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A theory of nonadiabatic donor (D) –acceptor (A) two-electron transfer~TET! mediated by a single
regular bridge (B) is developed. The presence of different intermediate two-electron states
connecting the reactant stateD22BA with the product stateDBA22 results in complex
multiexponential kinetics. The conditions are discussed at which a reduction to two-exponential as
well as single-exponential kinetics becomes possible. For the latter case the rateKTET is calculated,
which describes the bridge-mediated reaction as an effective two-electronD –A transfer. In the limit
of small populations of the intermediate TET statesD2B2A, DB22A, D2BA2, and DB2A2,
KTET is obtained as a sum of the ratesKTET

(step) and KTET
(sup). The first rate describes stepwise TET

originated by transitions of a single electron. It starts atD22BA and reachesDBA22 via the
intermediate stateD2BA2. These transitions cover contributions from sequential as well as
superexchange reactions all including reduced bridge states. In contrast, a specific two-electron
superexchange mechanism fromD22BA to DBA22 definesKTET

(sup). An analytic dependence of
KTET

(step) andKTET
(sup) on the number of bridging units is presented and different regimes ofD –A TET

are studied. ©2004 American Institute of Physics.@DOI: 10.1063/1.1644535#

I. INTRODUCTION

Two-electron transfer~TET! processes and processes
which incorporate even more electrons are common for en-
zyme regulated reactions in biological systems. For example,
multielectron transfer could be clearly attributed to different
enzyme complex mediated oxidation-reduction reactions.
TET reduction process have been reported for different types
of reductases,1,2 oxidases,3–5 and hydrogenases.6–8 All these
reactions involve numerous intermediate states1,3,9–11 and
proceed in a much more complex way as single-electron
transfer~SET! processes. Protein film voltametry represents
an experimental technique which enables direct observation
of such electron transfer reactions.12,13

In biological systems, SET, TET, and higher multielec-
tron reactions incorporate charge motion along specific struc-
tures like peptide chains and DNA strands as well as com-
plete redox chains. In the various types of fumarate
reductases, for example, the redox chains are given either by
the chain of hemes or by Fe–S clusters.2 Such structures
form molecular bridges and mediate the electron transfer
across large spatial distances. To account for the influence of
molecular bridges on electron transfer reactions represents a
long-standing task of theoretical chemical physics. We con-
sider it as a particular challenge to formulate a theory of
bridge-mediated multielectron transfer reactions.14–17

In recent studies on nonadiabatic bridge-mediated
SET18–20 the derivation of kinetic equations could be dem-
onstrated as well as rate constants which account for differ-
ent transfer mechanisms~sequential and superexchange
SET!. As a particular result conditions could be specified for

which the overall SET rate follows by additive contributions
from the sequential and the superexchange SET
mechanism.20

Turning back to TET reactions, it has to be considered as
a continuous problem to correctly characterize the different
mechanisms contributing to the observed overall processes.
At present, there are some basic results on the description of
TET in polar liquids where the transfer directly proceeds.21,22

Current theoretical studies on TET reactions in biological
systems concentrate on electronic structure calculations of,
e.g., the active centers of enzymes and their dependency on
the position of the transferred electrons4,7 or on possible TET
pathways.14,15 To estimate the rate constants characterizing
the TET process, so far phenomenological versions of the
Marcus theory16 have been used. In particular, the matrix
element responsible for the concerted two-electron hopping
transition has been introduced as a phenomenological
parameter.17 Such treatments of TET reactions indicates the
need for a theory, which is founded on nonequilibrium quan-
tum statistics and, in this way, gives a correct description of
the concerted as well as stepwise TET pathways mediated by
the molecular bridge.

In the following we will present such a theoretical de-
scription of nonadiabatic long-range TET reactions. The re-
action to be investigated starts with two electrons located at
the donor (D). Both are transferred through a chain of bridg-
ing molecules (B), and thereafter they are captured at the
acceptor (A). The whole course of the reaction will be cov-
ered by a description which generalizes earlier approaches
derived for the study of nonadiabaticD –A SET~for an over-
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view see, e.g., Refs. 23–29 and the textbooks30–33!. It is just
the nonadiabatic character of the transfer process which en-
ables us to utilize a coarse-grained approach and to simplify
the necessary rate equations considerably.18,20,34

The paper is organized as follows: In the next section we
set up a model for the TET process covering all two-electron
configurations of theDBA system. This is continued by the
description of a particular density matrix approach which
enables us to derive rate equations and respective rate con-
stants for the nonadiabatic TET. The latter include expres-
sions originated by the sequential and the superexchange
electron transfer mechanism. A reduction of the TET kinetics
to two-exponential and single-exponential ones is carried out
in Sec. III. The conditions to be fulfilled to have this simpli-
fied behavior are specified. Section IV is devoted to an
analysis of the bridge-length dependence of the stepwise and
the concerted part of the overallD –A TET rate. A detailed
discussion of those mechanisms originating the bridge-
assistedD –A TET is given in the concluding Sec. V. Com-
putational details are displaced to the Appendix.

II. COARSE-GRAINED DESCRIPTION OF TET

As it is well-known nonadiabatic SET takes place across
different sites of electron localization. Due to the weak inter-
site electronic coupling the transfer proceeds against the
background of considerably faster intrasite relaxation pro-
cesses, and the whole mechanism is known as the sequential
SET. If the SET occurs between aD andA center connected
by a molecular bridge long-range superexchangeD –A SET
may represent an alternative charge transfer mechanism.18–20

Since for both mentioned mechanisms the characteristic time
scaleDt of the overall electron motion exceeds the charac-
teristic timet rel of intrasite relaxation the SET kinetics can
be described by a simplified set of coarse-grained rate equa-
tions ~see Refs. 18 and 20!. The sequential and superex-
change mechanisms enter via respective rate expressions. We
must expect similar conditions for nonadiabatic TET reac-
tions if the characteristic transfer time,tTET , substantially
exceedst rel . Therefore, the inequality

t rel!tTET ~1!

represent the precondition to employ a coarse-grained de-
scription of TET processes on a time scaleDt@t rel .

A. Basic model

Theoretical studies on TET processes in aDA complex
dissolved in a polar liquid are based on the use of three
distinct two-electron configurations. The TET starts at the
initial configuration,uD22A&, with the two electrons at the
D site. It is followed by the intermediate configuration,
uD2A2&, and the TET ends at the final configuration,
uDA22&, with the two electrons located at theA site.21,22

This course of TET directly corresponds to the stepwise
mechanismD22A�D2A2�DA22, which has to be con-
fronted with the concerted TET,D22A�DA22. Thus, the
intermediate electronic configurationD2A2 is of basic im-
portance for the TET process between the contacting redox
centers.

In the present paper, we consider a generalization of this
TET model to the case of long-range TET mediated by a
bridge ofN units connecting theD and theA. According to
a possible large number of bridge units the number of acces-
sible two-electron configurations become also large~cf. Fig.
1!. Let us start with those states in which the bridge has not
been reduced. To these types of states belongs the initial state
of the TET reaction

uD&[uD22B1B2¯Bm¯BNA&, ~2!

the intermediate state

uI &[uD2B1B2¯Bm¯BNA2&, ~3!

and the final state of the reaction

uA&[uDB1B2¯Bm¯BNA22&. ~4!

Furthermore there exist two categories of states including a
singly reduced bridge,

uBm&[uD2B1B2¯Bm
2
¯BNA&, ~5!

and

uB̃n&[uDB1B2¯Bn
2
¯BNA2&. ~6!

Every category has to be subdivided intoN different states.
If both transferred electrons in the bridge, we arrive at the
manifold of N2 doubly reduced bridge states~note that a
double occupation of a single bridge unit is not forbidden!,

uBmn&[uD2B1B2¯Bm
2
¯Bn

2
¯BNA&. ~7!

The possible TET routes are depicted in Fig. 1. Below, how-
ever, we will exclusively restrict our studies to TET pro-

FIG. 1. Pathway scheme of bridge-assisted TET reactions. Thick dashed
lines indicate the sequential single-electron pathways. Sole and double solid
lines display single-electron and two-electron superexchange pathways, re-
spectively. The thin dashed lines correspond to the pathways via twofold
reduced bridging states.
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cesses where doubly reduced bridge states do not take part.
In particular, this would be the case for TET through short
bridges where the Coulomb repulsion between the trans-
ferred electrons strongly increases the energetic position of
the statesuBnm& relative to all other TET states~see also the
discussion in Ref. 35!.

Resulting from this restriction, the mechanisms of TET
namedstepwiseTET from now on can be characterized as
follows ~see Fig. 1!. It consists of two sequential SET routes
each related to a single-electron hopping transitions between
nearest neighbor bridge units. The first type of a sequential
SET route, i.e., the sequence of reactions:
D22B1 ¯ BNA�D2B1

2
¯ BNA�D2B1B2

2
¯BNA�¯

D2B1¯BN
2A�D2B1¯BNA2, represents an electron

transfer from the initial stateuD& to the intermediate state
uI &. Then, the second type of sequential SET let move the
second electron from the D to the A:
D2B1 ¯ BNA2�DB1

2
¯ BNA2�DB1B2

2
¯BNA2�¯

DB1¯BN
2A2�DBA22. In the scheme of state Eqs.~2!–

~6! the overall TET is completed by the transition from the
intermediate stateuI & to the final stateuA&.

Apparently, the transitionsuD&→uI & and uI &→uA& can
also proceed directly via the~single-electron! superexchange
mechanisms~full lines in Fig. 1!. It will be the particular aim
of the following derivations to present an approach which
accounts for stepwise TET as well as includes all possible
superexchange mechanism. Beside the described superex-
change we have also to expect the so-calledconcertedTET
leading directly from stateuD& to stateuA& ~double solid line
in Fig. 1!.

In order to derive rate equations which incorporate the
different types of TET pathways, in a first step, we have to
set up a respective Hamiltonian. We abbreviate all two-
electron states, Eqs.~2!–~6!, by uM & (M5D,Bm ,I ,B̃n ,A)
and get TET Hamiltonian as

HTET5H01V, ~8!

with the zero-order part

H05(
M

HMuM &^M u, ~9!

where theHM denote the vibrational Hamiltonian which be-
long to the statesuM &. The couplings~transfer integrals!
HMN between the different two-electron states are included
in the interaction Hamiltonian,

V5 (
M ,N

~12dM ,N!HMNuM &^Nu. ~10!

However, only thoseHMN are included for which the state
uM & and uN& can be translated into one another by a single-
electron exchange.

Let us introduce the eigenstates and energies of the
Hamiltonian HM as uMnM& and E(M ,nM), respectively,
where nM denotes the quantum number of the vibrational
state belonging to the electronic stateuM &. In the case that
all vibrational quantum numbers of the electronic stateuM &

are zero we will denote the respective energy byEM . If an
energetic bias is present we assumeD5Em2Em115Ẽn

2Ẽn11 and may write~for a regular bridge!

Em5EB2~m21!D, Ẽn5ẼB2~n21!D. ~11!

~There is a variety of reasons forD. Its presence may result
from externally applied as well as internal intermembrane
electric fields acting along the bridge. However, the bias can
also be introduced by slightly changing the chemical struc-
ture of the bridge units or of the groups surrounding the
bridge.! Moreover, non-Condon effects are neglected and the
coupling matrix elements are approximated by

VMnM Nn
N8
5MMN^nMunN8 &, ~12!

where^nMunN8 & denotes the vibrational overlap integral. The
transfer matrix elementsMMN5^M uV̂truN& characterize the
transitions between the electronic statesuM & and uN&, Eqs.
~2!–~6! of the wholeDBA system. We shall specify these
matrix elements utilizing the tight binding model where the
transfer operatorV̂tr describes the single-electron transitions.
It allows to expressMMN via the couplingsVll8 between
the molecular orbitals related to the neighboring bridge sites.
For instance, if uM &5uD& and uN&5uB1&, then MDB1

5VD1 , and if uM &5uI & and uN&5uB̃1&, thenMIB̃1
5VD18 .

Analogously, one obtainsMIBN
5VAN andMAB̃N

5VAN8 . In
the case of a regular bridge we set for all sites in the bridge
MBm Bm61

5MB̃n B̃n61
5Vmm61[VB .

All bridge-assisted electron transfer processes caused by
the single-electron couplings, are depicted in Fig. 2. The
presence of two single-electron stepwise pathways can be
clearly identified. The direct couplingsTDI and TIA are the
result of a superexchange mechanism@cf. the Appendix C,
Eqs.~C1! and~C2!#. The energetic position of all considered
TET states are represented in Fig. 3.

B. Derivation of kinetic equations

Our considerations on TET reactions will be based on
the fact that inequality~1! is fulfilled. The related fast vibra-
tional relaxation within every electronic state of the TET
results in electron vibrational level broadening18 and
dephasing.36–38 Here, we denote the broadening of the en-
ergy levelE(M ,nM) by G(M ,nM).

It has been discussed at length in Ref. 18 how to com-
pute the electron vibrational dynamics in a case characterized
by Eq. ~1!. In a first step one has to set up equations of
motion for the electron vibrational density matrix,

rMnM ,Nn
N8
~ t !5^MnMur~ t !uNnN8 &, ~13!

wherer(t) is the related reduced density operator. The in-
fluence of an additional heat bath causing fast vibrational
relaxation has been taken into consideration by energy relax-
ation and dephasing rates. Next, one changes to a time region
which is large compared to the fast vibrational relaxation
processes~coarse-graining approximation!. This change is
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achieved in reducing the exact density matrix equations to
the following approximate versions valid for the diagonal
density matrix elements:

]

]t
rMnM ,MnM

~ t !5
i

\
^MnMu@V,r~ t !#2uMnM&, ~14!

and the off-diagonal density matrix elements~note in particu-
lar MÞN)

rMnM ,Nn
N8
~ t !5

^MnMu@V,r~ t !#2uNnN8 &

D«~MnM ,NnN8 !
. ~15!

The reduced set of equations of motion assumes that the time
dependence of the diagonal density matrix elements is exclu-
sively determined by the coupling to other TET states
whereas relaxation processes do not contribute~they are just
finished at every time step!. In contrast the time derivative
has been removed in the equation of motion for the off-
diagonal density matrix elements. This approximation results
in a determination of the time dependence mainly by the
dephasing rates and is justified by the rapidness of the

dephasing. The related dephasing rates enter the equation via
D«(MnM ,NnN8 )5E(M ,nM)2E(N,nN8 )2 i (G(M ,nM)
1G(N,nN8 )).

Equations~14! and~15! will be used to derive rate equa-
tions for the electronic state populations

PM~ t !5(
nm

PMnM
~ t !5(

nm

rMnM ,MnM
~ t !, ~16!

where the transition rates are obtained as expansions with
respect to the transfer integralsVMN . In order to derive the
related perturbation theory we first introduce the projector

PA5(
nm

AMnM ,MnM
uMnM&^MnMu, ~17!

and the orthogonal complementQ512P. The latter
projects any operatorA defined in the electron vibrational
state space on the part which has only off-diagonal matrix
elements. A projection on the part ofA including only diag-
onal matrix elements with respect to the statesuMnM& is

FIG. 2. Energetic scheme of theDBA states participat-
ing in the TET. The single-electron transitions along the
first, (D22BA)�(D2B1

2A)�¯ (D2BN
2A)

�(D2BA2), and the second, (D2BA2)
�(DB1

2A2)�¯ (DBN
2A2)�(DBA22), stepwise

pathways are shown@panels~a! and ~b!, respectively#.
Wavy lines indicate the fast relaxation within the vari-
ous electronic state.
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achieved byP. Furthermore, we change from the matrix no-
tation, Eqs.~14! and ~15!, to the operator notation

]

]t
Pr~ t !52 iPLVQr~ t ! ~18!

and

Qr~ t !~ t !52 iQRLV~Pr~ t !1Qr~ t !!. ~19!

Note the introduction ofLV5(1/\)@V, . . . #2 . It allows to
replaceLVr(t) by LVQr(t) in the first equation. The resol-
vent superoperatorR5*0

`dt S0(t) could be introduced in
the second equation since it generates an expression as in Eq.
~15! when changing to matrix elements. The newly defined
time-propagation superoperatorS0 is determined by the zero-
order Liouvillian L05(1/\)@H0 , . . . #2 as well as by a part
describing dissipation.

To get the required rate equations, in a next step, we
have to derive a master equation for the diagonal partPr of
the density operator. This is easily achieved by formally
solving Eq.~19! as

Qr~ t !52 i ~11 iQRLV!Pr~ t ! ~20!

and inserting the result into Eq.~18!. It follows

]

]t
Pr~ t !52RPr~ t !. ~21!

HereR denotes the superoperator which describes any type
of TET. Its expansion with respect to the transfer coupling
~10!,

R5R21R41R61¯ ~22!

enables one to arrange the different TET processes in a
proper order. The various terms of the expansion can be writ-
ten as

R2k52~2 i !2kE
0

`

dt2k21E
0

`

dt2k22¯E
0

`

dt1

3PLVQS0~t2k21!LVQS0~t2k22!

3LV¯QS0~t1!LV , ~23!

but in any case they only contain an even number of inter-
actions.

Taking the matrix elements of Eq.~21! we obtain for the
electron vibrational state populations

]

]t
PMnM

~ t !52 (
N,nN8

^M ,nMu~RuNnN8 &^NnN8 u!uMnM&

3PNn
N8
~ t !. ~24!

According to the coarse graining approximation there is vi-
brational equilibrium established at every electronic state and
at every timet@t rel . Therefore, we can assume the follow-
ing thermal equilibrium relation to be fulfilled:

PMnM
~ t !/PMn

M8
~ t !5exp$2@E~M ,nM !2E~MnM8 !#/kBT%.

~25!

Changing to the total TET state population, Eq.~16!, we may
set ~see, e.g., Refs. 18 and 34!

PMnM
~ t !5W~E~M ,nM !!PM~ t !, ~26!

where

W~E~M ,nM !!5ZM
21 exp@2E~M ,nM !/kBT#,

ZM
215(

nM

exp@2E~M ,nM !/kBT#, ~27!

is the statistical weight of the electron-vibrational state
uMnM&. Noting Eq.~26! we obtain from Eq.~24! the set of
balancelike equations,

ṖM~ t !52(
N

KMNPN~ t !, ~28!

with

KMN5(
nM

(
nN8

W~E~N,nN8 !!3^MnMu~RuNnN8 &

3^NnN8 u!uMnM&. ~29!

Now, noting the fact that the symbolsM and N indicate
electronic states~2!–~6! related to the wholeDBA system
we obtain~see Appendix A! the set of coupled rate equations
~A8!–~A16! with respective sequential and superexchange
rate constants.

III. OVERALL TET RATES

The concrete form of the balancelike equations~28!, as
given by the set of rate equations, Eqs.~A8!–~A16!, reflects
the rather complicated kinetics of the TET process, also
shown in scheme~a! of Fig. 4. Generally, such kinetics has a
multiexponential character for each of the 2N13 state popu-
lationsPM(t) (M5D,I ,A,B1 ,...BN ,B̃1 , . . . B̃N),

PM~ t !5PM~`!1 (
r 51

2N12

BM
(r ) exp~2Krt !. ~30!

The steady-state populations,PM(`)5 lims→0(sFM(s)), as
well as the overall transfer ratesKr can be deduced from the

FIG. 3. Energetic positionsEM[E(M ,0M) of the states involved in the TET
together with respective energy gaps.
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exact solution of the set~A8!–~A16! for all Laplace-
transformed populationsFM(s) ~the solution is given in Ap-
pendix B!. In most cases a numerical computation of the
overall transfer rates becomes necessary. However, further
analytical considerations are possible whenever the interme-
diate states become less populated.~This has been discussed
at length for SET which is reduced to a single-exponential
D –A SET kinetics.20! Therefore, we will concentrate on the
description of such a simple overall time behavior. A two-
exponential TET process will be described in the following
section whereas single-exponential behavior is discussed in
the section afterwards.

A. Two-exponential TET kinetics

According to the general solution, Eq.~30!, of the rate
equations ~A8!–~A16!, two-exponential TET kinetics re-
quires the existence of two rates which are much smaller
than all other ones. Let these rates beK1 andK2 . Then, the
exact solution~30! reduces to

PM~ t !.PM~`!1BM
(1)e2K1t1BM

(2)e2K2t, ~31!

which, of course, is only valid in a time domaint
@K3

21 ,K4
21 , . . . ,K2N12

21 .

If the total bridge state populationPB(t) remains small
during the TET reaction the solution~31! describes TET only
between the electronic statesuD&, uI &, and uA&. Just the in-
equality

PB~ t !5 (
m51

N

~Pm~ t !1Pm̃~ t !!!1 ~32!

represents a necessary and sufficient condition for the reduc-
tion of the multiexponential TET kinetics to a two-
exponential process. Ift→` the inequality~32! can be re-
written as

lim
s→0

sFB~s!5 (
m51

N

~ lim
s→0

sFm~s!1 lim
s→0

sFm̃~s!!!1. ~33!

This relation has to be considered as a necessary condition
for the appearance of two-exponential kinetics~see also Ref.
18!. Since all the Laplace-transformed populationsFM(s)
have a rather complicated form this is also valid for the in-
equality ~33!.

To get analytical expressions for the two smallest trans-
fer ratesK1 andK2 we shall start from the exact Eqs.~B10!
which, however, only determine the Laplace-transformed
populations of theDBA statesuD&, uI &, anduA& @the bridge
populations are given by Eqs.~B1! and~B2!#. If this reduced
set of rate equations is transformed back into the time do-
main we get the following three kinetic equations@see the
scheme~b! of Fig. 4#:

ṖD~ t !52~kf
(1)1kDA!PD~ t !1kb

(1)PI~ t !1kADPA~ t !,

ṖI~ t !52~kf
(2)1kb

(1)!PI~ t !1kf
(1)PD~ t !1kb

(2)PA~ t !,
~34!

ṖA~ t !52~kb
(2)1kAD!PA~ t !1kf

(2)PI~ t !1kDAP2~ t !.

The rates introduced here have to be identified with Laplace-
transformed expressions as introduced in the Appendix B,
Eq. ~B10!,

kf
(1)1kDA5RDD~0!, kf

(2)1kb
(1)5RII ~0!,

kb
(2)1kAD5RAA~0!, kf

(1)5RID~0!, ~35!

kb
(1)5RDI~0!, kf

(2)5RAI~0!, kb
(2)5RIA~0!.

Using the Eqs.~B3!, ~B4!–~B6!, and ~B11! as well as the
recursion formula~B7! we may identify the rates of the Eqs.
~34! with basic rate expressions of sequential and superex-
change transitions

kf
(1)5kDI

(seq)1kDI
(sup), kb

(1)5kID
(seq)1kID

(sup),

kDI
(seq)5kD1kNIa

N21/D1 , kDI
(sup)5kDI , ~36!

kID
(seq)5k1DkINbN21/D1 , kID

(sup)5kID

and

kf
(2)5kIA

(seq)1kIA
(sup), kb

(2)5kAI
(seq)1kAI

(sup),

kIA
(seq)5kI1kNAaN21/D2 , kIA

(sup)5kIA , ~37!

kAI
(seq)5k1IkANbN21/D2 , kAI

(sup)5kAI ,

FIG. 4. Complete kinetic scheme of the bridge-assisted TET process@part
~a!#. For a small bridge-state population the kinetics is reduced to the tran-
sitions between the three electronic states,uD&, uI &, and uA& @the related
transfer rates are also shown, part~b!#. If the population of the intermediate
stateuI & becomes also small the three-state kinetics reduce toD –A TET
kinetics with an effective single forward and single backward rate only@part
~c!#.
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where

D1[kNIa
N211k1DbN211k1DkNID~N22!,

~38!
D2[kNAaN211k1Ib

N211k1IkNAD~N22!.

The main bridge length dependence of rates of transfer is
originated by the function

D~M ![D~s50;M !5aM
12gM11

12g
, ~39!

where

g[b/a5exp~2D/kBT!<1 ~40!

denotes the ratio of the backward and the forward site-to-site
rate constants. In Eq.~40! D is the intersite energy bias@in-
troduced in Eq.~11!#. The transfer rates~36! and~37! define
two overall TET rates,

K15 1
2 @a11d11A~a12d1!214a2d2#,

~41!
K25 1

2 @a11d12A~a12d1!214a2d2#,

where we have introduced the following abbreviations:

a1[kf
(2)1kb

(2)1kAD , a2[kDA2kf
(2) ,

~42!
d1[kf

(1)1kb
(1)1kDA , d2[kAD2kb

(1) .

Having determined the two overall TET rates we may
present the other quantities entering the Eqs.~31! for the
time-dependent populations. They read

PD~`!5
a1kb

(1)1d2kf
(2)

K1K2
,

PI~`!5
K1K22~a11a2!kb

(1)2~d11d2!kf
(2)

K1K2
, ~43!

PA~`!5
d1kf

(2)1a2kb
(1)

K1K2

as well as (j 51,2)

BD
( j )5~21! j 11

~a12K j !~kb
(1)2K j !1d2kf

(2)

K j~K12K2!
,

BI
( j )5~21! jF ~a12K j !~kb

(1)2K j !

K j~K12K2!

1
a2~kb

(1)2K j !1kf
(2)~d11d22K j !

K j~K12K2!
G , ~44!

BA
( j )5~21! j 11

kf
(2)~d12K j !1a2~kb

(1)2K j !

K j~K12K2!
.

At this point of our discussion let us formulate the conditions
for which the exact solution, Eqs.~B10! becomes identical
with that of the kinetic equations~34!. Therefore, we have to
consider the quantitiesRMN(s) which have been introduced
when considering the Laplace-transformed rate equations~cf.
Appendix B!. We expand theRMN(s) with respect tos and
assume that the approximationss1RMM(s)'s1RMM(0)
1sRMM8 (0)'s1RMM(0) as well as RMN(s)'RMN(0)
1sRMN8 (0)'RMN(0) are fulfilled for both rootss52K1

and s52K2 @M ,N5D,I ,A; RMN8 (0)[(dRMN(s)/ds)s50].
Then, one can see that the multistateDBA system shows a
two-exponential TET kinetics, Eq.~31! only if

uRMN8 ~0!u!udM ,N2K j
21RMN~0!u ~ j 51,2!. ~45!

A comparison of this inequality with the condition, Eq.~33!,
for a small steady bridge population indicates their complete
correspondence.

B. Single-exponential D – A TET kinetics

So far we arrived at a description of bridge-assisted TET
where the two forward (kf

(1) ,kf
(2)) and two backward

(kb
(1) ,kb

(2)) transfer rates contain additive contributions from
the single-electron sequential and the single-electron super-
exchange mechanisms. Remember that this additivity is a
direct consequence of the small population of all bridging
states. This two-exponential TET corresponds to an effective
three-state system. If the intermediate stateuI & carries a pro-
nounced population the overall transfer ratesK1 and K2

~note thatK1.K2) contain a mixture of rate expressions
caused by the single-electron stepwise and the two-electron
superexchange ~concerted! mechanism. The situation
changes substantially when

K1@K2 , ~46!

which indicates that the TET process, Eq.~31!, is determined
by two strongly separated kinetic phases, a fast and a slow
one with the characteristic timest15K1

21 andt25K2
21, re-

spectively. Ift!t2 we have exp(2K2t).1, and, thus, the fast
phase is defined by the time-dependent factor
exp(2K1t) for all three populations,PD(t), PI(t), and
PA(t). The first phase of the TET is finished fort@t1 , but
t!t2 . As a result, a redistribution of the initial populations
PM(0)5dM ,D took place, and fort2@t@t1 the transient
populations,PM(t@t1)[PM(10), have been formed. They
are easily derived from Eq.~31! at exp(2K1t)50 and
exp(2K2t)51.

Below we present concrete expressions for the overall
transfer ratesK1 and K2 as well as for the~intermediate!
populationsPM(10), bearing in mind that the energyEI

exceeds the energiesED and EA ~cf. Fig. 3!. For such a
condition, the following inequality is satisfied:

kb
(1) ,kf

(2)@kf
(1) ,kb

(2) ,kDA ,kAD . ~47!

Note that in line with Eq.~41! the inequality~46! is reduced
to

~a11d1!2@4~a1d12a2d2!. ~48!

Therefore, the following approximate expression for the
overall transfer rates can be presented

K1'a11d1 , K2'
a1d12a2d2

a11d1
. ~49!

According to the inequalities~47! this can be rewritten as

K1'kb
(1)1kf

(2) ,
~50!

K2'
kf

(1)kf
(2)1kb

(2)kb
(1)

kb
(1)1kf

(2) 1kDA1kAD ,
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and the transient populations take the following form:

PD~10!512~kf
(1)1kDA!/~kb

(1)1kf
(2)!,

PI~10!5kf
(1)/~kb

(1)1kf
(2)!, ~51!

PA~10!5kb
(2)/~kb

(1)1kf
(2)!.

From these expressions it is seen that the ratio
PI(10)/PA(10) is determined by the ratio of the stepwise
and the concerted rate constants,kf

(1)/kDA . Note that
PI(10) gives the maximal value possible for the population
of the intermediate stateI ~cf. Fig. 4!. But inequality ~47!
tells us also thatPI(10)!1, i.e., the population of stateI
remains very small at any timet,

PI~ t !!1. ~52!

This inequality indicates that att@K1
21 the two-exponential

kinetics ~31! is reduced to a single-exponential one,

PD~ t !.PD~`!1~12PD~`!!e2KTETt,
~53!

PA~ t !.PA~`!~12e2KTETt!.

This kinetics describes aD –A TET with an overall transfer
rateK25KTET . The latter can be represented as the sum of a
stepwise and a concerted contribution,

KTET5tTET
21 5KTET

(step)1KTET
(conc). ~54!

SinceKTET5kf1kb contains a forward and a backward part
@cf. scheme~c! in Fig. 4#, KTET

(step) andKTET
(conc) separate corre-

spondingly. We have

KTET
(step)5Kstep

( f )1Kstep
(b) ,

~55!

Kstep
( f )5

kf
(1)kf

(2)

kb
(1)1kf

(2) , Kstep
(b) 5

kb
(2)kb

(1)

kb
(1)1kf

(2) ,

and

KTET
(conc)5Kconc

( f ) 1Kconc
(b) ,

~56!
Kconc

( f ) 5kDA , Kconc
(b) 5kAD .

IV. DISCUSSION OF RESULTS

We consider the derivation of the overall TET rates and
the description of the conditions at which a multiexponential
TET is reduced to a two-exponential as well as a single-
exponential TET as the main result of the present studies.
Additionally, it could be shown in which way the overall
transfer rates are expressed by the sequential and the super-
exchange rate constants.

When considering distant electron transfer it is of inter-
est to describe the dependence of rate expressions on the
number of bridge units. Concentrating on the~single-
exponential! D –A TET this dependence is contained in the
stepwise and concerted components of the overall transfer
rate ~54!. First let us consider the stepwise channel of the
D –A TET. The stepwise transfer rates~36! and~37! contain
contributions from the single-electron sequential and single-
electron superexchange transfer rates between theuD& and
the uI & as well as between theuI & and theuA& electronic

states of a whole DBA system. Using the definitions~38! and
~39! one can rewrite the sequential contribution as

kDI (IA)
(seq) 5

kf 0
(1(2)seq)

11j1(2)R~N!
,

~57!

kID (AI)
(seq) 5

kb0
(1(2)seq)@12~12g!R~N!#

11j1(2)R~N!
.

It follows from Eq. ~57! that theN dependence of the se-
quential mechanism of SET is concentrated in the factor

R~N!5~12gN21!/~12g!, ~58!

provided thatgÞ0 and that the sequential decay parameters
j1 andj2 are not too small.

The quantities

kf 0
(1 seq)5

kD1kNI

kNI1k1D
, kb0

(1 seq)5
kINk1D

kNI1k1D
, ~59!

and

kf 0
(2 seq)5

kI1kNA

kNA1k1I
, kb0

(2 seq)5
kANk1I

kNA1k1I
~60!

define rates of sequential transfer through a bridge with a
single unit. The related decay parameters read

j15
k1D~kNI2a~12g!!

a~kNI1k1D!
~61!

and

j25
k1I~kNA2a~12g!!

a~kNA1k1I !
. ~62!

Note that due to a single-electron character of sequential
pathway the rate constants in Eqs.~59!–~62! are identical to
the hopping rate constants between the nearest sites of elec-
tron localization. Therefore, e.g., the ratekD1(kI1) character-
izes the hopping of an electron from the state with two elec-
trons ~single electron! at the D to the adjacent wire unit
while the ratekAN(kIN) characterizes the similar process
with respect to theA.

To derive the single-electron superexchange contribution
to the stepwise transfer rates~36! and~37! one has to specify
the superexchange rate constantskDI (ID ) andkIA(AI) . These
rate constants are defined in Appendix A, Eq.~A7!, and are
proportional to the square of the superexchange couplings
uTDI u2 and uTIAu2, respectively. Here, we restrict ourself to
the consideration of a small intersite bridge biasD, where the
effective transfer couplings are given by Eqs.~C21! and
~C23!, Appendix C. A small change in the notation leads to
the following expressions:

kDI (ID )
(sup) 5kf 0

(1(2) sup)e2z1(N21) ~63!

and

kIA(AI)
(sup) 5kb0

(1(2) sup)e2z2(N21). ~64!

Here, the ratekDI
(sup)(kAI

(sup)) characterizes the distant coherent
transfer of an electron from the state with two electrons at
theD(A) to the state with one electron at theA(D). The rate
kID

(sup)(kIA
(sup)) describes the reverse process.@Compare the
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definition of DBA electronic states~2!–~4! and the scheme
~a! of Fig. 4.# The superexchange decay parameters

z1522 lnF uVBu
~DEDDEI !

1/2G ~65!

and

z2522 lnF uVBu

~DẼADẼI !
1/2G ~66!

are mainly responsible for the distant dependence of the su-
perexchange rate. Note that in the presence of an energetic
bias in the bridge an additionalN dependence also appears in
the quantities

kf 0
(1(2) sup)5

2p

\

uVD1VNAu2

DEDDEI
~FC!DI (ID ) ~67!

and

kb0
(1(2) sup)5

2p

\

uVD18 VNA8 u2

DẼADẼI

~FC! IA(AI) . ~68!

The N dependence is located in the Franck–Condon factors
through the driving forcesDEID and DEIA @cf. Eqs. ~C10!
and ~C11!# characterizing the corresponding single-electron
reaction.

Two couples of decay parameters, (z1 ,j1) and (z2 ,j2),
characterize the efficiency of the first and the second single-
electron bridge-mediated stepwise pathway, respectively. At
the same time, the efficiency of the concerted pathway is
defined by the two-electron superexchange rate constants
kDA and kAD @compare Eq.~56!#. Introducing the two-
electron superexchange decay parameter as

z522 lnF uVBu2

~DEDDEADẼDDẼA!1/2G ~69!

and utilizing Eq.~C25!, a respective simplified notation of
each concerted rate can be given,

kDA(AD)5kDA(AD)
(0) e2z(N21). ~70!

Here, the ratekDA(kAD) characterizes the distant coherent
transfer of two electrons from the state with two electrons at
the D(A) to the state without extra electrons at theA(D).
Such a process is possible owing to a virtual electronic con-
figurationD2BA2 corresponding to the state with one elec-
tron at theD center and one electron at theA center.

In the case of a bridge with an energy bias the factor

kDA(AD)
(0) 5

2p

\

uVD1VNAVD18 VNA8 u2

DEDDEADẼDDẼADEIDDEIA

3~FC!DA(AD) ~71!

includes an additionalN dependence originated by the en-
ergy gapsDEID andDEIA as well as by the Franck–Condon
factor @through the driving forceDEDA of the TET reaction,
cf. Eq. ~C12!#.

In order to demonstrate the bridge-length dependence of
the rate we take Jortner’s form39 for all rate constants. Let

vMN be the single characteristic frequency accompanying
the M→N electronic transition andlMN be the correspond-
ing reorganization energy. Then Jortner’s form of the rate
constant~A7! can be written as~see also Refs. 18, 25, 30, 31,
and 33!

kMN5
2p

\

uVMNu2

\vMN
FnMN

, ~72!

where we have introduced

FnMN
5expF2SMN coth

\vMN

kBT G S 11n~vMN!

n~vMN! D nMN/2

3I unMNu~2SMN@n~vMN!~11n~vMN!!#1/2!. ~73!

The expression contains the modified Bessel functionI n(z),
the Bose distribution functionn(v)5@exp(\v/kBT)21#21,
and we have setSMN[lMN /\vMN , nMN[DEMN /\vMN .

First let us discuss the reduction of the multiexponential
TET kinetics to the two-exponential one. In line with the
theory proposed, such a reduction is only possible at a small
integral bridge population, which is completely justified by
the results of Fig. 5. Moreover, the derived analytic results
on the two-exponential kinetics@cf. Eqs. ~31!, ~41!–~44!#
coincide completely@cf. Fig. 5~a!# with those obtained by a
numerical solution of the basic set of Eqs.~A8!–~A16! pro-
vided that~32! is fulfilled during the TET process. Note that
the bridge population evolve in time as well@cf. the numeri-
cal results depicted in Fig. 5~b!#. But due to the small popu-
lation of each bridging state this kinetics is well separated
from the kinetics of the populationsPD(t), PI(t), and
PA(t).

If in the course of the TET process the bridging states
uBm&, Eq. ~5!, anduB̃n&, Eq. ~6!, as well as the intermediate
stateuI &, Eq. ~3!, have a small population, then the TET is
reduced to a single-exponentialD –A TET. This statement is
supported by the results shown in Fig. 6. Again, despite the
fact that both types of bridge populations,Pm(t) and Pñ(t)
@denoted in Fig. 6~b! by the numerals 1 and 2, respectively#,
as well as the intermediate state populationPI(t) show a
time dependence according to their respective transfer rates
the basic populationsPD(t) and PA(t) display a single-
exponential kinetics~53! with overall D –A TET rate~54!.

Figures 7–10 show theD –A TET rate in dependency on
the numberN of bridging units. Special attention is put on
the temperature dependence since it determines the contribu-
tion by the thermally activated stepwise transfer mechanism.
Figure 7~a! demonstrates that the stepwise contribution to the
overall transfer rateKTET , Eq. ~54! exceeds the concerted
one, so thatKTET'KTET

(step). Indeed, the analysis of the inter-
state transfer rates~36! and~37! indicates that at a given set
of parameters@specifying the elementary rate constants~72!#
the inequality,kf

(2)@kb
(1) @cf. Fig. 7~b!#, is fulfilled, and thus

the stepwise transfer rate, Eq.~55! follows as

KTET
(step)'kb

(1) exp~2DEID /kBT!. ~74!

This expression indicates that the limiting step of the step-
wise TET process is related to a single-electronuD&→uI &
transition. Note that a noticeable contribution in this ther-
mally activated transition is given by the superexchange~at
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N51 – 4) and the sequential~at N.4) single-electron path-
way @compare theN dependence of both contributions plot-
ted in Fig. 7~b!#. At lower temperatures the contribution of
the concerted mechanism increases@compare Fig. 7~a! with
Fig. 8~a! and Fig. 8~b!#. For instance, atT5150 K @Fig. 8~a!#
the concerted mechanism dominates the TET atN51 – 2
while atT5100 K the same mechanism works effectively up
to N54 @Fig. 8~b!#. In contrast to the stepwise mechanism
the concerted mechanism works also at small temperatures
down toT50. Note that the stepwise pathway also includes
a superexchange~single-electron! contribution. But due to
the thermally activated origin of the stepwise rate, Eq.~74!,
the superexchange single-electron contribution can only
work at the presence of thermal activation. This fact reflects
the specificity of theD –A TET process.~However, in the
case of single-electronD –A transfer the superexchange
channel contributes down toT50.) Therefore, in the case of
D –A TET the contribution of the concerted mechanism in-
creases at decreasing temperature.

It follows from the comparison of Fig. 7~b! with Fig. 9
that the contribution of the single-electron superexchange

channel to the interstate transfer rates~characterizing the
stepwise pathway! strongly increases at decreasing tempera-
ture. This means that at low temperatures even the stepwise
pathway is used since it covers single-electron superex-
change channels~which however have to be thermally acti-
vated in contrast with the two-electron superexchange
channel!.

Figure 10 displays the influence of the energy biasD on
the concerted and the stepwise bridge-assisted superex-
change contribution to the overallD –A TET. At low tem-
peratures under consideration just the single-electron and the
two-electron superexchange channels determine the ther-
mally activated stepwise and the concerted pathway of the
electron transfer, respectively. It is seen that atN51 – 4 the
concerted contribution exceeds the stepwise one, while at
N.4 the distance dependence of theKTET is determined by
the stepwise mechanism of theD –A TET. This means that at
low temperatures the main contribution to theD –A TET
stems from the single-electron and the two-electron superex-
change mechanisms~stepwise and concerted pathways, re-
spectively!. Figure 10 also shows that a change ofD gener-
ally affects the stepwise transfer rate. This follows from the
fact that atN.4 for which KTET is given by Eq.~74!, the

FIG. 5. TET kinetics in a bridge with five units, without energy bias and for
a small populationPm(t) andPm̃(t) of the two types of bridge states. Ana-
lytic results for the populationsPD(t), PI(t), andPA(t) according to Eqs.
~31!, ~41!–~44! and the numerical solution of the set of Eqs.~A8!–~A16!
completely agree@part ~a!#. The bridge populations related to the first~1!
and the second type of bridge states~2! show their own kinetics@panel~b!#.
The calculations are based on the Eqs.~54!–~73! and by choosing the fol-

lowing parameters:DED50.29 eV, DEI50.27 eV, DẼI50.21 eV, DẼA

50.26 eV, DE50.03 eV; l1D5lNI5lDI50.6 eV, l I15lNA5l IA

50.4 eV, lDA50.8 eV, lm m61[lB50.8 eV; vMN5v05100 cm2; VD1

5VNA5VD18 5VNA8 50.03 eV,VB50.04 eV.

FIG. 6. D –A kinetics of a TET reaction in a bridge with five units, without
energy bias and for a small bridge state population and a small population of
the intermediate state. Analytic results@cf. Eqs.~53! and~54!–~56!# and the
numerical solution of the set of Eqs.~A8!–~A16! completely agree@part
~a!#. The bridge populations related to the first~1! and the second type of
bridge states~2! as well as the population of the intermediate stateI show
their own kinetics@panel ~b!#. The calculations are based on theDED

50.29 eV, DEI50.09 eV, DẼI50.03 eV, DẼA50.3 eV, DE50.07 eV.
All other parameters are identical to those used for Fig. 5.

4450 J. Chem. Phys., Vol. 120, No. 9, 1 March 2004 E. G. Petrov and V. May

Downloaded 10 Mar 2005 to 141.20.41.167. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



main dependence ofKTET on D is concentrated atDEID , Eq.
~C10! rather than in the rate constantkb

(1) , Eq. ~36!. This
circumstance indicates directly that the stepwiseD –A TET
process is originated by a thermally activated mechanism.

V. CONCLUSION

The present paper has been devoted to the study of nona-
diabatic two-electron transfer~TET! in a donator (D) accep-
tor (A) complex mediated by a molecular bridge. Focusing
on nonadiabatic reactions the intersite electron transitions
take place on a time scaleDt@t rel , wheret rel characterizes
the time of intrasite vibrational relaxation. Therefore, the
whole analysis can be based on the coarse-grained kinetic
equations~A8!–~A16!, valid for t@t rel .

An analysis of the exact solution based on the Laplace-
transformed state populations allowed to formulate the con-
ditions, Eqs.~33! and ~45!, for which the multiexponential

kinetics of the TET process, Eq.~30!, is reduced to a two-
exponential kinetics, Eq.~31!. The respective two overall
transfer ratesK1 and K2 are given in Eq.~41!. It has been
demonstrated that such a reduction becomes possible if the

FIG. 7. Bridge length dependence of the overallD –A TET transfer rate
KTET ~at room temperature! as well as its stepwise (KTET

(step)) and concerted
(KTET

(conc)) components@part ~a!#. The different contributions to the stepwise
transfer rate KTET

(step) ~single-electron transfer channels, superexchange
channel—up toN;3 – 4 bridge units—and the sequential transfer channel
at N.4) are shown in part~b!. The calculations are based on the Eqs.
~54!–~73! and by choosing the following parameters:DED50.20 eV, DEI

50.10 eV, DẼI50.05 eV, DE50.15 eV; l1D5lNI5l1I51.2 eV, lDI

50.8 eV, lNA51.4 eV, l IA50.5 eV, lDA50.2 eV, lm m61[lB50.5 eV;
vMN5v05800 cm2; VD15VNA5VD18 5VNA8 50.02 eV,VB50.07 eV.

FIG. 8. Bridge length dependence of the overallD –A TET transfer rate
KTET as well as its stepwise (KTET

(step)) and concerted (KTET
(conc)) components at

different temperatures~other parameters like those of Fig. 7!. Part ~a! T
5150 K, part~b! T5100 K.

FIG. 9. Bridge length dependence of the fastest interstate transfer rateskb
(1)

and kf
(2) characterizing the transitions from the intermediate stateI in the

three-stateDBA system@see scheme~b! in Fig. 4#. The calculations have
been done with the same parameters as in Fig. 7.
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integral population of the bridging states remains small~less
then 1022) during the whole TET process.

If, additionally, the population of the intermediate state
uI &, Eq. ~3! ~with one electron at theD and one at theA),
remains also small, then the two-exponential kinetics turns to
a single-exponential one@cf. Eq. ~53!# characterized by a
single overallD –A TET transfer rateKTET . Certain condi-
tions have been derived@cf. Eqs.~45! and~46!# at which the
transfer rateKTET can be given by a sum of the stepwise and
the concerted transfer rates, Eq.~54!.

Within the model of a regular bridge, we have presented
analytic expressions for both mentioned transfer rates, Eqs.
~55! and~56! as well as Eqs.~57!–~70!. The stepwise trans-
fer rate characterizes the single-electron pathways ofD –A
TET. It contains two contributions related to the sequential
and superexchange mechanism of bridge-assisted single-
electron transfer between the stateuD& ~both electrons at the
D) and the stateuI & ~one electron at theD and another elec-
tron at theA) as well as single-electron transfer between the
stateuI & and the stateuA& ~both electrons at theA).

Since the single-electron pathways follow from thermal
activation the stepwise contributions toKTET are strongly
suppressed with decreasing temperature. In contrast, the con-
certed transfer rate, which is originated by a specific two-
electron superexchange coupling~between the state with two
electrons at theD and the state with two electrons at theA),
can act at low temperatures down toT50. Therefore, the
contribution of the concerted mechanism to theD –A TET
increases with decreasing temperature.

The model of a regular bridge has been used to derive
analytical results on theN dependence of the stepwise as
well as concerted contributions to the overallD –A TET rate.
The Coulomb interaction between the transferred electrons
located within the bridge as well as at theD andA induces a
shift of the site energies. This may also happen for the
bridge-site reorganization energieslm m61 which can differ
from lB . ~In the case of a single-electronD –A transfer this
problem has been already discussed in, e.g., Ref. 40.! If,
however, among all possible bridging states only those with

a single electron in the bridge are involved in the TET pro-
cess the general form of the nonadiabatic rate constants~72!
@see also the more general expression~A7!# does not change.
@In particular, the square of the superexchange couplings are
further defined by Eqs.~C1!–~C3!.# Only the energy gaps,
Eqs.~C4!–~C12! as well as the reorganization energies have
to be modified. In the present paper, however, we assumed a
strong screening of theD andA redox centers by surround-
ing polar groups~as it is often the case in enzymes!. There-
fore, any Coulomb interaction of the transferred electrons
with these centers could be neglected. Studying TET in a
bridge with an energy bias a deviation from the standard
exponential law ;exp@2z(N21)# characterizing the de-
crease of the superexchange rate with the number of bridge
unitsN has been obtained. This deviation could be explained
by the change of the energy gap for every bridging unit.

The key result of the present paper is the specification of
the stepwise and concerted contributions to the overall trans-
fer rate which characterizes the nonadiabaticD –A TET pro-
cess mediated by a molecular bridge. This has been done in
the framework of a tight binding model where the electronic
energies and intersite couplings enter as phenomenological
parameters. Such a model allowed us to derive the analytic
dependence of both contributions on the bridge length~num-
ber of bridging unitsN). Note that the examination of the
bridge-length dependence of the overall transfer rate is the
most direct way to specify the stepwise and concerted elec-
tron transfer routes in a concrete system. However, even for
a SET process such an experimental examination has been
done only recently~see discussion in Refs. 19 and 20!.
Therefore, a detailed test of bridge-length effects on nona-
diabatic TET reactions by comparing with experimental data
has to be postponed to the future. Another way to distinguish
the stepwise and concerted routes is an examination of the
pH dependence of the overall transfer rate characterizing the
TET reactions in enzymes. Recently, we used this way to
analyze the reduction of micothione reductase by NADPH.41

It has been shown that such a reduction takes place along the
concerted route. Probably, further progress in the theoretical
description of bridge-assisted TET could be achieved with
the combination of semiphenomenological analytic expres-
sions ~containing the precise bridge-length dependence of
transfer rates! and quantum-chemical estimations of
electronic energies and of the various~site-to-site and super-
exchange! electronic couplings.~In the case of SET,
just such methods allowed to specify single-electron
pathways between redox-centers of number protein
macromolecules.26–29!
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APPENDIX A: DERIVATION OF KINETIC EQUATIONS

The concrete form of the kinetic equations follows from
Eq. ~28! if the expansion~22! is introduced into Eq.~29!.

FIG. 10. Low temperature bridge length dependence of the overallD –A
TET rateKTET at different values of the bridge internal energy biasD. The
calculations have been done with the same parameters as in Fig. 7.
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The first termR2 of this expansion corresponds to the stan-
dard~second-order! Born approximation. It leads to rate con-
stants which describe the sequential pathway of TET.
Higher-order terms result in superexchange single-electron
and two-electron rate constants. A similar result has been
presented earlier in Ref. 18 for the derivation of SET rate
equations. Therefore, we do not repeat details of the deriva-
tion. We only present the superexchange couplings for the
transitions between the two-electron statesuD& and uI &, uI &
and uA&, as well asuD& and uA&. Moreover, we will only
consider pure electronic energy gapsDEMN ~in Fig. 3 these
gaps are shown for a bridge without energy bias!.

Let uM & be the donor stateuD&. Then, the Born approxi-
mation of the quantitiesKDN , Eq. ~29! follows from the
general expression~29! as

KDN5K DN
(Born)5dN,DkD12dN,1k1D . ~A1!

Here,kD15k1D exp@2(E12ED)/kBT# and

k1D5
2p

\ (
nD

(
n1

uV1n1 DnD
u23W~E~1,n1!!L~E~1,n1!

2E~D,nD!!. ~A2!

The quantityL(x) denotes the Lorentzian-type broadening of
the d function. Employing the Condon approximation, Eq.
~12!, and following the approach given in Ref. 18 we can
write the rate constantk1D in the standard form:

k1D5
2p

\
uV1Du2 ~FC!1D . ~A3!

Here, (FC)1D is the Franck–Condon factor for the 1→D
electron transition. In the considered case of nonadiabatic
electron transfer any rate constant characterizing electron
hopping between adjacent sites has a similar form.

Higher-order expansion terms in Eq.~22! result in two
effects, the renormalization of those rate constants derived in
the Born approximation and the appearance of superex-
change rate constants. In the case of nonadiabatic electron
transfer the rate renormalization is of less importance and
will be neglected. The superexchange contributions, if re-
lated to theD, are of the single-electron type~rate constants
kDI and kID) and of the two-electron~concerted! type ~rate
constantskDA andkAD). Therefore we get

KDN5K DN
(Born)1K DN

(sup 1)1K DN
(sup 2), ~A4!

where the first term is given by Eq.~A1! while

K DN
(sup 1)5dN,DkDI2dN,IkID ~A5!

and

K DN
(sup 2)5dN,DkDA2dN,IkAD . ~A6!

In Eqs.~A5! and~A6!, the superexchange rate constants take
the form

kMN5
2p

\
uTMNu2~FC!MN , ~A7!

where expressions of the square of single-electron and two-
electron superexchange couplings defining theD –A TET are
given in Appendix C.

Substituting Eqs.~A4!–~A6! in Eq. ~28! we get

ṖD~ t !52~qD1kDA!PD~ t !1k1DP1~ t !1kID PI~ t !

1kADPA~ t !, ~A8!

Ṗ1~ t !52q1P1~ t !1kD1PD~ t !1bP2~ t !, ~A9!

Ṗm~ t !52qPm~ t !1aPm21~ t !1bPm11~ t !, ~A10!

ṖN~ t !52qNPN~ t !1kINPI~ t !1aPN21~ t !, ~A11!

ṖI~ t !52~qI
(1)1qI

(2)!PI~ t !1kNIPN~ t !1kDI PD~ t !

1k1I P̃1~ t !1kAIPA~ t !, ~A12!

Ṗ1̃~ t !52q̃1P1̃~ t !1kI1PI~ t !1bP2̃~ t !, ~A13!

Ṗñ~ t !52qPñ~ t !1aPñ21̃~ t !1bPñ11̃~ t !, ~A14!

ṖÑ~ t !52q̃NPÑ~ t !1kANPA~ t !1aPÑ21̃~ t !, ~A15!

ṖA~ t !52~qA1kAD!PA~ t !1kNAPÑ~ t !1kIAPI~ t !

1kDAPD~ t !. ~A16!

Note that in the Eqs.~A10! and ~A14!, m,n run over
2,3,. . . ,N21. Furthermore, we used the abbreviationm

[Bm , andñ[B̃n so that we can identifyPm(t) with PBm
(t)

andPñ(t) with PB̃n
(t).

The Eqs.~A8!–~A16! have to be complemented by the
following abbreviations for the different rate expressions:

qD[kD11kDI , q1[k1D1a, qN[kNI1b,

q̃1[k1I1a, q̃N[kNA1b, qA[kAN1kAI , ~A17!

qI
(1)[kIN1kID , qI

(2)[kI11kIA , q[a1b.

Here a[kmm11 and b[km11m (m51,2,. . . ,N21), are
the rates characterizing the forward and backward jumps of a
single-electron between neighboring bridge units.

APPENDIX B: EXACT SOLUTION OF THE LAPLACE
TRANSFORMED SET OF RATE EQUATIONS

The solution of the Eqs.~A8!–~A16! can be con-
structed by changing to the Laplace transformFM(s)
5*0

` exp(2st)PM(t) dt of all electronic populations.
Noting the initial conditionPM(0)5dM ,D the solution of

the Laplace-transformed rate equations~A9!–~A11! and
~A13!–~A15! governing the bridge populationsPm and Pñ

are obtained as

Fm~s!5
1

D1~s!
@kD1am21CN~m!FD~s!

1kINbN2mC1~m!FI~s!# ~B1!

and as

Fñ~s!5
1

D2~s!
@kI1an21C̃N~n!FI~s!

1kANbN2nC̃1~n!FA~s!#. ~B2!

The following abbreviations have been introduced:
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D1~s!5sD~s;N21!1@s~k1D1kNI!1bk1D1akNI

1k1DkNI#D~s;N22!2ab~k1D1kNI!

3D~s;N23!, ~B3!

D2~s!5sD~s;N21!1@s~k1I1kNA!1bk1I1akNA

1k1IkNA#D~s;N22!2ab~k1I1kNA!

3D~s;N23! ~B4!

as well as

CN~m!5~kNI2a!D~s;N2m21!1D~s;N2m!,
~B5!

C1~m!5~k1D2b!D~s;m22!1D~s;m21!,

and

C̃N~n!5~kNA2a!D~s;N2n21!1D~s;N2n!,
~B6!

C̃1~n!5~k1I2b!D~s;n22!1D~s;n21!.

In the Eqs. ~B3!–~B6!, we introduced a new function
D(s;M ), which obeys the recursion relation

D~s;M !5~s1a1b!D~s;M21!2abD~s;M !. ~B7!

It follows

D~s;M !5~ab!M /2
sinh@L~s!~M11!#

sinhL~s!
, ~B8!

where

expL~s!5~s1a1b!/~2ab!1/2. ~B9!

Introducing the expressions~B1! and~B2! into the Eqs.~A8!,
~A12!, and ~A16! results in three coupled equations for the
Laplace-transformed population of the statesuD&, uI &, and
uA&. The equations read

~s2RDD~s!!FD~s!2RDI~s!FI~s!2kADFA~s!51,

RID~s!FD~s!2~s2RII ~s!!FI~s!1RIA~s!FA~s!50,
~B10!

kDAFD~s!1RAI~s!FI~s!2~s2RAA~s!!FA~s!50,

with the abbreviations

RDD~s!5
k1DkD1CN~1!

D1~s!
, RDI~s!5

k1DkINbN21

D1~s!
,

RID~s!5
kNIkD1aN21

D1~s!
, RAA~s!5

kNAkANC̃1~N!

D2~s!
,

RAI~s!5
kNAkI1aN21

D2~s!
, RIA~s!5

k1IkANbN21

D2~s!
,

RII ~s!5~kIN2kID !2
kNIkINC1~N!

D1~s!
1~kI12kIA!

2
k1IkI1C̃N~1!

D2~s!
. ~B11!

Then, by solving the Eqs.~B10!, expressions for the Laplace
transform ofPD , PI , andPD are obtained as

FD~s!5
1

Det~s!
@~s2RII ~s!!~s2RAA~s!!

2RIA~s!RAI~s!#,

FI~s!5
1

Det~s!
@RID~s!~s2RAA~s!!1RIA~s!kDA#,

~B12!

FA~s!5
1

Det~s!
@kDA~s2RII ~s!!1RID~s!RAI~s!#,

where we introduced

Det~s!5~s2RDD~s!!~s2RII ~s!!~s2RAA~s!!

2@RIA~s!RAI~s!~s2RDD~s!!1RDI~s!RID~s!

3~s2RAA~s!!1kADkDA~s2RII ~s!!#

2RDI~s!RIA~s!kDA2RAI~s!RID~s!kAD].

~B13!

Laplace-transformed bridge populations,Fm(s) and Fñ(s),
are expressed by those of the donor, acceptor, and interme-
diate state population@FD(s), FI(s), and FA(s), respec-
tively#.

The exact solution for all Laplace-transformed popula-
tions FM(s) @M5D,I ,A,1, . . . ,N,1̃, . . . ,Ñ#, Eqs. ~B1!,
~B2!, and ~B12! permits a description of the TET kinetics
within all time domains~provided that t@t rel). Solving
Det(s)50 ~at least numerically! one obtains 2N12 nonzero
roots s1 ,s2 , . . . , s2N12 which determine the transfer rates
according toK152s1 , K252s2 , . . . , K2N1252s2N12 .
Therefore, state populations follow as Eq.~30!.

APPENDIX C: SUPEREXCHANGE COUPLINGS
AT D – A TET

Next we present the square of the superexchange cou-
plings characterizing the distant single-electron (uD&�uI &
and uI &�uA&) and the distant two-electron (uD&�uA&)
transfer. Their precise form follows from the specification of
the transfer matrix elementsKMN , Eq. ~29!. It yields

uTDI u25
uVD1VB

N21VNAu2

)m51
N DEmDDEmI

, ~C1!

uTIAu25
uVD18 VB

N21VNA8 u2

)m51
N DẼmIDẼmA

, ~C2!

and

uTDAu25
uVD1VB

N21VNAu2

)m51
N DEmDDEmADEID

3
uVD18 VB

N21VNA8 u2

)m51
N DẼmDDẼmADEIA

. ~C3!

The gaps in the Eqs.~C1!–~C3! are defined as the energy
differences between the corresponding electron vibrational
states but taken at the vibrational ground state. If an energy
bias in the bridge is absent, a part of the energy gaps is
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represented in Fig. 3. From this we may conclude that
DEmD5DED , DEmI5DEI , DEmA5DEA , DẼmD5DẼD ,
DẼmI5DẼI , DẼmA5DẼA .

If a bridge with an energy bias mediates theD –A TET,
the energy gaps take a more complicated form. For instance,
if the energy gapsDE1D5DED , DENI5DEI , DẼ1I

5DẼI , andDẼNA5DẼA are fixed while the electronic en-
ergies of the interior bridge units change in line with Eq.
~11!, one has to take

DEmD5DED2~m21!D, ~C4!

DẼmD5DẼD2~m21!D2~N21!D, ~C5!

DEmI5DEI1~N2m!D, ~C6!

DẼnI5DẼI2~n21!D, ~C7!

DEnA5DEA1~N2n!D1~N21!D, ~C8!

DẼnA5DẼA1~N2n!D, ~C9!

and

DEID5~DED2DEI !2~N21!D, ~C10!

DEIA5~DEA2DEI !1~N21!D, ~C11!

DEDA5DE12~N21!D. ~C12!

The relations~C4!–~C11! allow to derive an analytical de-
pendence of the superexchange rate constants on the number
of bridging unitsN ~see below!.

Using Eq. ~C1! and Eq. ~C2! one can represent the
square of the two-electron coupling~C3! as

uTDAu25
uT̃DI T̃IAu2

DEIDDEIA
. ~C13!

Here we have introduced

uT̃DI u25uTDI u2 )
m51

N

~DEmI /DEmA!,

~C14!

uT̃IAu25uTIAu2 )
m51

N

~DẼmI /DẼmD!.

If an energetic bias is not present in the bridge the latter
quantities simplify to give

uT̃DI u25uTDI u2~DEI /DEA!N,
~C15!

uT̃IAu25uTIAu2~DẼI /DẼD!N.

It follows from the definition of the electronic states~see also
Fig. 3! that DẼD5DEID1DẼI , DEA5DEIA1DEI , and
thus if DEID!DẼI andDEIA!DEI , we may identify

uTDAu25
uTDITIAu2

DEIDDEIA
, ~C16!

where now

uTDI u25
uVD1VNAu2

DEDDEI
S VB

DEDDEI
D N21

, ~C17!

uTIAu25
uVD18 VNA8 u2

DẼIDẼA
S VB

DẼIDẼA
D N21

. ~C18!

@Note that the same expressions follow from the general
form ~C14! if the energy difference between the electronic
statesuD&, uI & and uA& is small, so thatDEmI'DEmA and
DẼmI'DẼmD .] Equation ~C16! reflects the fact that the
two-electron superexchange through a bridge ofN units re-
sults from two single-electronD –A superexchange path-
ways associated with the couplingsTDI and TIA . In other
words, the two-electron superexchange is originated by re-
peated single-electron superexchange transitions.

In the case of a regular bridge and at a small intersite
energy biasD the basic expressions~C1!–~C3! can be trans-
formed into a more appealing form. Therefore, we rewrite
the denominators of the expressions~C1!–~C3! by utilizing
the relations~C4!–~C11!. Let us start with the specification
of the product)m51

N DEmD . According to the identity

)
m51

N

DEmD5~DED!N )
m51

N

@12~m21!~D/DED!#

5~DED!N expH (
m51

N

ln@12~m21!

3~D/DED!#J ~C19!

and by noting the limit of a small intersite energy bias (N
21)D!DED , one can expand ln@12(m21)(D/DED)# with
respect to (m21)(D/DED). The lowest order contribution
gives

)
m51

N

DEmD5~DED!Ne2(1/2)(D/DED)N(N21). ~C20!

In the same way one can specify the approximate form of the
product)m51

N DEmI . Therefore, in accordance with Eq.~C1!
one may derive

uTDI u2'
uVD1VNAu2

DEDDEI
e2z1(N21)e2zDIN(N21). ~C21!

Here the superexchange decay parameterz1 is defined by Eq.
~65!. We have also introduced an additional parameter

zDI5
1

2 S D

DEI
2

D

DED
D.0 ~C22!

which modifies theN dependence of the superexchange cou-
pling. Analogously, by using the approximate form of the
product)m51

N DẼmIDẼmA one can represent Eq.~C2! as

uTIAu2'
uVD18 VNA8 u2

DẼIDẼA

e2z2(N21)ez IAN(N21). ~C23!

Here, the superexchange decay parameterz2 is defined by
Eq. ~66! while

z IA5
1

2 S D

DẼI

2
D

DẼA
D .0. ~C24!
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Note that due to the inequalitiesDEI,DED and DẼI

,DẼA ~cf. Fig. 3! the correction parameterszDI and z IA

become positive. Therefore, a different influence of the en-
ergy biasD exist on the factorsuTDI u2 and uTIAu2.

Taking the same approximations the two-electron cou-
pling reads

uTDAu2'
uVD1VNAVD18 VNA8 u2

DEDDEADẼDDẼADEIDDEIA

3e2z(N21)ezDAN(N21), ~C25!

where the two-electron superexchange decay parameterz is
given by Eq.~69!, and

zDA5
1

2 F S D

DED

13
D

DẼD
D 2S D

DẼA

13
D

DEA
D G . ~C26!

The Eqs.~C21!, ~C23!, and ~C25! allow to analyze the
corrections to the distance dependence of the superexchange
transfer rates when a small intrabridge energy biasD is
present.
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