CHAPTER IV

Non-Equilibrium Green’s Function Technique

1 Introduction

we consider transitions between some state |0) with energy E, and a continuum of states |«) with
energies F,;

the state |0) is supposed to be initially populated and the transitions into the states |a) are due to
some inter-state coupling expressed by V;,.;

the total system is described by the Hamiltonian

H = Eof0) (0] + Y (Eala) (@] + Vaal0) (] + Vaola) (0]

our goal is to obtain an expression which tells us how the initially prepared state |0) decays into
the set of states |a);

this transfer of occupation probability can be characterized by looking at the population of state |0)
whichreads  Py(t) = |(0]e "Ht/70)|?

instead of working with time evolution operator matrix elements we introduce
G(t) = —if(t)eHY/M
this quantity is known as the Green'’s operator



let us write the Hamiltonian as
H=Hy+H +V

H, corresponds to level |0) and H, covers all levels |a) and the coupling between them is V';
the equation of motion for G(¢) reads
z’h%@(t) — ho(t) + HG(t)
introducing the Fourier-transform
Gilw) = / dt e G (1)
translates the equation of motion into
(w—H/R)G(w) =1

we may also compute the Fourier-transformed Green’s operator directly which gives

9]

. : : 1
G _ dt iwt ,—iHt/h _
(w) z/ e“’e o H/h iz

0
the obtained expression has to be understood as the inverse of the operator w — H/h with a small
imaginary contribution ie indicating the form of the solution for G(w) (it should have a pole below
the real axis in the complex frequency plane)



to get the time-dependence of the population of level |0) we have to compute
Py(t) = [{0]G(1)[0)]?

the respective matrix elements of the Green’s operator are deduced from its equation of motion
by introducing projection operators;
the operator A

[Ty = [0) (0]

projects on the single state |0) and the operator
=) |a)al
on the manifold of states |«);
both projection operators enter the completeness relation
Mg+ 101, =1

which can be used, e.g., to write I, = 1 — II,
the goal of the following derivation is to obtain an explicit expression for the population F(t);
first, we determine the reduced Green’s operator

Go(t) = oG(t)I,

instead of directly focusing on its matrix element with state |0)



using the equation of motion for the Fourier-transformed Green’s operator G(w) we may derive an
equation for Go(w);
by applying 11, to the original equation from the left and from the right we get

[o(w — H/R) (ﬁo v ﬁl)é(w)ﬁo — 11,

for further computations we note that

M HII, = H,
,H11, = H,
and o -
[y HTII, = V1,
it gives

A A

(w — Ho/h)éo — ﬁo(V/h)ﬂl X ﬂlé(Wﬂ_[O = Ho
the new quantity IT; G(w)II, obeys

A

My (w — H/H) (ﬂo + ﬁl)é(w)ﬁo — 1,11y = 0
or
—ILV/AIGo(w) + (w — Hy /R G(w)Ty = 0
we define
G @)™ =w—Hi/h
what represents the inverse of a zeroth-order Green’s operator (it is defined without the coupling
V)



then, the equation for IT,G(w)II, can be rewritten as
Gy = Gy (@)IL(V/R)TeGo(w)
if inserted into the equation for G, we obtain
(w — Hy/h— Ty(V/R)ILGY (w)m(wmﬁo)éo — 1,

we analyze the extra term which depends on V' and get

- SN0) VoaVao & _ ¢
11 1o
Ho(V/W)ILGY (w)IL (V/R)I hzzw—E o =Xw)/h

the operator ¥ is the self-energy operator; its introduction gives for the reduced Green’s operator
Iy

w— Hy/h— S(w)/h+ic

let us separate the self-energy operator into a Hermitian and an anti-Hermitian part

G()(W) =

A

$(w) = %(i(w) FER W) + %(Z(M) - £(w)) = AH(w) — imhl(w)

we can write the Hermitian part as

and the anti-Hermitian part as



or we write

with
2
Y(w) = AAQ(w) — Al (w ZP ’VOO“ —iWZ|%a’25(ﬁw—Ea)

if the energies E, form a continuum the summatlon with respect to a has to be replaced by an
integration;

in this case and provided that the coupling constant has no strong dependence on the quantum
number «, the variation of the self-energy in the region where hw =~ FE, can be expected to be
rather weak;

this means that the frequency dependence of Ay (w) is dominated by the resonance at hw = Ej;
since this will give the major contribution to the inverse Fourier transform we can approximately
replace hw in X(w) by Ej;

we note

Pt) = | (01G(0)[0) |or/d“’ ety

to carry out the inverse Fourier transformation we replace the quantity >(w) by the frequency-
independent value Y(E,/h) and obtain the desired state population Py(t) as

2

dw i th — (1) e E

Rt)=| [ o hw — (Ey + hAQ(Ey/h)) + ihl(Ey /h)

‘ dw




2 Linear Response Theory for the Reservoir: Example for a Green’s Function

we will demonstrate an alternative way to introduce for a system-reservoir problem with Hamilto-
nian

H = Hs+ Hr + Hy_r
the reservoir correlation function;
for this reason we will not ask in which manner the system is influenced by the reservoir but how
the reservoir dynamics is modified by the system’s motion;
to answer this question it will be sufficient to describe the action of the system on the reservoir via
classical time-dependent fields K,(t);
therefore, we replace Hg_g by

Hext(t) — Z Ku(t)q)u

the &, are the various reservoir operators;
the bath Hamiltonian becomes time-dependent too, and is denoted by

H(t) = Hr + Hex(2)

as a consequence of the action of the fields K,(t¢), the reservoir will be driven out of equilibrium;
but in the case where the actual non-equilibrium state deviates only slightly from the equilibrium
this deviation can be linearized with respect to the external perturbations;



we argue that in this limit the expectation value of the reservoir operator ¢,, obeys the relation

@u0) =Y [ dt (e DK

the functions .. (t, t) are called linear response functions or generalized linear susceptibilities;

in order to derive an expression for y,, we start with the definition of the expectation value (®,(t))
(O, (1)) = trr{U(t — to) ReqU " (t — t0)®,}

the time-evolution of the reservoir statistical operator starting with the reservoir equilibrium density
operator Req has been explicitly indicated;

the time-evolution operator U (t, ty) does not depend on ¢ — ¢, since the Hamiltonian #(t) is time-
dependent;

to linearize this expression with respect to the external fields U(t, ¢,) is first separated into the free
part Ur(t — ty) defined by Hg, and the S-operator

t

S(t.10) = Texp (- % / dr Uy (r — t0) Hox(7)Un(r — 1)

to



in a second step the S-operator is expanded up to first order in Hq(7)
t

@O ~ trnf Rug®V(0)} — 1 [ dF il Rug[200), 200 } KD

to

here, the time dependence of the reservoir operators o) (t) is given in the interaction representa-
tion;

the linear response function can be identified as (we assume that the equilibrium expectation
values of ®, vanish)

xuolt, D) = = ([0 (), 80 (B)] ),

we notice that the right-hand side depends on the time difference ¢ — ¢ only, that is, y..(t,t) =
Yuo(t — 7); We also obtain y,.(t) = —iCl (t) /A
if we assume ¢ty — —oo and if we extend ., (t, t) by the prefactor 6(t — t) we may write

@u0) = Y [ dexult DK

with .
(1, 1) = =0 = D{[#17(0), 7(D)] ),

a so-called retardet Green’s functions has been introduced;



3 Equilibrium Green’s Functions

the retardet Green’s function formed by two operators A and B is defined as
GO (L, 1) = —if(t — ) {We [A(t), B()] }

note

~ 1 . N N .
W = Ee—m’/’“BT Aty =UAU(t)  U(t) = e HUh

it is obvious that
Gy (1) = G 1)

the advanced Green’s function reads
GU(t — 1) = i0(t' — ) {We[A(t), B(t')] }
the causal Green’s function takes the form
Gt — 1) = —itr{[We TAMD B(t')}

A

— —if(t — Ot { W A)B(t)} — i0(t' — t)tr{W. B(t)A(t)}
Fourier transformed retardet Green’s function

' re re 1 — W re
Giw) = [dee i G = o [ @ ei)

T



we use the eigenstates |a) and eigen-energies E, of H for a more detailed computation

Gl w) = =i [ dt o0 (A01BO) - BO/AW))

= —i / dt e“'0(t) > ~ fa((al A(t)|b) (b| B(0)|a) — (a| B(0)|b) (b A(t)]a))
a,b
we interchange a and b in the second sum and get (w., = (E, — E3)/h)

G (w) = —i > / dt €“'0(t)(fo — fr)e“ Ay By,
a,b

note the relations

Aw = (al A|b) / dt e“to(t) = —

w + 1€
after time-integration we obtain

G(jg)(w> _ Z (fa — fo)Aab Bua

Wap + 1€

a,b
expression is often called spectral representation of the Green’s function;

the equation of motion reads

m%c:fj{g)(t) = 1o (t)tr{Weo[A, B] } —i0(t — ¢ )ter{We [ — [H, A(t)]_, B] }

a new retardet Green’s function has been originated; a perturbation theory can be established by
deriving an additional equation of motion for this new function;



4 Zero-Temperature Green’s Functions

the system is described by the Hamiltonian
H=H+V
the ground-state shall be |¢,); a respective causal Green’s function is defined as
G (¢ —¥) = —i(y| TA®) BE)|th,)
the time-evolution operator has the form
e IR — (1) = Uy(t)S(¢, 0)

where
Us (t) _ e—iHot/h

the S-operator reads
. t . t—t/
S(t, ') = Texp ( — %ﬁ drvV W (r — t’)) = T exp ( — %/0 dT’V(I)(T’))

we define the interaction picture
VO (1) = U (1)VUy(T)



the causal Green’s function is rewritten as
Gt — 1) = —i (4| TS (&, 0) U (£) AU(£)S (¢, 0)S™ (¢, 0) U (') BU(t)S(E, 0)]1),)
= —i(ihy|TST(t, 00 AV (£)S(t,0)S* (', 0)BU()S(t, 0)[1),)

the system ground-state is translated into an arbitrary state taken in the interaction representation

[ 0(t)) = S(t,0)[¢y)
the relation is inverted as

[g) = S(0,1)]v (1))
if we replace V by V(t) = V exp(—¢|t|) we can generate the complete ground-state from the zero-
order ground-state \¢§O)> according to the relation (the coupling is switched on adiabatically)

[1bg) = S(0, —00) |15

of course, at the end of all computations we have to take the limit ¢ — 0;

the Green’s function can be written as

Gt — 1) = =i (e} [57(0, —00) TS (1, 0) AV (1) S (¢, ) BUH)S(,0)S(0, —00) 1y



in order to rewrite (1\”)|S+(0, —oo) into ()" |S(cc, 0) we consider
$(0, —00) 144" = S(0, =00)S(—00, 00)S (00, =00 Jy”) = S(0, 00)|4”) (44" (00, —o) u45”)

since S(oco, —oo) moves the zero-order ground-state back to itself (times a phase factor) it is cor-
rect to replace S(—oo, 00)S(00, —o0) by S(—o0, 00) [} (1S (00, —00);

since <¢§O)\S(oo, —oo)wéo)> is a phase factor it’s inverse is identical with the conjugated complex
expression; so we get

(45”15 (00,0)
(515 (00, —00)|¢5”)

(157 (0, —00) = (]S (00, —00) 1) (14”5 (0, 00) =

the causal Green’s function takes the form
(]S (00, 0)TS(0, ) AD(1)S(t, ) BOX)S(1',0)S(t, —o00) 1)

Gt — 1) = —i
4z ¢ =) (015 (00, —00) |y

we abbreviate S = S(co, —oo) and arrive finally at
(W ITSAV () BO)|yy”)
(WIS 1wy

Gyt —t) = —i



Green’s Functions of an Electron Gas

electrons of a single band of a metal interacting via the Coulomb potential

H = E EkCLkSCLkS—l— E E ’Ukk/ ak+qsak’ qs’ak/ 1Qks

kk’q s,s’

<¢g ‘Tsaks( )ak,,( )Wg >
(|15

G (kst, k's't') =



