5 Three Level System with Sequential Coupling

we discuss a three level system a = 1,2, 3 with a coupling ®;, connecting the first to the second
level and a coupling ®93 which relates the second to the third level;
this sequential type of coupling initiates transfer from the first to the third level exclusively via the
second level;
the rate from the first to the third state is constituted by six different terms corresponding to the
arrangement VVW, VV;
they are pairwise complex conjugated;
the three different terms if included into the trace expression are labeled by the number of the
paths (see respective figure)
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we specify V and obtain
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in order to take a closer look at the fourth-order rate expression we consider a simple example
where only the discrete energies aw, (a = 1,2, 3) contribute and a respective reservoir coordinate
dependence is neglected (the Hamiltonians H, are replaced by Aw,);
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be aware of the fact that C depends on ¢, but C\" as well as C{I"" do not;

this indicates a possible factorization in a t;—dependent and a t;—dependent part, and a resulting
compensation by the product of two second—order correlation functions;

it can be also interpreted as a transition from level 1 to level 3, but interrupted by level 2 (the extent
of this interruption depends on the used model);

the respective approximation for the second—order rate takes the form (0 = w + i¢)
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we get the fourth order expression as
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only the first two terms contribute (corresponding to the first Liouville space pathway I);

the fourth—order rate due to pathways Il and Il is completely compensated by the factorized part
of the rate;

we obtain the ordinary rate expression as:
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we assume that w» # 0 and wsy # 0 and arrive at
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this is standard formula used whenever transfer processes are studied which are mediated by an
intermediate (bridge level);

the present discussion demonstrates, however, that the intermediate level has to be off-resonant
to the initial and final level;

if this is not the case the more general expression has to be used;



