Г		
Erklären Sie den grundsätzlichen Aufbau eines Lasers.	Wie viele Energieniveaus sind in einem Lasermedium zum Betrieb notwendig?	Warum ist Laserstrahlung oft linear polarisiert? Wie lässt sich das beseitigen?
Explain the basic structure of a laser.	How many energy levels are required in a laser medium for operation?	Why is laser radiation often linearly polarized? How can this be eliminated?
Was bedeutet Modelocking und wie funktioniert es?	Was bedeutet Güteschaltung und warum wird es genutzt?	Warum weisen Laser im Fernfeld meist ein Gauß-Intensitäts-Profil auf?
What does modelocking mean and how does it work?	What does Q-switching mean and why is it used?	Why do lasers in the far field usually have a Gaussian intensity profile?
Welche Vorteile bringt die SPC gegenüber einer "normalen" zeitaufgelösten Messung?	Wieso hängt das SNR eines Photomultipliers von der angelegten Spannung ab?	Was macht ein Constant Fraction Discriminator?
What are the advantages of SPC compared to a "normal" time-resolved measurement?	Why does the SNR of a photomultiplier depend on the applied voltage?	What is the Constant Fraction Discriminator doing?
Welche Vorteile bringt die "Inverse TCSPC"?	Warum erfolgt die Detektion mit Photomultiplier verzögert zur Photodiode?	Was ist und macht ein Time- Amplitude Converter?
What are the advantages of "Inverse TCSPC"?	Why is the detection with photomultipliers delayed compared to photodiodes?	What is and does a time- amplitude converter do?
Wie werden Signale gemessen die kürzer, als die Apparate- funktion sind?	Wie kann man den Einfluss der Molekülrotation auf die Fluoreszenz kompensieren?	Was passiert, wenn die Konzentration des zu Farb- stoffes zu hoch gewählt wird?
How to measured signals, shorter than the response function?	How to compensate the influence of molecular rotation on fluorescence?	What happens if the concentration of the dye is too high?

Was passiert, wenn die Anregungsintensität zu hoch gewählt wird? What happens if the excitation intensity is too high?	Wovon hängt die Geschwindigkeit einer Photodiode ab? What does mainly determine the speed of a photodiode?	Was für eine Information gibt das reduzierte Chi Quadrat? What kind of information does the reduced chi square provide?
Warum erfolgt die Phosphoreszenz langsamer, als die Fluoreszenz?	Warum ist die Fluoreszenz- Lebensdauer ein wichtiger Parameter eines Farbstoffes?	Warum hat die Fluoreszenz eine größere Wellenlänge als die Absorption?
Why is phosphorescence slower than fluorescence?	Why is the fluorescence lifetime an important parameter of a dye?	Why does fluorescence have a longer wavelength than absorption?
Wie viele Fluoreszenz- Abklingzeiten hat ein Farbstoff in homogener Lösung?	Warum hängt die Absorption von der Polarisation des Lichtes zum Molekül ab?	Wieso kann Phäophorbid-a in Wasser nach Zugabe von Triton fluoreszieren?
How many fluorescence decay times a dye has in homogeneous solution?	Why does the absorption depend on the polarization of the light to the molecule?	Why does Phäophorbid-a fluoresce in water after adding Triton?
In welcher Beziehung stehen Transmission und Konzentration d. Farbstoffes?	Wie unterscheidet sich die nat. Fluoreszenz-Lebensdauer vom gemessenen Wert?	Erklären Sie Kashas Regel!
What is the relationship between transmission and concentration of the dye?	How does the natural fluorescence lifetime differ from the measured value?	Explain Kasha's rule!