5 Three Level System with Sequential Coupling

we discuss a three level system $a=1,2,3$ with a coupling Φ_{12} connecting the first to the second level and a coupling Φ_{23} which relates the second to the third level;
this sequential type of coupling initiates transfer from the first to the third level exclusively via the second level;
the rate from the first to the third state is constituted by six different terms corresponding to the arrangement $V V W_{a} V V$;
they are pairwise complex conjugated;
the three different terms if included into the trace expression are labeled by the number of the paths (see respective figure)

$$
C_{31}\left(t_{3}, t_{2}, t_{1}\right)=C_{31}^{(\mathrm{I})}\left(t_{3}, t_{2}, t_{1}\right)+C_{31}^{(\mathrm{III})}\left(t_{3}, t_{2}, t_{1}\right)+C_{31}^{(\mathrm{III})}\left(t_{3}, t_{2}, t_{1}\right)
$$

the different parts read in detail

$$
\begin{aligned}
C_{31}^{(\mathrm{I})}\left(t_{3}, t_{2}, t_{1}\right) & =\frac{1}{\hbar^{4}} \operatorname{tr}_{\mathrm{R}}\left\{\langle 3| U\left(t_{3}+t_{2}\right) \hat{V} U\left(t_{1}\right) \hat{V} \hat{W}_{1} U^{+}\left(t_{1}+t_{2}\right) \hat{V} U^{+}\left(t_{3}\right) \hat{V}|3\rangle\right\} \\
C_{31}^{(\mathrm{II})}\left(t_{3}, t_{2}, t_{1}\right) & =\frac{1}{\hbar^{4}} \operatorname{tr}_{\mathrm{R}}\left\{\langle 3| U\left(t_{3}\right) \hat{V} U\left(t_{2}+t_{1}\right) \hat{V} \hat{W}_{1} U^{+}\left(t_{1}\right) \hat{V} U^{+}\left(t_{2}+t_{3}\right) \hat{V}|3\rangle\right\} \\
C_{31}^{(\mathrm{III})}\left(t_{3}, t_{2}, t_{1}\right) & =\frac{1}{\hbar^{4}} \operatorname{tr}_{R}\left\{\langle 3| \hat{V} U\left(t_{3}+t_{2}+t_{1}\right) \hat{V} \hat{W}_{1} U^{+}\left(t_{1}\right) \hat{V} U^{+}\left(t_{2}\right) \hat{V} U^{+}\left(t_{3}\right)|3\rangle\right\}
\end{aligned}
$$

we specify \hat{V} and obtain

$$
\begin{gathered}
C_{31}^{(I)}\left(t_{3}, t_{2}, t_{1}\right)=\frac{1}{\hbar^{4}} \operatorname{tr}_{\mathrm{R}}\left\{U_{3}\left(t_{3}+t_{2}\right) \Phi_{32} U_{2}\left(t_{1}\right) \Phi_{21} \hat{R}_{1} U_{1}^{+}\left(t_{1}+t_{2}\right) \Phi_{12} U_{2}^{+}\left(t_{3}\right) \Phi_{23}\right\} \\
=\frac{1}{\hbar^{4}} \operatorname{tr}_{\mathrm{R}}\left\{\hat{R}_{1} U_{1}^{+}\left(t_{1}+t_{2}\right) \Phi_{12} U_{2}^{+}\left(t_{3}\right) \Phi_{23} U_{3}\left(t_{3}+t_{2}\right) \Phi_{32} U_{2}\left(t_{1}\right) \Phi_{21}\right\} \\
C_{31}^{(I I)}\left(t_{3}, t_{2}, t_{1}\right)=\frac{1}{\hbar^{4}} \operatorname{tr}_{\mathrm{R}}\left\{U_{3}\left(t_{3}\right) \Phi_{32} U_{2}\left(t_{2}+t_{1}\right) \Phi_{21} \hat{R}_{1} U_{1}^{+}\left(t_{1}\right) \Phi_{12} U_{2}^{+}\left(t_{2}+t_{3}\right) \Phi_{23}\right\} \\
=\frac{1}{\hbar^{4}} \operatorname{tr}_{\mathrm{R}}\left\{\hat{R}_{1} U_{1}^{+}\left(t_{1}\right) \Phi_{12} U_{2}^{+}\left(t_{2}+t_{3}\right) \Phi_{23} U_{3}\left(t_{3}\right) \Phi_{32} U_{2}\left(t_{2}+t_{1}\right) \Phi_{21}\right\} \\
C_{31}^{(I I I)}\left(t_{3}, t_{2}, t_{1}\right)=\frac{1}{\hbar^{4}} \operatorname{tr}_{\mathrm{R}}\left\{\Phi_{32} U_{2}\left(t_{3}+t_{2}+t_{1}\right) \Phi_{21} \hat{R}_{1} U_{1}^{+}\left(t_{1}\right) \Phi_{12} U_{2}^{+}\left(t_{2}\right) \Phi_{23} U_{3}^{+}\left(t_{3}\right)\right\} \\
=\frac{1}{\hbar^{4}} \operatorname{tr}_{\mathrm{R}}\left\{\hat{R}_{1} U_{1}^{+}\left(t_{1}\right) \Phi_{12} U_{2}^{+}\left(t_{2}\right) \Phi_{23} U_{3}^{+}\left(t_{3}\right) \Phi_{32} U_{2}\left(t_{3}+t_{2}+t_{1}\right) \Phi_{21}\right\}
\end{gathered}
$$

in order to take a closer look at the fourth-order rate expression we consider a simple example where only the discrete energies $\hbar \omega_{a}(a=1,2,3)$ contribute and a respective reservoir coordinate dependence is neglected (the Hamiltonians H_{a} are replaced by $\hbar \omega_{a}$);

$$
\begin{gathered}
C_{31}^{(\mathrm{I})}\left(t_{3}, t_{2}, t_{1}\right)=\frac{\left|\Phi_{12} \Phi_{23}\right|^{2}}{\hbar^{4}} \exp \left(i \omega_{12} t_{1}+i \omega_{13} t_{2}+i \omega_{23} t_{3}\right) \\
C_{31}^{(\mathrm{II})}\left(t_{3}, t_{2}, t_{1}\right)=\frac{\left|\Phi_{12} \Phi_{23}\right|^{2}}{\hbar^{4}} \exp \left(i \omega_{12} t_{1}+i \omega_{23} t_{3}\right) \\
C_{31}^{(\mathrm{III})}\left(t_{3}, t_{2}, t_{1}\right)=\frac{\left|\Phi_{12} \Phi_{23}\right|^{2}}{\hbar^{4}} \exp \left(i \omega_{12} t_{1}+i \omega_{32} t_{3}\right)
\end{gathered}
$$

be aware of the fact that $C_{31}^{(\mathrm{I})}$ depends on t_{2} but $C_{31}^{(\mathrm{II})}$ as well as $C_{31}^{(\mathrm{III})}$ do not; this indicates a possible factorization in a t_{1}-dependent and a t_{3}-dependent part, and a resulting compensation by the product of two second-order correlation functions;
it can be also interpreted as a transition from level 1 to level 3, but interrupted by level 2 (the extent of this interruption depends on the used model);
the respective approximation for the second-order rate takes the form ($\tilde{\omega}=\omega+i \varepsilon$)

$$
K_{b a}^{(2)}(\omega)=-\frac{\left|\Phi_{a b}\right|^{2}}{\hbar^{2}}\left(\frac{i}{\tilde{\omega}+\omega_{a b}}+\frac{i}{\tilde{\omega}-\omega_{a b}}\right)
$$

we get the fourth order expression as

$$
\begin{gathered}
K_{31}^{(4)}(\omega)=L_{31}^{(4)}(\omega)-\frac{i}{\tilde{\omega}} K_{32}^{(2)}(\omega) K_{21}^{(2)}(\omega) \\
=-i \frac{\left|\Phi_{12} \Phi_{23}\right|^{2}}{\hbar^{4}}\left(\frac{1}{\left(\tilde{\omega}+\omega_{12}\right)\left(\tilde{\omega}+\omega_{13}\right)\left(\tilde{\omega}+\omega_{23}\right)}+\frac{1}{\left(\tilde{\omega}-\omega_{12}\right)\left(\tilde{\omega}-\omega_{13}\right)\left(\tilde{\omega}-\omega_{23}\right)}\right. \\
+\frac{1}{\left(\tilde{\omega}+\omega_{12}\right) \tilde{\omega}\left(\tilde{\omega}+\omega_{23}\right)}+\frac{1}{\left(\tilde{\omega}-\omega_{12}\right) \tilde{\omega}\left(\tilde{\omega}-\omega_{23}\right)}+\frac{1}{\left(\tilde{\omega}+\omega_{12}\right) \tilde{\omega}\left(\tilde{\omega}+\omega_{32}\right)}+\frac{1}{\left(\tilde{\omega}-\omega_{12}\right) \tilde{\omega}\left(\tilde{\omega}-\omega_{32}\right)} \\
\left.-\frac{1}{\tilde{\omega}}\left[\frac{1}{\tilde{\omega}-\omega_{23}}+\frac{1}{\tilde{\omega}+\omega_{23}}\right]\left[\frac{1}{\tilde{\omega}-\omega_{12}}+\frac{1}{\tilde{\omega}+\omega_{12}}\right]\right)
\end{gathered}
$$

only the first two terms contribute (corresponding to the first Liouville space pathway I); the fourth-order rate due to pathways II and III is completely compensated by the factorized part of the rate; we obtain the ordinary rate expression as:

$$
\begin{gathered}
k_{1 \rightarrow 3}^{(4)}=\frac{2\left|\Phi_{12} \Phi_{23}\right|^{2}}{\hbar^{4}} \operatorname{Im}\left(\frac{1}{\left(\omega_{12}+i \varepsilon\right)\left(\omega_{13}+i \varepsilon\right)\left(\omega_{23}+i \varepsilon\right)}\right) \\
=\frac{2 \pi\left|\Phi_{12} \Phi_{23}\right|^{2}}{\hbar^{4}}\left(\frac{\delta\left(\omega_{13}\right)}{\varepsilon_{12}^{2}}-\frac{\delta\left(\omega_{23}\right)}{\varepsilon_{12}^{2}}-\frac{\delta\left(\omega_{12}\right)}{\varepsilon_{23}^{2}}+\pi^{2} \delta\left(\omega_{13}\right) \delta\left(\omega_{23}\right) \delta\left(\omega_{12}\right)\right)
\end{gathered}
$$

we assume that $\omega_{12} \neq 0$ and $\omega_{32} \neq 0$ and arrive at

$$
k_{1 \rightarrow 3}^{(4)}=\frac{2 \pi}{\hbar}\left|\frac{\Phi_{12} \Phi_{23}}{\hbar \omega_{12}}\right|^{2} \delta\left(\hbar \omega_{13}\right)
$$

this is standard formula used whenever transfer processes are studied which are mediated by an intermediate (bridge level);
the present discussion demonstrates, however, that the intermediate level has to be off-resonant to the initial and final level;
if this is not the case the more general expression has to be used;

