
6 Photon-Mediated Long Range Excitation Energy Transfer

Förster theory of excitation energy transfer (EET) between molecules is based on the overlap of

the donor emission spectrum and the acceptor absorption spectrum;

this suggests an interpretation of the transfer as a process where a photon is emitted by the donor

and afterwards absorbed by the acceptor;

however, the use of the donor-acceptor Coulomb interaction VDA to compute the rate indicates

that the Förster transfer cannot viewed as a photon-mediated EET process;

therefore, a theory of EET is formulated, which is based on the general electromagnetic interaction

between the donor and the acceptor;



6.1 The Basic Model

we briefly review some basics of matter radiation interaction;

within Coulomb gauge the vector potential A represents a transversal field which couples to

the molecular system via the so-called minimal coupling Hamiltonian where the momenta of the

charged particle are replaced by pj −A(rj)qj/c;

the full electromagnetic interaction among electrons and nuclei is mediated by the short-ranged in-

stantaneous Coulomb interaction and the long-ranged retarded exchange of transversal photons;

it is advisable to move from the minimal coupling Hamiltonian to the so-called multipolar Hamilto-

nian by applying a canonical transformation (Power-Zienau transformation)

the transformation becomes much easier if one can restrict the description of donor and acceptor

to their transition dipole moments dD and dA, respectively;

the complete electromagnetic interaction is reduced to an interaction between transition-dipoles

and can be accounted for by the dipolar coupling Hamiltonian:

Hint =
∑

m=D,A

∑

λ,k

(

gλk(Xm)âλk + H.c.
)(

dm|ϕme〉〈ϕmg| + H.c.
)

.

the coupling constant entering this expression takes the form

gλk(x) = i

√

2π~ωk

L3
eikxnλk .



the model is completed by fixing the Hamiltonian of the donor-acceptor complex

Hagg = H0|0〉〈0| +
∑

m=D,A

Hm|m〉〈m| +HDA|DA〉〈DA| .

the ground-state is |0〉 with Hamiltonian H0 = HDg +HAg;

singly excited states are |m = D,A〉 with Hamiltonians HD = HDe +HAg and HA = HDg +HAe;

simultaneous excitation of both molecules describes |DA〉 and the related Hamiltonian is HDA =

HDe +HAe



6.2 Preparatory Considerations of the Rate

now, the rate represents a fourth-order transition rate including intermediate states;

the transition is of two-step character:

donor de-excitation does not directly lead to an acceptor excitation but first sets free a photon

in a second step the photon is absorbed by the acceptor moving the latter into its excited state

when calculating the rate we will also meet the counter intuitive two-step transition where pho-

ton emission and acceptor excitation takes place before donor de-excitation (formally such an

additional process appears since the molecule-photon coupling comprises simultaneous photon

creation and annihilation);

in the following we will make use of the fact that reproducing the Förster rate of EET in a particular

limit, we can concentrate on the Liouville space pathway of type I;

the rate of photon-mediated EET takes the form (dropping the Liouville space pathway index I)

k
(pm)
D→A = 2Re

∞
∫

0

dt3 dt2 dt1 CAD(t3, t2, t1)

to calculate the correlation function we identify the statistical operator of state 1 with ŴD describing

the excited donor and the absence of any photon (photon vacuum |vac〉);

it takes the form ŴD = R̂D|D〉〈D| × |vac〉〈vac|, where R̂D = R̂DeR̂Ag



the state 3 corresponds to the final state of the transition with the unexcited donor, the excited

acceptor and again the photon vacuum;

we obtain

CAD(t3, t2, t1) =
1

~4
trvib{〈A|〈vac|U(t3 + t2)HintU(t1)HintŴDU

+(t1 + t2)HintU
+(t3)Hint|vac〉|A〉}

the included electron-photon matrix element separates into two matrix elements

〈A|〈vac|U(t3+t2)HintU(t1)Hint|vac〉|D〉 = UA(t3+t2)〈A|〈vac|Uphot(t3+t2)HintUagg(t1)Uphot(t1)Hint|vac〉|D〉

the transition from the excited donor state to the excited acceptor state (from the right to the left

part of the matrix element) may proceed in two ways: via the unexcited donor-acceptor pair as

well as via the state of a simultaneous donor-acceptor excitation;

therefore, we may replace Uagg(t1) by U0(t1)|0〉〈0| + UDA(t1)|DA〉〈DA|;

when calculating the photon-state matrix element one meets the photon correlation function (the

hat reminds on the tensorial character of this function; note also XAD = XA −XD):

Ĉphot(XAD, t) = 〈vac|
∑

λ,k

(

gλk(XA)aλk + H.c.
)

Uphot(t)
∑

κ,q

(

gκq(XD)aκq + H.c.
)

|vac〉

=
2π~

V

∑

λ,k

nλk ⊗ nλk ωk e
i(kx−ωkt)

accordingly we may write

〈A|〈vac|U(t3 + t2)HintU(t1)Hint|vac〉|D〉 = UA(t3 + t2)
(

U0(t1) + UDA(t3 + t2)
)

[dAĈphot(XAD, t1)d
∗
D]



in the same way we arrive at (note the negative time argument in the photon correlation function

which is caused by the appearance of U+
phot)

〈D|〈vac|U+(t1 + t2)HintU
+(t3)Hint|vac〉|A〉 = U+

D(t1 + t2)
(

U+
0 (t3) + U+

DA(t3)
)

[dDĈphot(XDA,−t3)d
∗
A]

one ends up with four new correlation functions;

the expression trvib{R̂DU
+
D(t1+ t2)U

+
0 (t3)UA(t3+ t2)U0(t1)} corresponds to the EET process with the

unexcited donor-acceptor pair as the intermediate state;

being aware of the separate vibrational coordinates for the donor and the acceptor this three-time

correlation function factorizes into CDe→g(t1 + t2)CAg→e(t3 + t2);

in contrast, the correlation function trvib{R̂DU
+
D(t1 + t2)U

+
AD(t3)UA(t3 + t2)UDA(t1)} results from the

presence of the doubly excited pair as an intermediate state

it reduces to CDe→g(t2 + t3)CAg→e(t1 + t2);

the interference of both transition paths leads to two mixed (interference) terms;

we finally arrive at (the mixed contributions are at the second and third position of the right-hand

side)

CAD(t1, t2, t3) =

|dDdA|
2

~4

(

CDe→g(t1 + t2)CAg→e(t3 + t2) + CDe→g(t1 + t2 + t3)CAg→e(t2) + CDe→g(t2)CAg→e(t1 + t2 + t3)

+CDe→g(t2 + t3)CAg→e(t1 + t2)
)

× [nAĈphot(XAD, t1)nD][nDĈphot(XDA,−t3)nA]



6.3 Photon Correlation Functions

we analyze the photon correlation function with the focus on its Fourier-transformed version (with

respect to its time-argument);

to carry out the λk-summation we first note that
∑

λ nλk ⊗ nλk = 1− k⊗ k/|k|2

secondly, k-vectors inside the k-summation are replaced by the action of the nabla-operator out-

side;

we get

Ĉphot(x, t) =
[

−∇2 +∇⊗∇
]

ζphot(x, t)

the newly introduced function ζphot only depends on x = |x| and reads (note k = |k|, the change to

a k-integration, and the introduction of spherical coordinates):

ζphot(x, t) =
~c

4π2

∫

d3k

|k|
ei(kx−ωkt) =

~c

π

∞
∫

0

dk
sin(kx)

x
e−ickt

the Fourier-transform simply follows as (θ(ω) is the unit step function)

ζphot(x, ω) = θ(ω)2~
sin(ωx/c)

x

calculating the photon-mediated EET rate we also need the retarded correlation function

Ĉ
(ret)
phot(x, t) = θ(t)Ĉphot(x, t)



a Fourier transformation leads to (be also aware of Ĉphot(x, t) = Ĉ∗
phot(x,−t))

Ĉ
(ret)
phot(x, ω) = −

∫

dω̄

2πi

Ĉphot(x, ω̄)

ω − ω̄ + iε

in order to derive a concrete expression for Ĉ
(ret)
phot(x, ω) one may directly compute the Fourier-

transform of ζ
(ret)
phot(x, t) = θ(t)ζphot(x, t) at positive and negative frequency arguments ending up

with expressions, which include the integral cosine and sine function;

to arrive at the rate of photon-mediated EET we only need the combination of the retarded photon

correlation function at positive and negative frequencies;

this combination can be calculated by adding both parts but also directly without a separate de-

termination at positive and negative frequencies;

in any case, one arrives at the following simple form (note the introduction of K = ω/c)

1

~

(

ζ
(ret)
phot(x, ω) + ζ

(ret)
phot(x,−ω)

)

=
(

θ(ω)− θ(−ω)
)sin(Kx)

x
− i

cos(Kx)

x



6.4 Rate of Photon-Mediated EET

it is advisable to introduce Fourier-transformed molecular correlation functions CDe→g and CAg→e

as well as Fourier-transformed retarded photon correlation function Ĉ(ret):

k
(pm)
D→A =

|dDdA|
2

~4

∫

dωdω̄

(2π)2
CDe→g(−ω)

{ −i

ω − ω̄ − iε

×
(

[nDĈ
(ret)∗
phot (XDA, ω)nA] + [nDĈ

(ret)∗
phot (XDA,−ω̄)nA]

)

×
(

[nAĈ
(ret)
phot(XAD, ω̄)nD] + [[nAĈ

(ret)
phot(XAD,−ω)nD]

)

+ c.c.
}

CAg→e(ω̄)

the retarded photon correlation functions are responsible for mediating the EET;

the combination of the part proportional to Ĉ(ret)∗(XDA, ω) with that proportional to Ĉ(ret)(XAD, ω̄)

corresponds to the intuitive photon-mediated transfer process shown as pathway “a”;

the total rate follows via the inclusion of pathway “b” and a mixture of both;

the expression simplifies considerable if we note that the photon correlation function changes only

slightly across the frequency range where CDe→g(ω) and CAg→e(ω) deviate from zero;

characterizing this range by a mean frequency ω0 we obtain (XDA = |XDA|)

k
(pm)
D→A =

2π

~
|dDdA|

2|A(xDA, ω0)|
2DDA



the combined density of states DDA takes the form

DDA =
1

2π~

∫

dt CD e→g(t)CAg→e(t) ≡
1

(2π)2~

∫

dω CD e→g(−ω)CAg→e(ω)

with the correlation function of donor de-excitation

CD e→g(t) = trD{R̂DeÛ
+
De(t)ÛDg(t)} ,

and the correlation function of acceptor excitation

CAg→e(t) = trA{R̂AgÛ
+
Ag(t)ÛAe(t)} .

the newly defined function A (photon transition amplitude) is determined by the retarded correla-

tion functions;

it can be expressed by ζ
(ret)
phot introduced earlier

A(xDA, ω0) =
1

~

(

− [nDnA]∇
2 + [nD∇][nA∇]

)

(

ζ
(ret)
phot(XDA, ω0) + ζ

(ret)
phot(XDA,−ω0)

)

.

= K3
0

[ κDA

(K0XDA)2
−

iκ̄DA

K0XDA
+

iκDA

(K0XDA)3
]

eiK0XDA

note the introduction of K0 = ω0/c, which determines the inverse wavelength of the exchanged

photon;

the orientation factors read

κDA = [nDnA]− 3[nDeDA][nAeDA]

and

κ̄DA = [nDnA]− [nDeDA][nAeDA]



if K0XDA ≪ 1, i.e. if the donor-acceptor distance is much smaller than the photon wavelength, the

rate k
(pm)
D→A reduces to the Förster type expression; it depends on 1/X6

DA;

in the present context one may state that Förster type EET is dominated by a virtual photon ex-

change;

in the contrary case the rate accounts for real photon emission by the donor and photon absorption

by the acceptor (here it decreases with the inverse square of the donor-acceptor distance).

if one ignores the counter-intuitive photon-mediated process (pathway “b”) the transition amplitude

also includes sine and cosine functions;

in particular, one cannot reproduce the Förster type rate for short DA-distances;

this has to be expected since the energy-time uncertainty works most effectively at short distances,

i.e. at short “photon flight times” (strong contribution by the counter-intuitive process);

interestingly, the elaborated combination of the two transition pathways reproduces the simple

picture of a Coulomb interaction between the donor and the acceptor;



to estimate the rate of photon-mediated EET we use

k
(pm)
D→A =

2π

~
|dDdA|

2
( κ2

DA

X6
DA

+
K2

0κDA(κDA − 2κ̄DA)

X4
DA

+
K4

0 κ̄
2
DA

X2
DA

)

DDA

the acceptor molecule has been chosen to be identical to the donor ~ωD = ~ωA = ~ω0 (the tran-

sition dipole moments are perpendicular to the line connecting the donor and the acceptor, i.e.

κDA = κ̄DA = 1);

for distances less than 20 nm the photon-mediated transfer agrees completely with the Förster

rate and any dependence on the choice of ~ω0 vanishes;

the extreme smallness of the Förster rate for the largest distance of 500 nm is compensated when

using the general rate due to photon mediated transfer;

its distance dependence is dominated by 1/X2
DA-term and it is increased according to the fourth

power of ω0;

such a behavior indicates that the EET appears mainly as a photon emission by the donor and a

subsequent photon absorption by the acceptor (this view of a real photon exchange just confirms

that the rate becomes proportional to ω4
0/X

2
DA,);


