
CHAPTER IV

Non-Equilibrium Green’s Function Technique

1 Introduction

we consider transitions between some state |0〉 with energy E0 and a continuum of states |α〉 with

energies Eα;

the state |0〉 is supposed to be initially populated and the transitions into the states |α〉 are due to

some inter-state coupling expressed by V0α;

the total system is described by the Hamiltonian

H = E0|0〉〈0| +
∑

α

(

Eα|α〉〈α| + V0α|0〉〈α| + Vα0|α〉〈0|
)

our goal is to obtain an expression which tells us how the initially prepared state |0〉 decays into

the set of states |α〉;

this transfer of occupation probability can be characterized by looking at the population of state |0〉

which reads P0(t) = |〈0|e−iHt/~|0〉|2

instead of working with time evolution operator matrix elements we introduce

Ĝ(t) = −iθ(t)e−iHt/~

this quantity is known as the Green’s operator



let us write the Hamiltonian as

H = H0 +H1 + V

H0 corresponds to level |0〉 and H1 covers all levels |α〉 and the coupling between them is V ;

the equation of motion for Ĝ(t) reads

i~
∂

∂t
Ĝ(t) = ~δ(t) +HĜ(t)

introducing the Fourier-transform

Ĝ(ω) =

∫

dt eiωtĜ(t)

translates the equation of motion into

(ω −H/~)Ĝ(ω) = 1

we may also compute the Fourier-transformed Green’s operator directly which gives

Ĝ(ω) = −i

∞
∫

0

dt eiωte−iHt/~ =
1

ω −H/~ + iε

the obtained expression has to be understood as the inverse of the operator ω−H/~ with a small

imaginary contribution iε indicating the form of the solution for Ĝ(ω) (it should have a pole below

the real axis in the complex frequency plane)



to get the time-dependence of the population of level |0〉 we have to compute

P0(t) = |〈0|Ĝ(t)|0〉|2

the respective matrix elements of the Green’s operator are deduced from its equation of motion

by introducing projection operators;

the operator

Π̂0 = |0〉〈0|

projects on the single state |0〉 and the operator

Π̂1 =
∑

α

|α〉〈α|

on the manifold of states |α〉;

both projection operators enter the completeness relation

Π̂0 + Π̂1 = 1

which can be used, e.g., to write Π̂1 = 1− Π̂0

the goal of the following derivation is to obtain an explicit expression for the population P0(t);

first, we determine the reduced Green’s operator

Ĝ0(t) = Π̂0Ĝ(t)Π̂0

instead of directly focusing on its matrix element with state |0〉



using the equation of motion for the Fourier-transformed Green’s operator Ĝ(ω) we may derive an

equation for Ĝ0(ω);

by applying Π̂0 to the original equation from the left and from the right we get

Π̂0(ω −H/~)
(

Π̂0 + Π̂1

)

Ĝ(ω)Π̂0 = Π̂0

for further computations we note that

Π̂0HΠ̂0 = H0

Π̂1HΠ̂1 = H1

and

Π̂0HΠ̂1 = Π̂0V Π̂1

it gives

(ω −H0/~)Ĝ0 − Π̂0(V/~)Π̂1 × Π̂1Ĝ(ω)Π̂0 = Π̂0

the new quantity Π̂1Ĝ(ω)Π̂0 obeys

Π̂1(ω −H/~)
(

Π̂0 + Π̂1

)

Ĝ(ω)Π̂0 = Π̂1Π̂0 = 0

or

−Π̂1V/~Π̂0Ĝ0(ω) + (ω −H1/~)Π̂1Ĝ(ω)Π̂0 = 0

we define

[Ĝ
(0)
1 (ω)]−1 = ω −H1/~

what represents the inverse of a zeroth-order Green’s operator (it is defined without the coupling

V )



then, the equation for Π̂1Ĝ(ω)Π̂0 can be rewritten as

Π̂1Ĝ(ω)Π̂0 = Ĝ
(0)
1 (ω)Π̂1(V/~)Π̂0Ĝ0(ω)

if inserted into the equation for Ĝ0 we obtain
(

ω −H0/~− Π̂0(V/~)Π̂1Ĝ
(0)
1 (ω)Π̂1(V/~)Π̂0

)

Ĝ0 = Π̂0

we analyze the extra term which depends on V and get

Π̂0(V/~)Π̂1Ĝ
(0)
1 (ω)Π̂1(V/~)Π̂0 =

1

~2

∑

α

V0αVα0
ω − Eα/~ + iε

Π̂0 ≡ Σ̂(ω)/~

the operator Σ̂ is the self-energy operator; its introduction gives for the reduced Green’s operator

Ĝ0(ω) =
Π̂0

ω −H0/~− Σ̂(ω)/~ + iε

let us separate the self-energy operator into a Hermitian and an anti-Hermitian part

Σ̂(ω) =
1

2

(

Σ̂(ω) + Σ̂+(ω)
)

+
1

2

(

Σ̂(ω)− Σ̂+(ω)
)

≡ ∆H(ω)− iπ~Γ̂(ω)

we can write the Hermitian part as

∆H(ω) = ~∆Ω(ω)Π̂0

and the anti-Hermitian part as

Γ̂(ω) = Γ(ω)Π̂0



or we write

Σ̂(ω) = Σ(ω)Π̂0

with

Σ(ω) ≡ ~∆Ω(ω)− i~Γ(ω) =
∑

α

P
|V0α|

2

~ω − Eα
− iπ

∑

α

|V0α|
2δ(~ω − Eα)

if the energies Eα form a continuum the summation with respect to α has to be replaced by an

integration;

in this case and provided that the coupling constant has no strong dependence on the quantum

number α, the variation of the self-energy in the region where ~ω ≈ E0 can be expected to be

rather weak;

this means that the frequency dependence of A00(ω) is dominated by the resonance at ~ω = E0;

since this will give the major contribution to the inverse Fourier transform we can approximately

replace ~ω in Σ(ω) by E0;

we note

P0(t) = |〈0|Ĝ(t)|0〉|2 =

∣

∣

∣

∣

〈0|

∫

dω

2π
e−iωtĜ0(ω)|0〉

∣

∣

∣

∣

2

to carry out the inverse Fourier transformation we replace the quantity Σ(ω) by the frequency-

independent value Σ(E0/~) and obtain the desired state population P0(t) as

P0(t) =

∣

∣

∣

∣

∫

dω

2π
e−iωt

i~

~ω − (E0 + ~∆Ω(E0/~)) + i~Γ(E0/~)

∣

∣

∣

∣

2

= θ(t) e−2Γ(E0/~)t .



2 Linear Response Theory for the Reservoir: Example for a Green’s Function

we will demonstrate an alternative way to introduce for a system-reservoir problem with Hamilto-

nian

H = HS +HR +HS−R

the reservoir correlation function;

for this reason we will not ask in which manner the system is influenced by the reservoir but how

the reservoir dynamics is modified by the system’s motion;

to answer this question it will be sufficient to describe the action of the system on the reservoir via

classical time-dependent fields Ku(t);

therefore, we replace HS−R by

Hext(t) =
∑

u

Ku(t)Φu

the Φu are the various reservoir operators;

the bath Hamiltonian becomes time-dependent too, and is denoted by

H(t) = HR +Hext(t)

as a consequence of the action of the fields Ku(t), the reservoir will be driven out of equilibrium;

but in the case where the actual non-equilibrium state deviates only slightly from the equilibrium

this deviation can be linearized with respect to the external perturbations;



we argue that in this limit the expectation value of the reservoir operator Φu obeys the relation

〈Φu(t)〉 =
∑

v

t
∫

t0

dt̄ χuv(t, t̄)Ku(t̄)

the functions χuv(t, t̄) are called linear response functions or generalized linear susceptibilities;

in order to derive an expression for χuv we start with the definition of the expectation value 〈Φu(t)〉

〈Φu(t)〉 = trR{U(t− t0)R̂eqU
+(t− t0)Φu}

the time-evolution of the reservoir statistical operator starting with the reservoir equilibrium density

operator R̂eq has been explicitly indicated;

the time-evolution operator U(t, t0) does not depend on t − t0 since the Hamiltonian H(t) is time-

dependent;

to linearize this expression with respect to the external fields U(t, t0) is first separated into the free

part UR(t− t0) defined by HR, and the S-operator

S(t, t0) = T̂ exp
(

−
i

~

t
∫

t0

dτ U+
R (τ − t0)Hext(τ )UR(τ − t0)

)



in a second step the S-operator is expanded up to first order in Hext(τ )

〈Φu(t)〉R ≈ trR
{

R̂eqΦ
(I)
u (t)

}

−
i

~

t
∫

t0

dt̄ trR{R̂eq

[

Φ(I)
u (t),Φ(I)

v (t̄)
]

−

}

Kv(t̄)

here, the time dependence of the reservoir operators Φ
(I)
u (t) is given in the interaction representa-

tion;

the linear response function can be identified as (we assume that the equilibrium expectation

values of Φ̂u vanish)

χuv(t, t̄) = −
i

~
〈
[

Φ
(I)
u (t),Φ

(I)
v (t̄)

]

−
〉
R

we notice that the right-hand side depends on the time difference t − t̄ only, that is, χuv(t, t̄) =

χuv(t− t̄); we also obtain χuv(t) = −iC
(−)
uv (t)/~;

if we assume t0 → −∞ and if we extend χuv(t, t̄) by the prefactor θ(t− t̄) we may write

〈Φu(t)〉 =
∑

v

∫

dt̄ χuv(t, t̄)Ku(t̄)

with

χuv(t, t̄) = −
i

~
θ(t− t̄)〈

[

Φ
(I)
u (t),Φ

(I)
v (t̄)

]

−
〉
R

a so-called retardet Green’s functions has been introduced;



3 Equilibrium Green’s Functions

the retardet Green’s function formed by two operators Â and B̂ is defined as

G
(ret)
AB (t, t′) = −iθ(t− t′)tr{Ŵeq

[

Â(t), B̂(t′)
]

−
}

note

Ŵeq =
1

Z
e−iH/kBT Â(t) = U+(t)ÂU(t) U(t) = e−iHt/~

it is obvious that

G
(ret)
AB (t, t′) = G

(ret)
AB (t− t′)

the advanced Green’s function reads

G
(adv)
AB (t− t′) = iθ(t′ − t)tr{Ŵeq

[

Â(t), B̂(t′)
]

−
}

the causal Green’s function takes the form

G
(cau)
AB (t− t′) = −itr{ŴeqT̂ Â(t)B̂(t′)}

= −iθ(t− t′)tr{ŴeqÂ(t)B̂(t′)} − iθ(t′ − t)tr{ŴeqB̂(t′)Â(t)}

Fourier transformed retardet Green’s function

G
(ret)
AB (ω) =

∫

dt eiωtG
(ret)
AB (t) G

(ret)
AB (t) =

1

2π

∫

dt e−iωtG
(ret)
AB (ω)



we use the eigenstates |a〉 and eigen-energies Ea of H for a more detailed computation

G
(ret)
AB (ω) = −i

∫

dt eiωtθ(t)tr{Ŵeq

(

Â(t)B̂(0)− B̂(0)Â(t)
)

}

= −i

∫

dt eiωtθ(t)
∑

a,b

fa
(

〈a|Â(t)|b〉〈b|B̂(0)|a〉 − 〈a|B̂(0)|b〉〈b|Â(t)|a〉
)

we interchange a and b in the second sum and get (ωab = (Ea − Eb)/~)

G
(ret)
AB (ω) = −i

∑

a,b

∫

dt eiωtθ(t)(fa − fb)e
iωabtAabBba

note the relations

Aab = 〈a|Â|b〉

∫

dt eiωtθ(t) =
i

ω + iǫ
after time-integration we obtain

G
(ret)
AB (ω) =

∑

a,b

(fa − fb)AabBba

ωab + iǫ

expression is often called spectral representation of the Green’s function;

the equation of motion reads

i~
∂

∂t
G

(ret)
AB (t) = ~δ(t)tr{Ŵeq

[

Â, B̂
]

−
} − iθ(t− t′)tr{Ŵeq

[

− [H, Â(t)]−, B̂
]

−
}

a new retardet Green’s function has been originated; a perturbation theory can be established by

deriving an additional equation of motion for this new function;



4 Zero-Temperature Green’s Functions

the system is described by the Hamiltonian

H = H0 + V

the ground-state shall be |ψg〉; a respective causal Green’s function is defined as

G
(cau)
AB (t− t′) = −i〈ψg|T̂ Â(t)B̂(t′)|ψg〉

the time-evolution operator has the form

e−iHt/~ = U(t) = U0(t)S(t, 0)

where

U0(t) = e−iH0t/~

the S-operator reads

S(t, t′) = T̂ exp
(

−
i

~

∫ t

t′
dτV (I)(τ − t′)

)

= T̂ exp
(

−
i

~

∫ t−t′

0

dτ ′V (I)(τ ′)
)

we define the interaction picture

V (I)(τ ) = U+
0 (τ )V U0(τ )



the causal Green’s function is rewritten as

G
(cau)
AB (t− t′) = −i〈ψg|T̂ S

+(t, 0)U+
0 (t)ÂU0(t)S(t, 0)S

+(t′, 0)U+
0 (t

′)B̂U0(t
′)S(t′, 0)|ψg〉

= −i〈ψg|T̂ S
+(t, 0)Â(I)(t)S(t, 0)S+(t′, 0)B̂(I)(t′)S(t′, 0)|ψg〉

the system ground-state is translated into an arbitrary state taken in the interaction representation

|ψ(I)(t)〉 = S(t, 0)|ψg〉

the relation is inverted as

|ψg〉 = S(0, t)|ψ(I)(t)〉

if we replace V by V (t) = V exp(−ǫ|t|) we can generate the complete ground-state from the zero-

order ground-state |ψ
(0)
g 〉 according to the relation (the coupling is switched on adiabatically)

|ψg〉 = S(0,−∞)|ψ
(0)
g 〉

of course, at the end of all computations we have to take the limit ǫ→ 0;

the Green’s function can be written as

G
(cau)
AB (t− t′) = −i〈ψ

(0)
g |S+(0,−∞)T̂ S+(t, 0)Â(I)(t)S(t, t′)B̂(I)(t′)S(t′, 0)S(0,−∞)|ψ

(0)
g 〉



in order to rewrite 〈ψ
(0)
g |S+(0,−∞) into 〈ψ

(0)
g |S(∞, 0) we consider

S(0,−∞)|ψ
(0)
g 〉 = S(0,−∞)S(−∞,∞)S(∞,−∞)|ψ

(0)
g 〉 = S(0,∞)|ψ

(0)
g 〉〈ψ

(0)
g |S(∞,−∞)|ψ

(0)
g 〉

since S(∞,−∞) moves the zero-order ground-state back to itself (times a phase factor) it is cor-

rect to replace S(−∞,∞)S(∞,−∞) by S(−∞,∞)|ψ
(0)
g 〉〈ψ

(0)
g |S(∞,−∞);

since 〈ψ
(0)
g |S(∞,−∞)|ψ

(0)
g 〉 is a phase factor it’s inverse is identical with the conjugated complex

expression; so we get

〈ψ
(0)
g |S+(0,−∞) = 〈ψ

(0)
g |S(∞,−∞)|ψ

(0)
g 〉

∗
〈ψ

(0)
g |S+(0,∞) =

〈ψ
(0)
g |S(∞, 0)

〈ψ
(0)
g |S(∞,−∞)|ψ

(0)
g 〉

the causal Green’s function takes the form

G
(cau)
AB (t− t′) = −i

〈ψ
(0)
g |S(∞, 0)T̂ S(0, t)Â(I)(t)S(t, t′)B̂(I)(t′)S(t′, 0)S(t0,−∞)|ψ

(0)
g 〉

〈ψ
(0)
g |S(∞,−∞)|ψ

(0)
g 〉

we abbreviate S = S(∞,−∞) and arrive finally at

G
(cau)
AB (t− t′) = −i

〈ψ
(0)
g |T̂ SÂ(I)(t)B̂(I)(t′)|ψ

(0)
g 〉

〈ψ
(0)
g |S|ψ

(0)
g 〉



Green’s Functions of an Electron Gas

electrons of a single band of a metal interacting via the Coulomb potential

H =
∑

k,s

Eka
+
ksaks +

1

2

∑

k,k′,q

∑

s,s′

vkk′(q)a
+
k+qsa

+
k′−qs′ak′s′aks

G(cau)(kst,k′s′t′) = −i
〈ψ

(0)
g |T̂ Sa

(I)
ks(t)a

(I)+
k′s′ (t

′)|ψ
(0)
g 〉

〈ψ
(0)
g |S|ψ

(0)
g 〉


