Green’s superoperator which should replace G5(w) and which should be independent on the
projector Q takes the form

Gw)=(w— L+ is)_l
we note the identity i

1 =G5 (w)Gsw) = (¢ (w) +PLy)Gg(w)
and obtain after multiplying with G from the left
Gow) = G(w) — G(w)PLyGs(w)
if this relation is inserted into the rate expression we arrive at
Kab(w) = —itr{ﬂaﬁvg(w)/leb} + itr{ﬂaﬁvg(w)ﬁﬁvgé(w)ﬁva}



noting the definition of P the second trace on the right-hand side can be rewritten as
{1l LvG(w)PLyGs(w) Ly Wi} = > tr{ll Ly Gw)We} tr{IlLyvGs(w) Ly Wi}

the second trace in the c-sum is identical to i K., (w);
to rewrite the first trace in the c-sum we introduce the zeroth-order Green’s superoperator

Go(w) = (w— Lo + is)_l

this allows us to set up the relations

G(w) = Go(w) + Go(w)LvG(w)
and

G(w) = Go(w) + G(w)LyGo(w)
both equations are a version of the ubiquitous Dyson equation; then, we can rearrange the first
trace expression on the right-hand side of the foregoing equation as

tr{I1, Ly G(w)W.} = tr{I1,LyGo(w)W,} + tr{I1,LyG(w) Ly Go(w)W,}
1

W + 1€
the last line follows from the fact that trace expressions of first order in £y vanish and that Gy(w)
applied to W, simply produces a frequency denominator;

tr{I1, Ly G (w) Ly W,




we denote the kernel which doesn’t depend on the projector O as
Lab(w) = —itr{f[aﬁvg(w)ﬁva}
and arrive at the following equation which relates the two types of kernels to each other

Ka — La Lac
b(w) b w + 1€ Z

once all L,, have been determined the rates K, enterlng the rate equations can be computed
according to this equation;

let us consider a perturbation expansion of L,, in powers of the coupling V; this expansion would
be of even order in V'; we count the orders with respect to V' by m, n and n’ and get a recursion

relation i, .
DK™ = L") = e D > > (@
m=1 m=1

n=1 n/=1

in particular, the relation indicates that
bez) (w) = Lfb) (w) = —itr{I1,LyGo(w) Ly Wy}

however, all higher-order contributions K (>™ are not only determined by L{>™ but also by products
of lower-order rates;

when solving, for example, rate equations including rates up to a particular order m and computing
related state populations, the combination of L2 with K2") (n,n’ < m) avoids multiple counting
of the lower-order rates;



42 Second-Order Rate Expressions

in the following we will specify the formal results of the foregoing discussion to the second-order
rate; we expect a zero-frequency expression which is identical to the Golden Rule rate;
noting the definition of Gy(w) we may write for the second-order rate

©¢)

KOw) = — / at et (0] (Luth(0) L7V, ) 19))
0
we may also write

Kb(? (w) = /dt ! (Chalt) + c.c.)
0

where the correlation function is formed as

Chalt) = %trR{<b|U(t)VWaU+( OV[B)} = — ot U0 B R (1)}

thtrR{R U (#) DU (£) Dy}

we note that

A

Cinlt) = ot Pul(—) Bl (~1) R} =

and obtain

;QtrR{R U+< t)PapUp(—1)Ppa} = Cha(—1)

o

KO(w) = / t ¢ (Ciult) + Cuul 1))

0



it is also of interest to introduce the Fourier-transformed correlation function
Chalw) = / dt ¢ Cyu(#)

its zero-frequency expression as well as that of Kb(? give the transition rate
ka—>b = Cba(w = O) = Kéz)(w = O)

we analyze Cj,,(w) in more detail by introducing the eigenstates (eigenvalues) x,(wa,) @and xu, (wpy)
of the Hamiltonians H, and H,, respectively; we, first, get

1 t(wapy—w
Chalt) = 75 Foul (Xl @ur ) 2o

%

what immediately results in

27
Cba(w) - ﬁ Z fau‘<Xau’q)ab‘Xbu>‘26(w + Wap — Wbu)
JINZ
this expression indicates that it is a real and positive function of frequency; the equilibrium dis-
tribution f,, takes the form exp(—hw,,/ksT)/Z, (Z, is the state sum); the zero-frequency limit
reproduces the Golden Rule rate formula;.



4.3 Fourth-Order Rate Expressions
the fourth-order (frequency-dependent) rate expression takes the form

2
SR (@) KR (w)

1

4 4
Ky (w) = L) (w) —

w + 1€

the fourth-order frequency-dependent rate Léfl) forms the total rate K,fj) after subtracting products
of two second order rates; those describe transitions from the initial state |a) to all intermediate
states |c) and, afterwards, from these intermediate states to the final state |b); the possible di-
vergence of the prefactor 1/(w + ic) in the zero-frequency limit indicates the need for a careful
analysis; one expects a cancellation of the factorized part ) . K b(f)Ké? by parts of Lgi) to arrive at
a finite overall fourth-order rate;

to get an expression for L,gi) (w) we note the general form of L,,(w); it indicates that the fourth-order
in 1 is obtained if we compute the Green’s superoperator up to the second order

G(w) = Go(w) + Go(w) Ly Go(w) + Golw) Ly Go(w) Ly Go(w)

it results A )
LY (w) = —itr{I1yLyGo(w) Ly Go(w) Ly Golw) Ly W}



noting the definition of Gy(w) we may write

Ll()i) (w) = /dtg dts dtq plw(tz+tatty)
0

sctrp{ (b] (LVZ/IO(tg)EVZ/lo(tg)ﬁvuo(tl)ﬁvWa) b))



