The Interaction Representation

we assume

$$
H=H_{0}+V
$$

where V represents a small perturbation of the dynamics given by H_{0}; a perturbation expansion with respect to V can be performed; the solution of the timedependent Schrödinger equation reads

$$
|\Psi(t)\rangle=U\left(t, t_{0}\right)\left|\Psi\left(t_{0}\right)\right\rangle
$$

is conveniently written as

$$
|\Psi(t)\rangle=U_{0}\left(t, t_{0}\right)\left|\Psi^{(\mathrm{I})}(t)\right\rangle
$$

this representation makes use of the formal solution which is available for the unperturbed time-dependent Schrödinger equation for H_{0}, i.e.

$$
U_{0}\left(t, t_{0}\right)=e^{-i H_{0}\left(t-t_{0}\right) / \hbar}
$$

the new state vector $\left|\Psi^{(\mathrm{I})}(t)\right\rangle$ is called the state vector in the interaction representation; since $U\left(t_{0}, t_{0}\right)=1$ we have

$$
\left|\Psi^{(\mathrm{I})}\left(t_{0}\right)\right\rangle=\left|\Psi\left(t_{0}\right)\right\rangle
$$

the equation of motion for the state vector in the interaction representation follows directly from the original time-dependent Schrödinger equation,

$$
i \hbar \frac{\partial}{\partial t}|\Psi(t)\rangle=U_{0}\left(t, t_{0}\right)\left(H_{0}\left|\Psi^{(\mathrm{I})}(t)\right\rangle+i \hbar \frac{\partial}{\partial t}\left|\Psi^{(\mathrm{I})}(t)\right\rangle\right)=H|\Psi(t)\rangle
$$

after some rearrangement we get (note that $U^{-1}=U^{+}$)

$$
i \hbar \frac{\partial}{\partial t}\left|\Psi^{(\mathrm{I})}(t)\right\rangle=U_{0}^{+}\left(t, t_{0}\right) V U_{0}\left(t, t_{0}\right)\left|\Psi^{(\mathrm{I})}(t)\right\rangle \equiv V^{(\mathrm{I})}(t)\left|\Psi^{(\mathrm{I})}(t)\right\rangle
$$

the quantity $V^{(\mathrm{I})}(t)$ is the interaction representation of the perturbational part of the Hamiltonian;
the formal solution is obtained by introducing the so-called S-operator (the scattering matrix)

$$
\left|\Psi^{(\mathrm{I})}(t)\right\rangle=S\left(t, t_{0}\right)\left|\Psi^{(\mathrm{I})}\left(t_{0}\right)\right\rangle \equiv S\left(t, t_{0}\right)\left|\Psi\left(t_{0}\right)\right\rangle
$$

it follows

$$
U\left(t, t_{0}\right)=U_{0}\left(t, t_{0}\right) S\left(t, t_{0}\right)
$$

the S-operator can be determined by the iterative solution of the equation of motion; formal time-integration gives

$$
\left|\Psi^{(\mathrm{I})}(t)\right\rangle=\left|\Psi^{(\mathrm{I})}\left(t_{0}\right)\right\rangle-\frac{i}{\hbar} \int_{t_{0}}^{t} d \tau V^{(\mathrm{I})}(\tau)\left|\Psi^{(\mathrm{I})}(\tau)\right\rangle
$$

this equation is suited to develop a perturbation expansion with respect to $V^{(\mathrm{I})}$. If there is no interaction one gets

$$
\left|\Psi^{(\mathrm{I}, 0)}(t)\right\rangle=\left|\Psi^{(\mathrm{I})}\left(t_{0}\right)\right\rangle
$$

next we get the state vector in the interaction representation, which is the first-order correction to $\left|\Psi^{(\mathrm{I}, 0)}(t)\right\rangle$ in the presence of a perturbation,

$$
\left|\Psi^{(\mathrm{I}, 1)}(t)\right\rangle=-\frac{i}{\hbar} \int_{t_{0}}^{t} d \tau_{1} V^{(\mathrm{I})}\left(\tau_{1}\right)\left|\Psi^{(\mathrm{I}, 0)}\left(\tau_{1}\right)\right\rangle
$$

upon further iteration of this procedure one obtains the n th-order correction as

$$
\left|\Psi^{(\mathrm{I}, n)}(t)\right\rangle=-\frac{i}{\hbar} \int_{t_{0}}^{t} d \tau_{n} V^{(\mathrm{I})}\left(\tau_{n}\right)\left|\Psi^{(\mathrm{I}, n-1)}\left(\tau_{n}\right)\right\rangle
$$

the total formally exact state vector in the interaction representation is

$$
\left|\Psi^{(\mathrm{I})}(t)\right\rangle=\sum_{n=0}^{\infty}\left|\Psi^{(\mathrm{I}, n)}(t)\right\rangle
$$

let us consider the total wave function containing the effect of the interaction up to the order n

$$
\begin{gathered}
\left|\Psi^{(\mathrm{I}, n)}(t)\right\rangle=\left(-\frac{i}{\hbar}\right)^{n} \int_{t_{0}}^{t} d \tau_{n} V^{(\mathrm{I})}\left(\tau_{n}\right) \int_{t_{0}}^{\tau_{n}} d \tau_{n-1} V^{(\mathrm{I})}\left(\tau_{n-1}\right) \times \ldots \\
\ldots \times \int_{t_{0}}^{\tau_{2}} d \tau_{1} V^{(\mathrm{I})}\left(\tau_{1}\right)\left|\Psi^{(\mathrm{I})}\left(t_{0}\right)\right\rangle \\
=\left(-\frac{i}{\hbar}\right)^{n} \frac{1}{n!} \hat{T} \int_{t_{0}}^{t} d \tau_{n} \ldots d \tau_{1} V^{(\mathrm{I})}\left(\tau_{n}\right) \ldots V^{(\mathrm{I})}\left(\tau_{1}\right)\left|\Psi^{(\mathrm{I})}\left(t_{0}\right)\right\rangle
\end{gathered}
$$

in the last part of this expression all integrals are carried out to the upper limit t; double counting is compensated for by the factor $1 / n!$; in order to account for the fact that the time-dependent operators $V^{(\mathrm{I})}$ do not commute for different time arguments the time ordering operator \hat{T} has been introduced; it orders time-dependent operators from the right to the left with increasing time arguments, i.e., if $t_{1}>t_{2}, \hat{T}\left[V^{(\mathrm{I})}\left(t_{2}\right) V^{(\mathrm{I})}\left(t_{1}\right)\right]=$
$V^{(\mathrm{I})}\left(t_{1}\right) V^{(\mathrm{I})}\left(t_{2}\right) ;$
this formal rearrangement enables us to write for the exact state vector in the interaction representation

$$
\left|\Psi^{(\mathrm{I})}(t)\right\rangle=\hat{T} \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{k=1}^{n}\left(-\frac{i}{\hbar} \int_{t_{0}}^{t} d \tau_{k} V^{(\mathrm{I})}\left(\tau_{k}\right)\right)\left|\Psi^{(\mathrm{I})}\left(t_{0}\right)\right\rangle
$$

the summation on the right-hand side is formally identical to the expansion of the exponential function

$$
S\left(t, t_{0}\right)=\hat{T} \exp \left\{-\frac{i}{\hbar} \int_{t_{0}}^{t} d \tau V^{(\mathrm{I})}(\tau)\right\}
$$

