CHAPTER IV

Non-Equilibrium Green's Function Technique

1 Introduction

we consider transitions between some state $|0\rangle$ with energy E_{0} and a continuum of states $|\alpha\rangle$ with energies E_{α};
the state $|0\rangle$ is supposed to be initially populated and the transitions into the states $|\alpha\rangle$ are due to some inter-state coupling expressed by $V_{0 \alpha}$;
the total system is described by the Hamiltonian

$$
H=E_{0}|0\rangle\langle 0|+\sum_{\alpha}\left(E_{\alpha}|\alpha\rangle\langle\alpha|+V_{0 \alpha}|0\rangle\langle\alpha|+V_{\alpha 0}|\alpha\rangle\langle 0|\right)
$$

our goal is to obtain an expression which tells us how the initially prepared state $|0\rangle$ decays into the set of states $|\alpha\rangle$;
this transfer of occupation probability can be characterized by looking at the population of state $|0\rangle$ which reads

$$
\left.P_{0}(t)=\left|\langle 0| e^{-i H t / \hbar}\right| 0\right\rangle\left.\right|^{2}
$$

instead of working with time evolution operator matrix elements we introduce

$$
\hat{G}(t)=-i \theta(t) e^{-i H t / \hbar}
$$

this quantity is known as the Green's operator
let us write the Hamiltonian as

$$
H=H_{0}+H_{1}+V
$$

H_{0} corresponds to level $|0\rangle$ and H_{1} covers all levels $|\alpha\rangle$ and the coupling between them is V; the equation of motion for $\hat{G}(t)$ reads

$$
i \hbar \frac{\partial}{\partial t} \hat{G}(t)=\hbar \delta(t)+H \hat{G}(t)
$$

introducing the Fourier-transform

$$
\hat{G}(\omega)=\int d t e^{i \omega t} \hat{G}(t)
$$

translates the equation of motion into

$$
(\omega-H / \hbar) \hat{G}(\omega)=1
$$

we may also compute the Fourier-transformed Green's operator directly which gives

$$
\hat{G}(\omega)=-i \int_{0}^{\infty} d t e^{i \omega t} e^{-i H t / \hbar}=\frac{1}{\omega-H / \hbar+i \varepsilon}
$$

the obtained expression has to be understood as the inverse of the operator $\omega-H / \hbar$ with a small imaginary contribution $i \varepsilon$ indicating the form of the solution for $\hat{G}(\omega)$ (it should have a pole below the real axis in the complex frequency plane)
to get the time-dependence of the population of level $|0\rangle$ we have to compute

$$
\left.P_{0}(t)=|\langle 0| \hat{G}(t)| 0\right\rangle\left.\right|^{2}
$$

the respective matrix elements of the Green's operator are deduced from its equation of motion by introducing projection operators; the operator

$$
\hat{\Pi}_{0}=|0\rangle\langle 0|
$$

projects on the single state $|0\rangle$ and the operator

$$
\hat{\Pi}_{1}=\sum_{\alpha}|\alpha\rangle\langle\alpha|
$$

on the manifold of states $|\alpha\rangle$;
both projection operators enter the completeness relation

$$
\hat{\Pi}_{0}+\hat{\Pi}_{1}=1
$$

which can be used, e.g., to write $\hat{\Pi}_{1}=1-\hat{\Pi}_{0}$
the goal of the following derivation is to obtain an explicit expression for the population $P_{0}(t)$; first, we determine the reduced Green's operator

$$
\hat{G}_{0}(t)=\hat{\Pi}_{0} \hat{G}(t) \hat{\Pi}_{0}
$$

instead of directly focusing on its matrix element with state $|0\rangle$
using the equation of motion for the Fourier-transformed Green's operator $\hat{G}(\omega)$ we may derive an equation for $\hat{G}_{0}(\omega)$;
by applying $\hat{\Pi}_{0}$ to the original equation from the left and from the right we get

$$
\hat{\Pi}_{0}(\omega-H / \hbar)\left(\hat{\Pi}_{0}+\hat{\Pi}_{1}\right) \hat{G}(\omega) \hat{\Pi}_{0}=\hat{\Pi}_{0}
$$

for further computations we note that

$$
\begin{aligned}
& \hat{\Pi}_{0} H \hat{\Pi}_{0}=H_{0} \\
& \hat{\Pi}_{1} H \hat{\Pi}_{1}=H_{1}
\end{aligned}
$$

and

$$
\hat{\Pi}_{0} H \hat{\Pi}_{1}=\hat{\Pi}_{0} V \hat{\Pi}_{1}
$$

it gives

$$
\left(\omega-H_{0} / \hbar\right) \hat{G}_{0}-\hat{\Pi}_{0}(V / \hbar) \hat{\Pi}_{1} \times \hat{\Pi}_{1} \hat{G}(\omega) \hat{\Pi}_{0}=\hat{\Pi}_{0}
$$

the new quantity $\hat{\Pi}_{1} \hat{G}(\omega) \hat{\Pi}_{0}$ obeys

$$
\hat{\Pi}_{1}(\omega-H / \hbar)\left(\hat{\Pi}_{0}+\hat{\Pi}_{1}\right) \hat{G}(\omega) \hat{\Pi}_{0}=\hat{\Pi}_{1} \hat{\Pi}_{0}=0
$$

or

$$
-\hat{\Pi}_{1} V / \hbar \hat{\Pi}_{0} \hat{G}_{0}(\omega)+\left(\omega-H_{1} / \hbar\right) \hat{\Pi}_{1} \hat{G}(\omega) \hat{\Pi}_{0}=0
$$

we define

$$
\left[\hat{G}_{1}^{(0)}(\omega)\right]^{-1}=\omega-H_{1} / \hbar
$$

what represents the inverse of a zeroth-order Green's operator (it is defined without the coupling V)
then, the equation for $\hat{\Pi}_{1} \hat{G}(\omega) \hat{\Pi}_{0}$ can be rewritten as

$$
\hat{\Pi}_{1} \hat{G}(\omega) \hat{\Pi}_{0}=\hat{G}_{1}^{(0)}(\omega) \hat{\Pi}_{1}(V / \hbar) \hat{\Pi}_{0} \hat{G}_{0}(\omega)
$$

if inserted into the equation for \hat{G}_{0} we obtain

$$
\left(\omega-H_{0} / \hbar-\hat{\Pi}_{0}(V / \hbar) \hat{\Pi}_{1} \hat{G}_{1}^{(0)}(\omega) \hat{\Pi}_{1}(V / \hbar) \hat{\Pi}_{0}\right) \hat{G}_{0}=\hat{\Pi}_{0}
$$

we analyze the extra term which depends on V and get

$$
\hat{\Pi}_{0}(V / \hbar) \hat{\Pi}_{1} \hat{G}_{1}^{(0)}(\omega) \hat{\Pi}_{1}(V / \hbar) \hat{\Pi}_{0}=\frac{1}{\hbar^{2}} \sum_{\alpha} \frac{V_{0 \alpha} V_{\alpha 0}}{\omega-E_{\alpha} / \hbar+i \varepsilon} \hat{\Pi}_{0} \equiv \hat{\Sigma}(\omega) / \hbar
$$

the operator $\hat{\Sigma}$ is the self-energy operator; its introduction gives for the reduced Green's operator

$$
\hat{G}_{0}(\omega)=\frac{\hat{\Pi}_{0}}{\omega-H_{0} / \hbar-\hat{\Sigma}(\omega) / \hbar+i \varepsilon}
$$

let us separate the self-energy operator into a Hermitian and an anti-Hermitian part

$$
\hat{\Sigma}(\omega)=\frac{1}{2}\left(\hat{\Sigma}(\omega)+\hat{\Sigma}^{+}(\omega)\right)+\frac{1}{2}\left(\hat{\Sigma}(\omega)-\hat{\Sigma}^{+}(\omega)\right) \equiv \Delta H(\omega)-i \pi \hbar \hat{\Gamma}(\omega)
$$

we can write the Hermitian part as

$$
\Delta H(\omega)=\hbar \Delta \Omega(\omega) \hat{\Pi}_{0}
$$

and the anti-Hermitian part as

$$
\hat{\Gamma}(\omega)=\Gamma(\omega) \hat{\Pi}_{0}
$$

or we write

$$
\hat{\Sigma}(\omega)=\Sigma(\omega) \hat{\Pi}_{0}
$$

with

$$
\Sigma(\omega) \equiv \hbar \Delta \Omega(\omega)-i \hbar \Gamma(\omega)=\sum_{\alpha} \mathcal{P} \frac{\left|V_{0 \alpha}\right|^{2}}{\hbar \omega-E_{\alpha}}-i \pi \sum_{\alpha}\left|V_{0 \alpha}\right|^{2} \delta\left(\hbar \omega-E_{\alpha}\right)
$$

if the energies E_{α} form a continuum the summation with respect to α has to be replaced by an integration;
in this case and provided that the coupling constant has no strong dependence on the quantum number α, the variation of the self-energy in the region where $\hbar \omega \approx E_{0}$ can be expected to be rather weak;
this means that the frequency dependence of $A_{00}(\omega)$ is dominated by the resonance at $\hbar \omega=E_{0}$; since this will give the major contribution to the inverse Fourier transform we can approximately replace $\hbar \omega$ in $\Sigma(\omega)$ by E_{0};
we note

$$
\left.\left.P_{0}(t)=|\langle 0| \hat{G}(t)| 0\right\rangle\left.\right|^{2}=\left|\langle 0| \int \frac{d \omega}{2 \pi} e^{-i \omega t} \hat{G}_{0}(\omega)\right| 0\right\rangle\left.\right|^{2}
$$

to carry out the inverse Fourier transformation we replace the quantity $\Sigma(\omega)$ by the frequencyindependent value $\Sigma\left(E_{0} / \hbar\right)$ and obtain the desired state population $P_{0}(t)$ as

$$
P_{0}(t)=\left|\int \frac{d \omega}{2 \pi} e^{-i \omega t} \frac{i \hbar}{\hbar \omega-\left(E_{0}+\hbar \Delta \Omega\left(E_{0} / \hbar\right)\right)+i \hbar \Gamma\left(E_{0} / \hbar\right)}\right|^{2}=\theta(t) e^{-2 \Gamma\left(E_{0} / \hbar\right) t}
$$

2 Linear Response Theory for the Reservoir: Example for a Green's Function

we will demonstrate an alternative way to introduce for a system-reservoir problem with Hamiltonian

$$
H=H_{\mathrm{S}}+H_{\mathrm{R}}+H_{\mathrm{S}-\mathrm{R}}
$$

the reservoir correlation function;
for this reason we will not ask in which manner the system is influenced by the reservoir but how the reservoir dynamics is modified by the system's motion;
to answer this question it will be sufficient to describe the action of the system on the reservoir via classical time-dependent fields $K_{u}(t)$; therefore, we replace $H_{\mathrm{S}-\mathrm{R}}$ by

$$
H_{\mathrm{ext}}(t)=\sum_{u} K_{u}(t) \Phi_{u}
$$

the Φ_{u} are the various reservoir operators;
the bath Hamiltonian becomes time-dependent too, and is denoted by

$$
\mathcal{H}(t)=H_{\mathrm{R}}+H_{\text {ext }}(t)
$$

as a consequence of the action of the fields $K_{u}(t)$, the reservoir will be driven out of equilibrium; but in the case where the actual non-equilibrium state deviates only slightly from the equilibrium this deviation can be linearized with respect to the external perturbations;
we argue that in this limit the expectation value of the reservoir operator Φ_{u} obeys the relation

$$
\left\langle\Phi_{u}(t)\right\rangle=\sum_{v} \int_{t_{0}}^{t} d \bar{t} \chi_{u v}(t, \bar{t}) K_{u}(\bar{t})
$$

the functions $\chi_{u v}(t, \bar{t})$ are called linear response functions or generalized linear susceptibilities;
in order to derive an expression for $\chi_{u v}$ we start with the definition of the expectation value $\left\langle\Phi_{u}(t)\right\rangle$

$$
\left\langle\Phi_{u}(t)\right\rangle=\operatorname{tr}_{\mathrm{R}}\left\{U\left(t-t_{0}\right) \hat{R}_{\mathrm{eq}} U^{+}\left(t-t_{0}\right) \Phi_{u}\right\}
$$

the time-evolution of the reservoir statistical operator starting with the reservoir equilibrium density operator $\hat{R}_{\text {eq }}$ has been explicitly indicated;
the time-evolution operator $U\left(t, t_{0}\right)$ does not depend on $t-t_{0}$ since the Hamiltonian $\mathcal{H}(t)$ is timedependent;
to linearize this expression with respect to the external fields $U\left(t, t_{0}\right)$ is first separated into the free part $U_{\mathrm{R}}\left(t-t_{0}\right)$ defined by H_{R}, and the S-operator

$$
S\left(t, t_{0}\right)=\hat{T} \exp \left(-\frac{i}{\hbar} \int_{t_{0}}^{t} d \tau U_{\mathrm{R}}^{+}\left(\tau-t_{0}\right) H_{\mathrm{ext}}(\tau) U_{\mathrm{R}}\left(\tau-t_{0}\right)\right)
$$

in a second step the S-operator is expanded up to first order in $H_{\text {ext }}(\tau)$

$$
\left\langle\Phi_{u}(t)\right\rangle_{\mathrm{R}} \approx \operatorname{tr}_{\mathrm{R}}\left\{\hat{R}_{\mathrm{eq}} \Phi_{u}^{(\mathrm{I})}(t)\right\}-\frac{i}{\hbar} \int_{t_{0}}^{t} d \bar{t} \operatorname{tr}_{\mathrm{R}}\left\{\hat{R}_{\mathrm{eq}}\left[\Phi_{u}^{(\mathrm{I})}(t), \Phi_{v}^{(\mathrm{I})}(\hat{t})\right]_{-}\right\} K_{v}(\bar{t})
$$

here, the time dependence of the reservoir operators $\Phi_{u}^{(\mathrm{I})}(t)$ is given in the interaction representation;
the linear response function can be identified as (we assume that the equilibrium expectation values of $\hat{\Phi}_{u}$ vanish)

$$
\chi_{u v}(t, \bar{t})=-\frac{i}{\hbar}\left\langle\left[\Phi_{u}^{(\mathrm{I})}(t), \Phi_{v}^{(\mathrm{I})}(\bar{t})\right]_{-}\right\rangle_{\mathrm{R}}
$$

we notice that the right-hand side depends on the time difference $t-\bar{t}$ only, that is, $\chi_{u v}(t, \bar{t})=$ $\chi_{u v}(t-\bar{t})$; we also obtain $\chi_{u v}(t)=-i C_{u v}^{(-)}(t) / \hbar$;
if we assume $t_{0} \rightarrow-\infty$ and if we extend $\chi_{u v}(t, \bar{t})$ by the prefactor $\theta(t-\bar{t})$ we may write

$$
\left\langle\Phi_{u}(t)\right\rangle=\sum_{v} \int d \bar{t} \chi_{u v}(t, \bar{t}) K_{u}(\bar{t})
$$

with

$$
\chi_{u v}(t, \bar{t})=-\frac{i}{\hbar} \theta(t-\bar{t})\left\langle\left[\Phi_{u}^{(\mathrm{I})}(t), \Phi_{v}^{(\mathrm{I})}(t)\right]_{-}\right\rangle_{\mathrm{R}}
$$

a so-called retardet Green's functions has been introduced;

3 Equilibrium Green's Functions

the retardet Green's function formed by two operators \hat{A} and \hat{B} is defined as

$$
G_{A B}^{(\mathrm{ret})}\left(t, t^{\prime}\right)=-i \theta\left(t-t^{\prime}\right) \operatorname{tr}\left\{\hat{W}_{\mathrm{eq}}\left[\hat{A}(t), \hat{B}\left(t^{\prime}\right)\right]_{-}\right\}
$$

note

$$
\hat{W}_{\mathrm{eq}}=\frac{1}{\mathcal{Z}} e^{-i H / k_{\mathrm{B}} T} \quad \hat{A}(t)=U^{+}(t) \hat{A} U(t) \quad U(t)=e^{-i H t / \hbar}
$$

it is obvious that

$$
G_{A B}^{(\mathrm{ret})}\left(t, t^{\prime}\right)=G_{A B}^{(\mathrm{ret})}\left(t-t^{\prime}\right)
$$

the advanced Green's function reads

$$
G_{A B}^{(\mathrm{adv})}\left(t-t^{\prime}\right)=i \theta\left(t^{\prime}-t\right) \operatorname{tr}\left\{\hat{W}_{\mathrm{eq}}\left[\hat{A}(t), \hat{B}\left(t^{\prime}\right)\right]_{-}\right\}
$$

the causal Green's function takes the form

$$
\begin{gathered}
G_{A B}^{(\mathrm{cau})}\left(t-t^{\prime}\right)=-i \operatorname{tr}\left\{\hat{W}_{\mathrm{eq}} \hat{T} \hat{A}(t) \hat{B}\left(t^{\prime}\right)\right\} \\
=-i \theta\left(t-t^{\prime}\right) \operatorname{tr}\left\{\hat{W}_{\mathrm{eq}} \hat{A}(t) \hat{B}\left(t^{\prime}\right)\right\}-i \theta\left(t^{\prime}-t\right) \operatorname{tr}\left\{\hat{W}_{\mathrm{eq}} \hat{B}\left(t^{\prime}\right) \hat{A}(t)\right\}
\end{gathered}
$$

Fourier transformed retardet Green's function

$$
G_{A B}^{(\mathrm{ret})}(\omega)=\int d t e^{i \omega t} G_{A B}^{(\mathrm{ret})}(t) \quad G_{A B}^{(\mathrm{ret})}(t)=\frac{1}{2 \pi} \int d t e^{-i \omega t} G_{A B}^{(\mathrm{ret})}(\omega)
$$

we use the eigenstates $|a\rangle$ and eigen-energies E_{a} of H for a more detailed computation

$$
\begin{gathered}
G_{A B}^{(\mathrm{ret})}(\omega)=-i \int d t e^{i \omega t} \theta(t) \operatorname{tr}\left\{\hat{W}_{\mathrm{eq}}(\hat{A}(t) \hat{B}(0)-\hat{B}(0) \hat{A}(t))\right\} \\
=-i \int d t e^{i \omega t} \theta(t) \sum_{a, b} f_{a}(\langle a| \hat{A}(t)|b\rangle\langle b| \hat{B}(0)|a\rangle-\langle a| \hat{B}(0)|b\rangle\langle b| \hat{A}(t)|a\rangle)
\end{gathered}
$$

we interchange a and b in the second sum and get $\left(\omega_{a b}=\left(E_{a}-E_{b}\right) / \hbar\right)$

$$
G_{A B}^{(\mathrm{ret})}(\omega)=-i \sum_{a, b} \int d t e^{i \omega t} \theta(t)\left(f_{a}-f_{b}\right) e^{i \omega_{a b} t} A_{a b} B_{b a}
$$

note the relations

$$
A_{a b}=\langle a| \hat{A}|b\rangle \quad \int d t e^{i \omega t} \theta(t)=\frac{i}{\omega+i \epsilon}
$$

after time-integration we obtain

$$
G_{A B}^{(\mathrm{ret})}(\omega)=\sum_{a, b} \frac{\left(f_{a}-f_{b}\right) A_{a b} B_{b a}}{\omega_{a b}+i \epsilon}
$$

expression is often called spectral representation of the Green's function;
the equation of motion reads

$$
i \hbar \frac{\partial}{\partial t} G_{A B}^{(\mathrm{ret})}(t)=\hbar \delta(t) \operatorname{tr}\left\{\hat{W}_{\mathrm{eq}}[\hat{A}, \hat{B}]_{-}\right\}-i \theta\left(t-t^{\prime}\right) \operatorname{tr}\left\{\hat{W}_{\mathrm{eq}}\left[-[H, \hat{A}(t)]_{-}, \hat{B}\right]_{-}\right\}
$$

a new retardet Green's function has been originated; a perturbation theory can be established by deriving an additional equation of motion for this new function;

4 Zero-Temperature Green's Functions

the system is described by the Hamiltonian

$$
H=H_{0}+V
$$

the ground-state shall be $\left|\psi_{g}\right\rangle$; a respective causal Green's function is defined as

$$
G_{A B}^{(\mathrm{cau})}\left(t-t^{\prime}\right)=-i\left\langle\psi_{g}\right| \hat{T} \hat{A}(t) \hat{B}\left(t^{\prime}\right)\left|\psi_{g}\right\rangle
$$

the time-evolution operator has the form

$$
e^{-i H t / \hbar}=U(t)=U_{0}(t) S(t, 0)
$$

where

$$
U_{0}(t)=e^{-i H_{0} t / \hbar}
$$

the S-operator reads

$$
S\left(t, t^{\prime}\right)=\hat{T} \exp \left(-\frac{i}{\hbar} \int_{t^{\prime}}^{t} d \tau V^{(\mathrm{I})}\left(\tau-t^{\prime}\right)\right)=\hat{T} \exp \left(-\frac{i}{\hbar} \int_{0}^{t-t^{\prime}} d \tau^{\prime} V^{(\mathrm{I})}\left(\tau^{\prime}\right)\right)
$$

we define the interaction picture

$$
V^{(\mathrm{I})}(\tau)=U_{0}^{+}(\tau) V U_{0}(\tau)
$$

the causal Green's function is rewritten as

$$
\begin{aligned}
G_{A B}^{(\mathrm{cau})}\left(t-t^{\prime}\right) & =-i\left\langle\psi_{g}\right| \hat{T} S^{+}(t, 0) U_{0}^{+}(t) \hat{A} U_{0}(t) S(t, 0) S^{+}\left(t^{\prime}, 0\right) U_{0}^{+}\left(t^{\prime}\right) \hat{B} U_{0}\left(t^{\prime}\right) S\left(t^{\prime}, 0\right)\left|\psi_{g}\right\rangle \\
& =-i\left\langle\psi_{g}\right| \hat{T} S^{+}(t, 0) \hat{A}^{\mathrm{II}}(t) S(t, 0) S^{+}\left(t^{\prime}, 0\right) \hat{B}^{(\mathrm{I})}\left(t^{\prime}\right) S\left(t^{\prime}, 0\right)\left|\psi_{g}\right\rangle
\end{aligned}
$$

the system ground-state is translated into an arbitrary state taken in the interaction representation

$$
\left|\psi^{(\mathrm{I})}(t)\right\rangle=S(t, 0)\left|\psi_{g}\right\rangle
$$

the relation is inverted as

$$
\left|\psi_{g}\right\rangle=S(0, t)\left|\psi^{(\mathbb{I})}(t)\right\rangle
$$

if we replace V by $V(t)=V \exp (-\epsilon|t|)$ we can generate the complete ground-state from the zeroorder ground-state $\left|\psi_{g}^{(0)}\right\rangle$ according to the relation (the coupling is switched on adiabatically)

$$
\left|\psi_{g}\right\rangle=S(0,-\infty)\left|\psi_{g}^{(0)}\right\rangle
$$

of course, at the end of all computations we have to take the limit $\epsilon \rightarrow 0$;
the Green's function can be written as

$$
G_{A B}^{(\mathrm{cau})}\left(t-t^{\prime}\right)=-i\left\langle\psi_{g}^{(0)}\right| S^{+}(0,-\infty) \hat{T} S^{+}(t, 0) \hat{A}^{(\mathrm{I})}(t) S\left(t, t^{\prime}\right) \hat{B}^{(\mathrm{I})}\left(t^{\prime}\right) S\left(t^{\prime}, 0\right) S(0,-\infty)\left|\psi_{g}^{(0)}\right\rangle
$$

in order to rewrite $\left\langle\psi_{g}^{(0)}\right| S^{+}(0,-\infty)$ into $\left\langle\psi_{g}^{(0)}\right| S(\infty, 0)$ we consider

$$
S(0,-\infty)\left|\psi_{g}^{(0)}\right\rangle=S(0,-\infty) S(-\infty, \infty) S(\infty,-\infty)\left|\psi_{g}^{(0)}\right\rangle=S(0, \infty)\left|\psi_{g}^{(0)}\right\rangle\left\langle\psi_{g}^{(0)}\right| S(\infty,-\infty)\left|\psi_{g}^{(0)}\right\rangle
$$

since $S(\infty,-\infty)$ moves the zero-order ground-state back to itself (times a phase factor) it is correct to replace $S(-\infty, \infty) S(\infty,-\infty)$ by $S(-\infty, \infty)\left|\psi_{g}^{(0)}\right\rangle\left\langle\psi_{g}^{(0)}\right| S(\infty,-\infty)$;
since $\left\langle\psi_{g}^{(0)}\right| S(\infty,-\infty)\left|\psi_{g}^{(0)}\right\rangle$ is a phase factor it's inverse is identical with the conjugated complex expression; so we get

$$
\left\langle\psi_{g}^{(0)}\right| S^{+}(0,-\infty)=\left\langle\psi_{g}^{(0)}\right| S(\infty,-\infty)\left|\psi_{g}^{(0)}\right\rangle^{*}\left\langle\psi_{g}^{(0)}\right| S^{+}(0, \infty)=\frac{\left\langle\psi_{g}^{(0)}\right| S(\infty, 0)}{\left\langle\psi_{g}^{(0)}\right| S(\infty,-\infty)\left|\psi_{g}^{(0)}\right\rangle}
$$

the causal Green's function takes the form

$$
G_{A B}^{(\mathrm{cau})}\left(t-t^{\prime}\right)=-i \frac{\left\langle\psi_{g}^{(0)}\right| S(\infty, 0) \hat{T} S(0, t) \hat{A}^{(\mathrm{I})}(t) S\left(t, t^{\prime}\right) \hat{B}^{(\mathrm{I})}\left(t^{\prime}\right) S\left(t^{\prime}, 0\right) S\left(t_{0},-\infty\right)\left|\psi_{g}^{(0)}\right\rangle}{\left\langle\psi_{g}^{(0)}\right| S(\infty,-\infty)\left|\psi_{g}^{(0)}\right\rangle}
$$

we abbreviate $S=S(\infty,-\infty)$ and arrive finally at

$$
G_{A B}^{(\mathrm{cau})}\left(t-t^{\prime}\right)=-i \frac{\left\langle\psi_{g}^{(0)}\right| \hat{T} S \hat{A}^{(\mathrm{I})}(t) \hat{B}^{(\mathrm{I})}\left(t^{\prime}\right)\left|\psi_{g}^{(0)}\right\rangle}{\left\langle\psi_{g}^{(0)}\right| S\left|\psi_{g}^{(0)}\right\rangle}
$$

Green's Functions of an Electron Gas

electrons of a single band of a metal interacting via the Coulomb potential

$$
\begin{gathered}
H=\sum_{\mathbf{k}, s} E_{\mathbf{k}} a_{\mathbf{k} s}^{+} a_{\mathbf{k} s}+\frac{1}{2} \sum_{\mathbf{k}, \mathbf{k}^{\prime}, \mathbf{q}} \sum_{s, s^{\prime}} v_{\mathbf{k} \mathbf{k}^{\prime}}(\mathbf{q}) a_{\mathbf{k}+\mathbf{q} s^{\prime}}^{+} a_{\mathbf{k}^{\prime}-\mathbf{q} s^{\prime}}^{+} a_{\mathbf{k}^{\prime} s^{\prime}} a_{\mathbf{k} s} \\
G^{(\mathrm{cau})}\left(\mathbf{k} s t, \mathbf{k}^{\prime} s^{\prime} t^{\prime}\right)=-i \frac{\left\langle\psi_{g}^{(0)}\right| \hat{T} S a_{\mathbf{k} s}^{(\mathrm{I})}(t) a_{\mathbf{k}^{\prime} s^{\prime}}^{(\mathrm{I})+}\left(t^{\prime}\right)\left|\psi_{g}^{(0)}\right\rangle}{\left\langle\psi_{g}^{(0)}\right| S\left|\psi_{g}^{(0)}\right\rangle}
\end{gathered}
$$

