6 Photon-Mediated Long Range Excitation Energy Transfer

Forster theory of excitation energy transfer (EET) between molecules is based on the overlap of
the donor emission spectrum and the acceptor absorption spectrum;

this suggests an interpretation of the transfer as a process where a photon is emitted by the donor
and afterwards absorbed by the acceptor;

however, the use of the donor-acceptor Coulomb interaction V4 to compute the rate indicates
that the Forster transfer cannot viewed as a photon-mediated EET process;

therefore, a theory of EET is formulated, which is based on the general electromagnetic interaction
between the donor and the acceptor;



6.1 The Basic Model

we briefly review some basics of matter radiation interaction;

within Coulomb gauge the vector potential A represents a transversal field which couples to
the molecular system via the so-called minimal coupling Hamiltonian where the momenta of the
charged particle are replaced by p, — A(r;)q;/c;

the full electromagnetic interaction among electrons and nuclei is mediated by the short-ranged in-
stantaneous Coulomb interaction and the long-ranged retarded exchange of transversal photons;
it is advisable to move from the minimal coupling Hamiltonian to the so-called multipolar Hamilto-
nian by applying a canonical transformation (Power-Zienau transformation)

the transformation becomes much easier if one can restrict the description of donor and acceptor
to their transition dipole moments d,, and d 4, respectively;

the complete electromagnetic interaction is reduced to an interaction between transition-dipoles
and can be accounted for by the dipolar coupling Hamiltonian:
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the coupling constant entering this expression takes the form
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the model is completed by fixing the Hamiltonian of the donor-acceptor complex

Hygy = Hol0){0[ + > Hulm)(m| + Hpa| DAY (DA .
m=D,A

the ground-state is |0) with Hamiltonian H, = Hp, + Ha,;

singly excited states are |m = D, A) with Hamiltonians Hp = Hp. + Ha, and Ha = Hp, + Hae;

simultaneous excitation of both molecules describes |DA) and the related Hamiltonian is Hp4 =
HDe + HAe



6.2 Preparatory Considerations of the Rate

now, the rate represents a fourth-order transition rate including intermediate states;

the transition is of two-step character:

donor de-excitation does not directly lead to an acceptor excitation but first sets free a photon

in a second step the photon is absorbed by the acceptor moving the latter into its excited state
when calculating the rate we will also meet the counter intuitive two-step transition where pho-
ton emission and acceptor excitation takes place before donor de-excitation (formally such an
additional process appears since the molecule-photon coupling comprises simultaneous photon
creation and annihilation);

in the following we will make use of the fact that reproducing the Forster rate of EET in a particular
limit, we can concentrate on the Liouville space pathway of type I;
the rate of photon-mediated EET takes the form (dropping the Liouville space pathway index I)
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to calculate the correlation function we identify the statistical operator of state 1 with 17/, describing

the excited donor and the absence of any photon (photon vacuum lvac));
it takes the form Wp = Rp|D)(D| x |vac)(vac|, where Rp = Rp. R,



the state 3 corresponds to the final state of the transition with the unexcited donor, the excited
acceptor and again the photon vacuum;
we obtain
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the included electron-photon matrix element separates into two matrix elements
(Al(vac|U (ts+t2) HinsU (t1) Hing|vac) | D) = Ua(ts+ta) (A|(vac|Upnot(t3+t2) HintUagg (t1)Upnot (t1) Hint |vac) | D)

the transition from the excited donor state to the excited acceptor state (from the right to the left
part of the matrix element) may proceed in two ways: via the unexcited donor-acceptor pair as
well as via the state of a simultaneous donor-acceptor excitation;

therefore, we may replace U,g(t1) by Uy(t1)[0)(0| + Upa(ti)|DA)(DA|;
when calculating the photon-state matrix element one meets the photon correlation function (the
hat reminds on the tensorial character of this function; note also X p = X4 — Xp):
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accordingly we may write

(A|{vac|U (ts + to) Hins U (1)) His|[vac)| DY = U (ts + to) (Uo(tl) + Upa(ts + m) (d4Clor(Xap, t1)d)



in the same way we arrive at (note the negative time argument in the photon correlation function
which is caused by the appearance of U )
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one ends up with four new correlation functions;

the expression tr,{ RpUb (t1 +t2) Uy (t3)UA(ts +t2)Us(t1)} corresponds to the EET process with the
unexcited donor-acceptor pair as the intermediate state;

being aware of the separate vibrational coordinates for the donor and the acceptor this three-time
correlation function factorizes into Cp._,(t1 + t2)Cage(ts + to2);

in contrast, the correlation function tr, { RpU3 (t1 + t2) U, (t3)Ua(ts + t2)Upa(t)} results from the
presence of the doubly excited pair as an intermediate state

it reduces to Cpe_ (to + t3)Cuge(ts + to2);
the interference of both transition paths leads to two mixed (interference) terms;
we finally arrive at (the mixed contributions are at the second and third position of the right-hand
side)
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6.3 Photon Correlation Functions

we analyze the photon correlation function with the focus on its Fourier-transformed version (with
respect to its time-argument);
to carry out the A\k-summation we first note that >, nyc @ nye = 1 — k @ k/|k|?
secondly, k-vectors inside the k-summation are replaced by the action of the nabla-operator out-
side;
we get

Conot(%, 1) = [ = V2 4+ V @ V| ot (2, 1)

the newly introduced function (. only depends on = = |x| and reads (note k = |k|, the change to
a k-integration, and the introduction of spherical coordinates):
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the Fourier-transform simply follows as (f(w) is the unit step function)

sin(wx/c)

Conot (T, w) = B(w)2h "

calculating the photon-mediated EET rate we also need the retarded correlation function
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a Fourier transformation leads to (be also aware of Co(x, t) = C%,(x, —t))
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in order to derive a concrete expression for Cphot (x,w) one may directly compute the Fourier-

transform of ( f(ft( t) = 0(t)(mot(z, t) at positive and negative frequency arguments ending up
with expressions, which include the integral cosine and sine function;

to arrive at the rate of photon-mediated EET we only need the combination of the retarded photon
correlation function at positive and negative frequencies;

this combination can be calculated by adding both parts but also directly without a separate de-
termination at positive and negative frequencies;

in any case, one arrives at the following simple form (note the introduction of K = w/c)
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6.4 Rate of Photon-Mediated EET

it is advisable to introduce Fourier-transformed molecular correlation functions Cp._,, and Cy -,
as well as Fourier-transformed retarded photon correlation function C"):;
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the retarded photon correlation functions are responsible for mediating the EET,;

the combination of the part proportional to C'*Y*(X 4, w) with that proportional to C**(X 4p, )
corresponds to the intuitive photon-mediated transfer process shown as pathway “a”

the total rate follows via the inclusion of pathway “b” and a mixture of both;

the expression simplifies considerable if we note that the photon correlation function changes only
slightly across the frequency range where Cp._,,(w) and Cy,_..(w) deviate from zero;
characterizing this range by a mean frequency w, we obtain (Xp4 = |Xpal)
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the combined density of states D4 takes the form
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with the correlation function of donor de-excitation

Cpesg(t) = tro{ RpUp, (H)Uny(t)}
and the correlation function of acceptor excitation
Cuagoelt) = tra{ RagUs (U :(t)} -
the newly defined function A (photon transition amplitude) is determined by the retarded correla-

tion functions;
it can be expressed by ¢! introduced earlier
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note the introduction of K, = wy/c, which determines the inverse wavelength of the exchanged
photon;
the orientation factors read
KpA = npny| — 3npepa)nsepy]
and
KpA = [npny| — [npepa)[naep]



if KopXpa < 1, 1.e. if the donor-acceptor distance is much smaller than the photon wavelength, the
rate k:gfll reduces to the Forster type expression; it depends on 1/X9 ,;

in the present context one may state that Forster type EET is dominated by a virtual photon ex-
change;

in the contrary case the rate accounts for real photon emission by the donor and photon absorption
by the acceptor (here it decreases with the inverse square of the donor-acceptor distance).

if one ignores the counter-intuitive photon-mediated process (pathway “b”) the transition amplitude
also includes sine and cosine functions;

in particular, one cannot reproduce the Forster type rate for short DA-distances;

this has to be expected since the energy-time uncertainty works most effectively at short distances,
i.e. at short “photon flight times” (strong contribution by the counter-intuitive process);
interestingly, the elaborated combination of the two transition pathways reproduces the simple
picture of a Coulomb interaction between the donor and the acceptor;



to estimate the rate of photon-mediated EET we use

Jo(pm) %’dDdA‘Q(R%A Kitpa(kpa — 2kpa) | Kgkp,

o XDa XDa XDa
the acceptor molecule has been chosen to be identical to the donor Awp = hwa = hwy (the tran-
sition dipole moments are perpendicular to the line connecting the donor and the acceptor, i.e.
Kpa = Kpa = 1);

) Dpa

for distances less than 20 nm the photon-mediated transfer agrees completely with the Forster
rate and any dependence on the choice of Aw, vanishes;

the extreme smallness of the Forster rate for the largest distance of 500 nm is compensated when
using the general rate due to photon mediated transfer;

its distance dependence is dominated by 1/X?% ,-term and it is increased according to the fourth
power of wy;

such a behavior indicates that the EET appears mainly as a photon emission by the donor and a
subsequent photon absorption by the acceptor (this view of a real photon exchange just confirms
that the rate becomes proportional to w;/ X3 ,,);



