
5 Three Level System with Sequential Coupling

we discuss a three level system a = 1, 2, 3 with a coupling Φ12 connecting the first to the second

level and a coupling Φ23 which relates the second to the third level;

this sequential type of coupling initiates transfer from the first to the third level exclusively via the

second level;

the rate from the first to the third state is constituted by six different terms corresponding to the

arrangement V VWaV V ;

they are pairwise complex conjugated;

the three different terms if included into the trace expression are labeled by the number of the

paths (see respective figure)
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the different parts read in detail

C
(I)
31 (t3, t2, t1) =

1

~4
trR{〈3|U(t3 + t2)V̂ U(t1)V̂ Ŵ1U
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we specify V̂ and obtain
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in order to take a closer look at the fourth-order rate expression we consider a simple example

where only the discrete energies ~ωa (a = 1, 2, 3) contribute and a respective reservoir coordinate

dependence is neglected (the Hamiltonians Ha are replaced by ~ωa);
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be aware of the fact that C
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this indicates a possible factorization in a t1–dependent and a t3–dependent part, and a resulting

compensation by the product of two second–order correlation functions;

it can be also interpreted as a transition from level 1 to level 3, but interrupted by level 2 (the extent

of this interruption depends on the used model);

the respective approximation for the second–order rate takes the form (ω̃ = ω + iε)
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we get the fourth order expression as
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only the first two terms contribute (corresponding to the first Liouville space pathway I);

the fourth–order rate due to pathways II and III is completely compensated by the factorized part

of the rate;

we obtain the ordinary rate expression as:
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we assume that ω12 6= 0 and ω32 6= 0 and arrive at
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this is standard formula used whenever transfer processes are studied which are mediated by an

intermediate (bridge level);

the present discussion demonstrates, however, that the intermediate level has to be off–resonant

to the initial and final level;

if this is not the case the more general expression has to be used;


