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Abstract

A theoretical description of electron transmission through a molecular wire embedded in between two leads is carried out using
the density matrix method. Accounting for the Coulomb repulsion among the transferred electrons nonlinear kinetic equations for
the reduced single-electron distributions are derived. The respective transfer rates contain contributions from different transmission
channels which are characterized by the number of excess electrons present in the wire in the course of the charge transmission.
Special attention is focused on the study of single-electron transmission. It is shown that a direct lead–lead (elastic) transmission as
well as a transmission including the population of intermediate wire states (inelastic transmission) becomes possible if the electron
to be transferred moves through a wire without a further excess charge. The probability to find a molecule in such an ‘‘empty’’
wire state follows from a relation between the rates of incoming and outgoing lead–molecule/molecule–lead charge transfer. In
turn, they are responsible for the formation of the inelastic component of the current. Thus, it could be demonstrated that the
inelastic charge transmission not only determines the inelastic part of the current but is able to control the elastic component
as well. Moreover, the inelastic transmission may result in a specific kinetic rectification effect.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Molecular wires represent one example of nanostructures where the diversity of molecular structures may influence
the electron transfer in a characteristic way [1–11]. Such a pronounced structural control of charge transfer and thus of
the molecular wire–mediated current, additionally, can also be achieved by the application of external dc- and ac-fields
[12–16]. (A discussion of the various methods to control distant electron transfer through molecular systems can be
found in [3–5,17–19] and the reviews [8,20,21].) The description of the wire-mediated inter-electrode tunnel process
may be undertaken for the case where all units of a linear molecule form the bridging structure for electron transmis-
sion (elastic inter-electrode tunneling, see [3–5,12], or tunneling including energy dissipation at the bridged sites, cf.
[19,22]). Alternatively, one may consider the case where the terminal sites of the wire localize the transferred electron
(inelastic inter-electrode tunneling mediated by the terminal sites, see [6,23–26]). Any of these studies underlined the
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importance of relaxation processes disturbing the charge transmission. Relaxation processes are mainly caused by the
interaction of electronic degrees of freedom with environmental vibrations. Moreover, intramolecular vibrational
modes are involved in electron transmission, too, forming phonon sidebands [27]. Recent theoretical studies on the
phonon-assisted inelastic tunnel current and the related conductance gave good insight into the particular nature of
the vibronic states related to single-molecule electron transport (see, e.g., [28–30] and especially [31]). It has been also
shown that the reorganization energy associated with the nuclear displacements and caused by the electron transmis-
sion through the molecule plays a key role in controlling charge localization as well as inelastic scattering events [25].
Additionally, the importance of the Coulomb interaction among different transferred electrons has been underlined in
[5,9,32–36].

It is typical for the huge variety of molecular metals, conducting polymers, and supramolecular compounds fabri-
cated so far (see, e.g., [37–39]) that the charge transmission within them is dominated by relaxation processes (leading
to the destruction of coherency). Electron motion in macromolecular systems like oligoporphyrin and polythiophene
structures [7], electrically conductive metallomacrocyclic assemblies [40], molecular chains containing transition metal
complexes [41], metal containing fullerene structures [42] and others [39,43,44] is mainly hopping transport between the
different sites of electron localization. In contrast, nonlinearities in the current–voltage (I–V) characteristics of single
molecules (see [45–57]) have been explained in the Landauer–Büttiker theory [58–60], which exclusively assumes elastic
scattering processes of the electron moving through the molecular wire [55,56,60–62]. However, inelastic processes
should also influence the current through the molecular wire [25,26,47,63–65]. A respective unified theory should de-
scribe elastic and inelastic processes, probably, also accounting for the Coulomb interaction among different trans-
ferred electrons (or holes).

The goal of the present paper is to undertake such a unified description. We will consider electron transmission
through a molecule/molecular wire characterized by molecular orbitals (MOs) extending over the whole molecule.
If embedded between two electrodes the system ‘‘left lead–molecule–right lead’’ (LMR) is formed. Charge transmission
through the LMR system which is accompanied by a population of the MOs cause the inelastic component of the cur-
rent. However, the same MOs act as scattering centers in a direct (elastic) lead–lead transmission what results in the
elastic component of inter-electrode current. Both types of charge transmission will be described in the framework of
the well-established density matrix theory [66–69]. A similar approach has been already used for a unified description
of bridge mediated electron transfer in donor–acceptor complexes [70,71]. To account for many-electron effects in the
course of single-electron transmission the occupation number representation will be utilized and the derivation of non-
linear kinetic equations is demonstrated.

The paper is organized as follows. Section 2 introduces the model used to describe electron transfer in the LMR
system. Nonlinear kinetic equations governing electron transport to a molecular wire including inter-electron Coulomb
repulsion are derived in Section 3. The corresponding transfer rates characterizing single-electron transitions between
multi-electron states of the LMR system are also presented. Section 4 concentrates on single-electron transmission. A
comparison between the direct lead–lead electron transmission and the transmission through intermediate states of the
LMR system is given in Section 5. Moreover, the conditions are identified at which the overall current through a single-
electron transmission channel is given by additive contributions from elastic and the inelastic transfer processes. The
Conclusions offer a general discussion on the importance of inelastic processes on formation of the inter-electrode
current.
2. Model and basic Hamiltonian

Let a linear molecule (molecular wire) be embedded in between two leads (cf. Fig. 1). If an excess electron leaves
a lead and enters the molecule it can be localized within one of N molecular sites. We will employ a simple tight-
binding model where each molecular site is characterized by a single MO |mi. The energy of the transferred extra
electron at the mth molecular site, Em(Q) (here, Q denotes the set of vibrational coordinates leading to a modulation
of the electronic energy), and transfer coupling between neighboring sites, Vmm±1, define the electronic part of the
molecular Hamiltonian. Introducing electron creation and annihilation operators aþmr and amr, respectively, we may
write
H ðelÞ
M ¼

X
m;m0

X
r

½EmðQÞdm;m0 þ V mm0 ðdm0 ;mþ1 þ dm0 ;m�1Þ�aþmram0r. ð1Þ
The summation covers all sites (m, m 0 = 1, 2, . . . , N) and all electronic spin projections (r = ±1/2). To get the complete
molecular Hamiltonian HM one has to add a kinetic energy of nuclei.
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Fig. 1. The molecular wire (N-site linear molecule) embedded in between two leads. The inter-site matrix elements V12, V13, . . . , VN�1N lead to the
formation of the extended MOs of the molecule. The coupling to the leads is covered by the VLk and VRq. The quantities dL = lL /�L, dR = lR/�R, and
dm = lm/�M denote the effective lengths (lL and lR are the distances between the terminal molecular sites and respective lead surfaces, lm is the distance
between neighboring molecular sites). The quantities �L (�R) and �M denote the permitivities near the left (right) lead and in the vicinity of the
molecule, respectively. The effective distance between the leads is d ¼ dL þ

PN�1
m¼1dm.
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Below we will consider the case of strong intersite transfer coupling. Therefore, extended MOs, defined via
jli ¼
X
m

ulðmÞjmi; ð2Þ
have to be introduced. The ul(m) are found via a diagonalization of Hamiltonian H ðelÞ
M , Eq. (1) at Em = Em(Q0) whereQ0

denotes the set of equilibrium nuclear coordinates. The related energies are denoted as el. Now we use a conventional
scheme [69,72]. To derive an electron-vibrational coupling one may expand the HM with respect to the displacements
Q � Q0. Introducing the vibrational eigenstates jvlali for each lth MO one obtains (for more details see, e.g., [73])
HM ¼ H ð0Þ
M þ V M�M þ V M�B. ð3Þ
The first part,
H ð0Þ
M ¼

X
l;al

X
r

elala
þ
lralrjvlalihvlal j; ð4Þ
defines the electron-vibrational states, where elal and aþlr (alr) denote the electron-vibrational eigenenergy and the
electron creation (annihilation) operator, respectively. (The latter are connected with the aþmr ðamrÞ via the transforma-
tion (2).) The coupling expression
V M�M ¼
X
l;l0

X
al ;bl0

X
r

1� dl;l0
� �

V lall0bl0a
þ
lral0rjvlalihvl0bl0 j ð5Þ
is responsible for transitions among different electron-vibrational states, whereas
V M�B ¼
X
lr

X
al;a0l

ð1� dal;a0lÞU
ðlÞ
ala0l

aþlralrjvlalihvla0l j ð6Þ
describes transitions between different vibrational levels of the same electronic state. Note, that matrix elements
V lall0bl0 and UðlÞ

ala0l
depend on additional vibrational degrees of freedom forming a thermal bath, thus the Hamiltonians

(5) and (6) allow to describe relaxation processes within the molecule.
Embedding the considered molecule in between two leads, we have to account for the additional lead–molecule cou-

pling. Just the details of this coupling are of crucial importance for the electron transmission through the molecule
[10,47,74,75]. We will consider the leads as a macroscopic system with a continuous spectrum associated with the con-
duction band. The Hamiltonian covering the states of the two leads can be written as
HLR ¼
X
r¼L;R

X
k;r

Erkaþrkrarkr; ð7Þ
where Erk is the energy of an electron with wave vector k in the conduction band of the rth lead. To specify the lead–
molecule interaction we introduce the vibrational energy and the kth vibrational state of the molecule in the absence of
any excess electrons as eð0Þk , and |vki, respectively. Moreover, VLk (VRk) is the transfer coupling between the first (Nth)
molecular site and the left (right) lead. The lead–molecule interaction follows as
V LR�M ¼
X
lr

X
kal

X
r¼L;R

V rkk;lala
þ
rkralrjvkihvlal j þ h.c.

h i
. ð8Þ
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Here, the lead–molecule coupling matrix elements
V Lkk;lal ¼ V Lkulð1Þhvkjvlali; V Rkk;lal ¼ V RkulðNÞhvkjvlali ð9Þ
account for the MOs extending over the whole molecule (via ul(1) and ul(N)) and include the vibrational overlap inte-
grals hvkjvlali. In most cases the molecule–lead coupling is realized via specific terminal groups which are bonded to the
leads either directly or through sulfur [54,61,62] or silicon [76] atoms. In any case, the empty levels of terminal groups
should be energetically positioned far above the LUMOs of the molecule so that the molecule–lead couplings VLk and
VRk, Eq. (9) are originated by superexchange mechanisms between the surface atoms of the lead and the terminal
groups of the molecule. Accordingly, charge transmission through the molecule is related to the terminal sites
m = 1 and m = N as well as to the sites m = 2, 3, . . . , N � 1. The corresponding single-electron energies elal , Eq. (4)
correspond to the extended states formed by the localized states of all N sites of the molecule.

All terms discussed so far are comprised in the LMR-system Hamiltonian
H ¼ HLR þ HM þ HLR�M þ HCoul. ð10Þ

All following derivations of kinetic equations and of the interelectrode current will be based on it. The Hamiltonian
contains contributions formed by single-electron states as well as the coupling of these states to vibrational substates
(see Eqs. (3)–(8)). Moreover, we included HCoul referring to the Coulomb repulsion between different excess electrons.
It has to be considered whenever more then a single excess electron participates in transmission through a molecule.
3. Nonlinear kinetic equations

The current formation through the molecular wire is characterized by coherent charge motion as well as relaxation
processes. We will assume that only intra-molecular relaxation modifies the coherent electron transmission. These pro-
cesses are governed by the Hamiltonian VM�B, Eq. (6) and proceed on a picosecond time scale [72,77]. To compare this
time scale with the time str of charge motion through the molecule let us use the relation I � |e|/str with I being the
current and |e| the absolute value of the electron charge. Measured values of the current through single molecules
may reach 1 up to 100 nA, leading to str in the order of 10�10–10�12 s. Therefore, the intramolecular current proceeds
against the background of fast vibrational relaxation, and a coarse-grained description of the electron motion becomes
possible. Accordingly, the current can be expressed via integral electronic state populations P jrjðtÞ. Here, the index j

indicates the electronic lead states (j = Lk, Rq) and the electronic levels of the molecule (j = f ), whereas rj denotes
the electron spin.

The stationary current I may be obtained from the general relation
I ¼ e _NL; ð11Þ

where _NL ð¼ � _NRÞ is the time-derivative of the electron number of the left (right) electrode. Since the total left elec-
trode population is determined as
NLðtÞ ¼
X
krk

PLkrkðtÞ; ð12Þ
we have to determine the time–derivative of the single electron state distribution PLkrk
(t) (here, rk denotes spin which

belongs to the electron with wave vector k). To calculate the total current we have to derive kinetic equations for the
distribution functions PRqrq

(t) as well as for the populations Pfrf ðtÞ of the electronic levels of the molecule.
In the problem under consideration, more then one excess electrons can occupy the molecule in the course of elec-

tron transmission. Therefore, a Coulomb interaction between the transferred electrons modifies the single-electron
transmission. To account for this fact in kinetic equations for single electron distribution functions P jrjðtÞ (j = Lk,
Rq, f), one has to derive kinetic equations for multi-electron distribution functions (populations) PfNgðtÞ where
fNg ¼ fNLkrkgfNRqrqgfNfrf g denotes the complete set of LMR electronic occupation numbers. Here, fNLkrkg and
{NRqrq

} are the sets related respectively to the left and right lead occupation numbers whereas fNfrf g refers to the
molecular occupation numbers. If kinetic equation for the PfNgðtÞ is known then using the definitionsX
P ðNjrj ; tÞ ¼
fNg6¼Njrj

PfNgðtÞ ð13Þ
and
P jrjðtÞ ¼
X

Njrj¼0;1

NjrjP Njrj ; t
� �

ð14Þ
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as well as normalization conditions
X
Njrj¼0;1

P Njrj ; t
� �

¼ 1; ð15Þ
one comes to kinetic equations for desirable overall single-electron populations (distribution functions) P jrjðtÞ. [Note
that in line with relation (14) populations P jrjðtÞ and 1� P jrjðtÞ are directly connected with the occupation number
distribution functions P ðNjrj ; tÞ, with respectively Njrj ¼ 1 at the presence of an electron in the jth state with spin-pro-
jection rj and with Njrj ¼ 0 at its absence.] Each P ðNjrj ; tÞ follows by a summation of the multi-electron population
PfNgðtÞ with respect to all occupation numbers except Njrj .

3.1. Single-electron and multi-electron LMR states

In the present paper, the specification of the single-electron states | jrji is achieved in the framework of a model
where the leads are considered as macroscopic systems. It has been shown in Appendix A, that in such a case the influ-
ence of the lead–molecule interaction on the lead states |L(R)krki as well as the lead energy levels EL(R)k may be
ignored. At the same time, this interaction strongly influences the electron-vibrational states jlali � j1lrlijvlali ¼
aþlrl j0lrlijvlali as well as the electron-vibrational energy levels elal of the molecule. In line with the results obtained
in the Appendix, the molecular electron-vibrational states jf af i ¼

P
lal

Hf af ðlalÞjlali and the corresponding single-
electron energies Ef af are derived from a set of algebraic equations (A.42) which cover an effective molecular
Hamiltonian
H ðeffÞ
M ¼

X
lal

X
l0al0

Elaldlal;l0al0 þ
X
r¼L;R

RðrÞ
lall0al0

" #
jlalihl0al0 j. ð16Þ
Hamiltonian (16) takes into account the broadening of molecular levels caused by vibrational relaxation (via the ener-
gies Elal , Eq. (A.9)) as well as by the influence of the macroscopic leads (via the self-energies RðrÞ

lall0al0
, Eq. (A.40)).

When diagonalized it obeys the form
H ðeffÞ
M ¼

X
f

X
rf af

Ef af a
þ
frafrjvf af ihvf af j. ð17Þ
[Note that jf af ih f af j ¼ aþfrf afrf jvf af ihvf af j.] If off-diagonal parts of self-energies R
ðrÞ
lall0al0

are of less importance for a
coupling between different molecular states (2), i.e. if the inequality
Elal � El0al0

��� ���� RðLÞ
lall0al0

��� ���; RðRÞ
lall0al0

��� ��� ð18Þ
is satisfied in the precise LMR system, the proper energy Ef af takes a simple form
Ef af � Elal ¼ �lal � iClal . ð19Þ
Here, the quantity �lal ¼ elal þ
P

r¼L;RReRðrÞ
lallal

is the renormalized energy of the electron-vibrational state |lali of the
lth extended single-electron molecular level, and
Clal ¼ clal þ
X
r¼L;R

CðrÞ
lal

ð20Þ
defines the integral broadening of the lalth electron-vibrational energy level. The broadening contains a contribution
clal originated by relaxation processes in the given molecular level as well as the contributions CðrÞ

lal
¼ ImRðrÞ

lallal
which

result from the molecule–lead interaction.
Once single-electron states |Lkrki, |Rqrki, | fafi and respective single-electron energies ELk, ERq, Ef af have been

specified, the problem arises to construct the multi-electron states and the multi-electron energies. Generally, multi-
electron states have to include the information on molecular spin which is able to change its value in the course of
electron transmission through a molecule (see, for instance [12,21,23,64]). But, if the exchange interaction associ-
ated with the transferred electrons gives a minor contribution in energy of the LMR system one can specify the
spin states of multi-electron system only fixing the spin projections of separate electrons (the leads are assumed to
be fabricated from nonmagnetic metals). It is definitely happen when a molecule does not contain the paramag-
netic ions and, additionally, the location of the transferred electrons within the molecule occurs at well separated
sites. It is not the case when the excess electrons occupy the strongly delocalized MOs. As such, the exchange
interaction between the transferred (excess) electrons can be ignored only, if special physical conditions are
satisfied.
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As an example, we consider a Coulomb interaction written in the Hubbard form [78]
HCoul ¼ U
X
m

aþm"am"a
þ
m#am#. ð21Þ
The parameter U characterizes the repulsion between two transferred electrons occupying the same localized MO at
the mth molecular site but having different spin projections, +1/2 � "and �1/2 � #. In the basis of extended MOs,
Eq. (2) HCoul changes to
HCoul ¼ U
X
l1;l

0
1

X
l2;l

0
2

U l1l
0
1;l2l

0
2

� �
aþl1"al01"a

þ
l2#al02#

U l1l
0
1;l2l

0
2

� �
¼ U l2l

0
2;l1l

0
1

� �
¼
X
m

u�l1ðmÞul01ðmÞu
�
l2
ðmÞul0

2
ðmÞ

 !
.

ð22Þ
TheHamiltonian includes single-electron as well as two-electron transitions between the extendedmolecular states. Note
that the two-electron transitions reflects the direct as well as the exchange scattering processes. But, if the inequality
ð�l1 þ �l2 þ UUðl1l1;l2l2ÞÞ � ð�l0
1
þ �l0

2
þ UUðl0

1l
0
1;l

0
2l

0
2ÞÞ

��� ���� U jUðl1l
0
1;l2l

0
2Þjð1� dl1;l01Þð1� dl2;l02Þ ð23Þ
is satisfied for any set of extended states l, then the single-electron transitions mainly contributes to the transition pro-
cesses. Following from this the terms with l1 ¼ l0

1 or l2 ¼ l0
2 should dominate. If the additional inequality
~�l � ~�l0
�� ��� U

X
m

jUðll0;mmÞj ~�l � �l þ U
X
m

Uðll;mmÞ
 !

ð24Þ
is valid then the electron–electron interaction can be described in using the truncated form of the HamiltonianHCoul. It
reads
HCoul � H ðtruncÞ
Coul ¼ U

X
l;m

Uðll;mmÞaþl"al"aþm#am#. ð25Þ
Accordingly, the use of the Hamiltonian from Eq. (25) instead that of Eq. (22) is justified either for a large energy gap
j�l � �l0 j between single-electron extended states or due to a large energy difference between local molecular levels (as
compared with site–site electronic couplings V mm0 , Eq. (1)). Moreover we note that the Hamiltonian, Eq. (25) is diag-
onal with respect to the occupation numbers and thus does not contain the exchange interaction between the excess
electrons occupying the extended MOs. Matrix elements of the Hamiltonian (25) are diagonal and read
UfNg ¼ U
X
l;m

Uðll;mmÞN l"N m#. ð26Þ
In the present description we restrict ourself to the case where exchange interaction associated with the transferred elec-
trons is of less importance and thus one can apply a Hartree approach. The Hartree approach indicates that a total
LMR electronic state jai � jfNg; vðfNfrf gÞi appears as a product of single-electron states,
jai ¼
Y
krk

jNLkrki
Y
qrq

jNRqrqi
Y
frf

jNfrf ijvðfNfrf gÞi. ð27Þ
It means that a LMR spin state is determined by a set of electronic spin-projections. Multi-electron states (27) contain
the set of molecular vibrational states denoted through the jvðfNfrf gÞi. Within the set each separate vibronic state
coincides either with the jvf af i (extra electron occupies the fth MO, Nfrf ¼ 1) or with |vki (no extra electron at the
fth MO,

P
rf
N frf ¼ 0). The states (27) are the proper states of the effective LMR Hamiltonian
H ðeffÞ
LMR ¼ HLR þ H ðeffÞ

M þ HCoul; ð28Þ

where the terms in the right side of Eq. (28) are defined by Hamiltonians (7), (17) and (25), respectively.

3.2. Kinetic equations for the multi-electron distribution function

The kinetic equations for the PfNgðtÞ are obtained from a generalized master equation (GME) which is obeyed by
the reduced density operator q(t) describing the dynamics of an open quantum system. The main problem here is to
simultaneously account for the fast relaxational transitions among the vibrational substates of each molecular level,
the lead–molecule coupling, and the Coulomb interaction between the excess electrons. To offer a sufficient clear
description we separately consider in Appendix A the derivation of a master equation for the single-electron
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distribution functions. It is demonstrated how the fast vibrational relaxation as well as the lead–molecule interaction
justifies a reduced description via kinetic equations for the integral level population. In what follows we employ a sim-
ilar approach to derive the master equation for multi-electron distribution functions. This becomes possible since the
transitions between multi-electron states are determined by one-particle transition operators (5) and (8), while the Cou-
lomb interaction, taken in the form (25), conserves the number of electrons occupying the precise MOs and thus does
not lead to electron–electron transitions.

It has been shown earlier in [26] that the occupation number representation offers a convenient way to derive kinetic
equations in a multi-electron transfer system. Here, we use the same representation and suppose that the single-
electron states as well as the corresponding single-electron energies are already known. Thus, each single-electron state
|jrji (j = Lk, Rq, f) is associated with the occupation number state jNjrji at Njrj ¼ 1. [Remember that Njrj ¼ 0; 1 is the
number of electrons occupying the single-electron state j with spin-projection rj.] Choosing the Coulomb interaction in
the form (25) we are able to represent multi-electron states (27) as the product of single-electron states. Because the
states (27) are diagonal with respect to the occupation numbers the diagonal elements PaðtÞ ¼ hajqðtÞjai of the
LMR density operator q(t) can be derived from relation
PaðtÞ ¼ hajqdðtÞjai ¼ hfNgvðfNfrf gÞjqdðtÞjfNgvðfNfrf gÞi; ð29Þ
where qdðtÞ ¼ T̂ dqðtÞ is a diagonal density matrix of the LMR system. The time–evolution of the latter is defined by the
master Eq. (A.14) but now written in a multi-electron basis. Therefore, the matrix form of the corresponding master
equation coincides with the following set of linear equations for the multi-electron populations PaðtÞ (see also [26]),
_PaðtÞ ¼ �
X
b

haj Qjbihbjð ÞjaiPbðtÞ. ð30Þ
It is very important that the form of the superoperator Q is given by the same expansion (A.15) and (A.16) where,
however, the single-electron states |sai have been replaced the multi-electron states (27). [This follows from the fact
that we consider only single-electron transitions caused by the same one-particle operator Vint = VM�M + VLR�M

(cf. Eqs. (5) and (8)).]
Now we take into consideration the two following points. The first is related to the form of LMR states (27) which

appear as a product of single-particle states. It means that one can represent a many-particle population PaðtÞ as a
product of single-particle populations,
PaðtÞ ¼
Y
krk

PðNLkrk ; tÞ
Y
qrq

P ðNRqrq ; tÞ
Y
frf

P ðNfrf vðfNfrf gÞ; tÞ. ð31Þ
Here, the quantities PðNjrj ; tÞ define the probability that a transferred excess electron with spin quantum number rj
does ðNjrj ¼ 1Þ or does not ðNjrj ¼ 0Þ occupy a single-electron lead state j = Lk, Rq. The probabilities
P ðNfrf vðfNfrf gÞ; tÞ indicate that an excess electron with spin quantum number rf does or does not occupy the
vðfNfrf gÞth vibrational level belonging to the fth molecular electronic level. The second point notices the fast intra-
state relaxation. Accordingly, the probabilities P ðNfrf vðfNfrf gÞ; tÞ can be expressed by the integral populations
P ðNfrf ; tÞ ¼
X

vðfNfrf
gÞ
PðNfrf vðfNfrf gÞ; tÞ ð32Þ
in noting the relation
P ðNfrf vðfNfrf gÞ; tÞ ¼ W EðvðfNfrf gÞÞ
� �

P ðNfrf ; tÞ ð33Þ
where the probability to populate the vibrational state vðfNfrf gÞ reads
W EðvðfNfrf gÞÞ
� �

¼ W ð�f af ÞNfrf þ W ð�ð0Þk Þð1� Nfrf Þ. ð34Þ
If Nfrf ¼ 1 then P ð1frf ; tÞ coincides with the population Pfrf ðtÞ of the fth MO. Therefore, the weights
W ðEðvðf1frf gÞÞÞ ¼ W ð�f af Þ are identical with those given by the relation (A.6). For Nfrf ¼ 0 the weights

W ðEðvðf0frf gÞÞÞ ¼ W ð�ð0Þk Þ are defined by Eq. (A.27).
In line with Eq. (31) the multi-electron population PaðtÞ ¼ PðfNgvðfNfrf g; tÞ is expressed by its integral population

PfNgðtÞ ¼
P

vðfNfrf
gÞPaðtÞ via the same relation (A.5) that exists between molecular populations P ðNfrf ; tÞ

and P ðNfrf vðfNfrf gÞ; tÞ. This circumstance along with the fact that in our case the operator Vint is identical with
the sum off-diagonal operators (5) and (8), allows us to reduce the basic equations (30) to the balance-like equations
of the multi-electron populations
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_PfNgðtÞ ¼ �
X
fN 0g

KfNg!fN 0gPfNgðtÞ � KfN 0g!fNgPfN 0gðtÞ
� �

. ð35Þ
The rate constants
KfNg!fN 0g ¼
2p
�h

X
vðfNfrf

gÞ

X
vðfN 0

frf
gÞ

Y
frf

W EðvðfNfrf gÞ
� �

V fNgvðfNfrf gÞ; fN 0gvðfN 0
frf

gÞ
� ���� ���2LðEa � EbÞ ð36Þ
characterize a transition from the multi-electron state jfNgi ¼
Q

krk
jNLkrki �

Q
qrq

jNRqrqi
Q

frf
jNfrf i to the state

jfN 0gi ¼
Q

krk
jN 0

Lkrk
i
Q

qrq
jN 0

Rqrq
i �

Q
frf

jN 0
frf

i. In Eq. (36), the summation covers all vibrational states related to the

molecular levels involved in the electron transmission. Quantity L(Ea � Eb) = (1/p)[(ca + cb)/((Ea � Eb)
2 + (ca + cb)

2)]
is the normalized Lorentzian with ca and cb being the total broadenings of single-electron levels participating in a given
|ai ! |bi transition (see below). Note that L(Ea � Eb) reduces to a delta-function d(Ea � Eb) if ca ! 0 and cb ! 0. Such
a situation appears if an elastic lead–to–lead electron transmission occurs in the LMR system. The energy
Ea ¼ EðfNg; vðfNfrf gÞÞ of the ath multi-electron state reads
Ea ¼
X
krk

ELkNLkrk þ
X
qrq

ERqNRqrq þ
X
frf

ð�f af � eð0Þk ÞNfrf þ UðfNgÞ. ð37Þ
It contains the contributions of single-electron energies ELk, ERq and �f af ¼ ReEf af as well as the term U({N}) includ-
ing the interaction between the extra electrons when the latter populate the molecule in the course of charge transmis-
sion. The energy Eb is defined by the same form (37) (but with the replacement of the set {N} by the set {N 0}). To
calculate the matrix elements V ðfNgvðfNfrf gÞ; fN 0gvðfN 0

frf
gÞÞ ¼ hfNgvðfNfrf gÞjV ðeffÞjfN 0gvðfNfrf gÞi one has to em-

ploy the effective operator (A.20) where Vint is the off-diagonal transfer operator and G(E) = (E � H)�1 is Green�s
operator of the total LMR system (H ¼ H ðeffÞ

LMR is the effective Hamiltonian of the LMR system, Eq. (28), and
E = Ea � Eb is the transition energy, respectively). Note again that if only single-electron transitions are responsible
for electron transmission then Vint = VM � M+VLR�M.
3.3. Kinetic equations for the reduced single-electron distribution functions

Noting the linear balance-like set of equations (35) for multi-electron distribution functions the kinetic equations for
the P jrjðtÞ follow in using the relations (13) and (14). Furthermore, we introduce the ansatz (31) into kinetic equations
(35), sum up both parts of Eq. (35) over complete set of initial ({N}) and final ({N 0}) occupation numbers, and, finally
apply the normalization condition (15). This all yields the following set of nonlinear kinetic equations for the single-
electron populations
_P jrjðtÞ ¼
X
fNg

X
fN 0g

Y
krk

Y
qrq

Y
frf

N jrj KfNg!fN 0gPðNLkrk ; tÞP ðNRqrq ; tÞ � PðNfrf ; tÞ � KfN 0g!fNgPðN 0
Lkrk

; tÞPðN 0
Rqrq

; tÞPðN 0
frf

; tÞ
h i

.

ð38Þ
The nonlinearity is caused by the Coulomb interaction among different transferred electrons. It influences the transfer
rates KfNg!fN 0g, Eq. (36) via the energy differences Ea � Eb between the multi-electron states |ai = |{N}i and
|bi = |{N 0}i. According to Eq. (37) the Ea � Eb may be specified to the molecular energy �fa together with a Coulomb
term.

Moreover, condition (18) allows to represent the energy difference Ea � Eb between two multi-electron states in the
form (cf. Eq. (37))
Ea � Eb �
X
k;rk

ELkðNLkrk � N 0
Lkrk

Þ þ
X
q;rq

ERqðNRqrq � N 0
Rqrq

Þ þ
X
lrl

ðelal � eð0Þk ÞðNlrl � N 0
lrl

Þ þ ðUðfNgÞ � UðfN 0gÞÞ.

ð39Þ

Eqs. (39) and (26) define the general expressions for the energy difference between multi-electron states |ai = |{N}i and
|bi = |{N 0}i which are involved in the a ! b-transition.
3.4. Single-electron transmission channels

For the transfer problem under consideration respective transitions are described by the operators (5) and (8).
Therefore, each elementary electron-transfer step connects only two precise electronic states. This means that only
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two states change their electronic population while that of the remaining states remains unchanged. Thus, in the case of
lead–molecule transfer the corresponding transition matrix element follows as
V fN 0gfNg ¼
X
krk

X
lrl

½V Lkk;lalNLkrkð1� N lrlÞ þ V �
Lkk;lal

N 0
Lkrk

ð1� N 0
lrl

Þ�

� drk ;rldN 0
lrl ;1�Nlrl

dN 0
Lkrk

;1�NLkrk

Y
k0rk0 6¼krk

dN 0
Lk0r

k0
;NLk0r

k0

Y
l0rl0 6¼lrl

dN 0
l0rl0

;Nl0rl0

Y
qrq

dN 0
Rqrq

;NRqrq . ð40Þ
In the case of a transition between extended molecular states one may derive
V fN 0gfNg ¼
X
lrl

X
l0rl0

ð1� dl;l0 Þ½V lall0bl0N lrlð1� Nl0rl0 Þ þ V �
lall0bl0

N 0
lrl

ð1� N 0
l0rl0

Þ�dN 0
lrl ;1�Nlrl

dN 0
l0rl0

;1�Nl0rl0
drl;rl0

�
Y
krk

dN 0
Lkrk

;NLkrk

Y
l0rl0 6¼lrl

dN 0
l0rl0

;Nl0rl0

Y
qrq

dN 0
Rqrq ;NRqrq

. ð41Þ
The matrix element T fN 0gfNg which characterizes electron transitions between the two leads is calculated in using the
second term of the effective operator (A.20) written in the occupation number representation. As it has been shown
in part A.3 of the Appendix, the calculation of the single-electron lead–lead matrix element, Eq. (A.33) can be carried
out in using the simple form (A.35). This follows from the fact that Green function G(E) becomes diagonal if the elec-
tron-vibrational Hamiltonian H ¼ H ðe-vÞ

LMR , Eq. (A.23) of the complete LMR system is replaced by an effective electron-
vibrational Hamiltonian (17) with (complex) eigenvalues Ef af . [Note that single-electron Hamiltonian H ðe-vÞ

LMR represents
particular version of the multi-electron Hamiltonian H ðeffÞ

LRM ; compare Eqs. (A.23) and (25).]
If one and more excess electrons are already captured by the molecule the transmission of an additional electron

through the molecule occurs against the background of a Coulomb interaction between the transferred electrons. It
means that Green function G(E) = [E � H]�1 has to be calculated with the effective LMR Hamiltonian H ¼ H ðeffÞ

LRM

which contains the noted Coulomb interaction. Taking this circumstance into consideration and choosing the Cou-
lomb interaction in the form (25), it becomes obvious that the effective Hamiltonian of the LMR system, Eq. (28)
is diagonal in the occupation number representation, i.e. it reads H ¼ H ðeffÞ

LMR ¼
P

fNgEfNgjfNgihfNgj, where the
multi-electron energy reads
EfNg ¼
X
r¼L;R

X
krk

ErkNrkrk þ
X
lrl

ðElal � eð0Þk ÞNlrl þ U
X
l;l0

Uðll;l0l0ÞNl"N l0#. ð42Þ
Note that this expression accounts for fast relaxational transitions as well as for the influence of the leads on the molec-
ular levels via the single-electron energies Elal , Eq. (19). As far as the Hamiltonian of the LMR system is diagonal,
Green�s function in the transition operator (A.20) is diagonal as well. We may write
T fN 0gfNg ¼ hfN 0gjV intGðEÞV intjfNgi ¼
X
fN 00g

V fN 0gfN 00gGfN 00gfN 00gðEÞV fN 00gfNg; ð43Þ
where the matrix elements V fN 0gfN 00g and V fN 00gfNg are given by Eq. (40), while we get ðE ¼ EfNg � EfN 0gÞ
GfN 00gfN 00gðEÞ ¼ hfN 00gjGðEÞjfN 00gi ¼ ½EfNg � EfN 00g��1

¼
X
krk

ELkðNLkrk � N 00
Lkrk

Þ þ
X
lrl

ðElal � eð0Þk ÞðNlrl � N 00
lrl

Þ þ U
X
lm

Uðll; mmÞðNl"N m# � N 00
l"N

00
m#Þ

" #�1

.

ð44Þ

Note that energy Elal includes the influence of the leads on the single-electron molecular energies while.

One can see that two different types of electronic pathways participate in the formation of the coupling T fN 0gfNg. The
first is associated with the same state lrl connecting the two lead states, Lkrk and Rqrq. For instance, if an electron is
transferred from the left lead to the right lead then
T fN 0gfNg ¼
X
fN 00g

X
krk

X
qrq

X
lrl

V �
Lkk;lal

V Rqk0;lbl ½EfNg � EfN 00g��1NLkrkð1� N lrlÞð1� NRqrqÞ

� drk ;rldrl ;rqdN 00
Lkrk

;1�NLkrk
dN 0

Lkrk
;1�NLkrk

dN 00
lrl ;1�Nlrl

dN 0
lrl ;Nlrl

dN 00
Rqrq

;NRqrq
dN 0

Rqrq
;1�NRqrq

�
Y

k0rk0 6¼krk

dN 00
Lk0r

k0
;NLk0r

k0
dN 0

Lk0r
k0
;NLk0r

k0

Y
l0rl0 6¼lrl

dN 00
l0rl0

;Nl0rl0
dN 0

l0rl0
;Nl0rl0

Y
q0rq0 6¼qrq

dN 00
Rq0r

q0
;NRq0rq0 dN 0

Rq0r
q0
;NRq0rq; . ð45Þ
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It can be seen that the coupling T fN 0gfNg is formed in such a manner that it contains the sum of terms each being pro-
portional to the factor NLkrkð1� NlrlÞð1� NRqrqÞ. The conservation of electron spin during transition (rk = rl = rq)
results in a specific dependence of T fN 0gfNg on the occupation numbers.

Fig. 2 displays the elastic electron transmission from the Lkth level of the left lead to the Rqth level of the right lead
through an ‘‘empty’’ molecule as well as a molecule containing a single excess electron at a certain l 0th MO. To let
become the picture more clear the molecular vibronic levels are not represented in the schemes (a) and (b). This means
that instead of actual initial, intermediate and final LMR energies (ELk þ eð0Þk ;Elal and ERq þ eð0Þk , respectively) only sin-
gle-electron energies, ELk, el and ERq are displayed. Correspondingly, only electronic couplings, VLk and VRq indicate
the transitions between single-electron levels instead of the electron-vibration couplings (9). Note, that just these cou-
plings to the intermediate state connect the initial and final states. Since each separate single-electron transition does
not influence the spin-projection of the transferred electron (cf. Eq. (8)), the transmission of an electron through an
‘‘empty’’ molecule occurs without any change of spin-projection of the transferred electron so that rk = rl = rq. A
similar spin conservation is also valid during the transmission through a molecule which already contains an excess
electron at a certain l 0th MO provided that the excess electron does not leave the molecule during the transmission
process (cf. scheme (b) in Fig. 2).

The second type of pathway covers two different states lrl and l0rl0 in single-electron transmission. Therefore,
Fig. 2.
energie
LMR
transm
T fN 0gfNg ¼
X
fN 00g

X
krk

X
qrq

X
lrl

X
l0rl0

V �
Lkk;lal

V Rqk0 ;l0bl0
½EfNg � EfN 00g��1NLkrkð1� N lrlÞN l0rl0 ð1� NRqrqÞð1� dlrl;l0rl0 Þ

� drk ;rldrl0 ;rqdN 00
Lkrk

;1�NLkrk
dN 0

Lkrk
;1�NLkrk

dN 00
lrl ;1�Nlrl

dN 0
lrl ;1�Nlrl

dN 00
l0rl0

;Nl0rl0
dN 0

l0rl0
;1�Nlrl

dN 00
Rqrq

;NRqrq
dN 0

Rqrq
;1�NRqrq

�
Y

k0rk0 6¼krk

dN 00
Lk0r

k0
;NLk0r

k0
dN 0

Lk0r
k0
;NLk0r

k0

Y
mrm 6¼lrl ;l0rl0

dN 00
l0rl0

;Nl0rl0
dN 0

l0rl0
;Nl0rl0

Y
q0rq0 6¼qrq

dN 00
Rq0r

q0
;NRq0rq0

dN 0
Rq0r

q0
;NRq0rq;

. ð46Þ
This expression shows that the second type of transmission pathway contains the sum of terms each being proportional
to the factors NLkrkð1� NlrlÞNl0rl0 ð1� NRqrqÞ. Spin conservation results in rk = rl, rl0 ¼ rq. The second type of path-
way may work even through one and the same extended MO, l 0 = l. But, in contrast to the first type the transmission
becomes only possible if rl0 6¼ rl (at l 0 5 l) or r0

l 6¼ rl (at l 0 = l). Fig. 3 displays a transfer process where the lth
molecular level (preliminary occupied by an excess electron) controls the transmission. It is seen that in this case
the spin projection of the incoming (into the molecule) and the outgoing (out of the molecule) electron can differ (com-
pare the schemes (a) and (b)).
Single-electron scheme of electron transmission through an ‘‘empty’’ (a) and singly occupied (b) molecule. Only single-electron levels with
s ELk, el, and ERq are represented. Transitions between the corresponding electronic states are characterized by couplings VLk and VRq. The
intermediate state is characterized by the presence of one or two excess electrons. The transmission does not change a spin state of the
itted electron, rk = rl = rq.



Fig. 3. Electron transmission through a singly occupied molecular level l. The spin of the transmitted electron is either conserved or changed.
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Now we are able to write down the precise form of transfer rates (36) specifying the kinetic equations (38). As an
example, let us derive the transfer rate which characterizes an electron jump from the left lead into the molecule. Such a
hopping transition occurs from the set of electronic lead states Lkrk to the set of extended molecular states lrl. During
the transfer of an electron from a particular lead state Lkrk to the molecular level lrl the occupation numbers changes
in such a way that NLkrk ! N 0

Lkrk
¼ 1� NLkrk and Nlrl ! N 0

lrl
¼ 1� N lrl . In line with Eqs. (39), (26) and (40) it

yields
KfN 0gfNg ¼
X
fN mg

X
krk

X
lrl

KfNlgfN mgðLkrk ! lrlÞ. ð47Þ
The summation covers all possible lead–molecule electron transitions each being characterized by partial transfer rate
KfNlgfN mgðLkrk ! lrlÞ ¼ drk ;rl
2p
�h
jV Lkj2NLkrkð1� N lrlÞðFCÞfNlgfN mgðLkrk ! lrlÞ. ð48Þ
Here, the rate depends on the population of the molecule by the preliminary captured electrons. The latter are ac-
counted for by the set of occupation numbers {Nm} which all enter the Franck–Condon factor
ðFCÞfNlgfN mgðLkrk ! lrlÞ ¼
1

p

X
kal

W ðeð0Þk Þ
julð1Þj2hvkjvlalij

2ðck þ ClalÞ
DE2

fNlgfN mgðLkrk ! lrlÞ þ ðck þ ClalÞ
2

ð49Þ
via the energy difference
DEfNlgfN mgðLkrk ! lrlÞ ¼ ELk � ð�lal � eð0Þk Þ þ U
X
m

Uðll;mmÞðN lrl � N 0
lrl

ÞðN m#drl" þ N m"drl#Þ. ð50Þ
In accordance with Eq. (48) the transfer only takes place if Nlrl ¼ 0;N 0
lrl

¼ 1. Therefore, bearing in mind the fact
that Franck–Condon factor is maximal if DEfNlgfN mgðLkrk ! lrlÞ � 0, we are led the condition for a resonant
lead–molecule transition
ELk þ eð0Þk � �lal þ U
X
m

Uðll;mmÞðN m#drl;" þ N m"drl;#Þ. ð51Þ
Eqs.(47)–(51) define the completely lead–molecule electron-transfer rate. Analogously, one can specify the lead–lead
electron-transfer rate. To this end one has to employ Eqs.(43)–(46) as well as Eq.(36) where the matrix element
V ðfN 0gvðfN 0

frf
gÞ; fNgvðfNfrf gÞÞ is associated with the T fN 0gfNg. It is important to note that the lead–molecule (as well

as molecule–lead) and the lead–lead transfer rates appear as the sum of transfer rates related to different transmission
channels. The latter are defined by the number of extra electrons preliminary captured by the molecule.In the case of
lead–molecule transitions the channels are determined by the occupation numbers {Nm}. This conclusion follows just
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from Eq. (51). For instance, there exists a transfer channel defined via the condition N mrm ¼ 0, which is valid for all
molecular states m including the m = l, rm ¼ r0

l 6¼ rl. This channel corresponds to electron jumps from the lead into
the molecule provided the molecule does not contain an extra electron. The corresponding channel transfer rate be-
comes maximal at the resonance condition ELk þ eð0Þk � �lal . If a single electron has been already captured by the mol-
ecule, the lead–molecule transfer proceeds along another transmission channel. Let for instance an extra electron be
captured by the molecule in the state lr0

l so that all occupation numbers N mrm are zero except N mrm ¼ N lr0l ¼ 1 where
r0
l 6¼ rl. Then, the resonance condition (51) reduces to ELk þ eð0Þk � �lal þ UUðll;llÞ. It differs essentially from the

previous one according to the presence of an additional Coulomb term UU(ll; ll).
Each transmission channel specifies the character of the nonlinearity present in the kinetic equation (38). Thus, if the

electron transition proceeds from the lead to the molecule, whereas the latter does not contain an extra electron then
the corresponding term on the right-hand side of the kinetic equation (38) includes the product PLkrkðtÞð1� P lrlðtÞÞ
ð1� P lr0lðtÞÞ

Q
mrm 6¼lrl;lr0l

ð1� P mrmðtÞÞ. [Note that P jrjðtÞ ¼ P ð1jrj ; tÞ, 1� P jrjðtÞ ¼ P ð0jrj ; tÞ.] If a single extra electron with
spin projection r0

l 6¼ rl is already occupies the lth MO, the product of state populations reads PLkrkðtÞð1� P lrlðtÞÞ
P lr0lðtÞ

Q
mrm 6¼lrl ;lr0l

ð1� P mrmðtÞÞ. In contrast to the foregoing product it contains the population P lr0lðtÞ instead of
1� P lr0lðtÞ. Generally, the precise form of the nonlinear kinetic equation is defined by those types of transmission
channels which, at a given voltage bias V, provide the major contribution to the formation of the current. In a given
LMR system, it strongly depends on the number of MOs involved in the transfer process as well as on the relation
between the site–site couplings V mm0 and the Coulomb interaction.
4. Restriction on single-electron transmission processes

The theoretical expressions derived in the preceding section allow us to describe the kinetics of current formation
along various types of transmission channels, which differ from each other by the number of excess electrons prelimin-
ary captured by the molecule. During the transmission along a single-electron channel the molecule can capture only a
single excess electron. Such a channel mainly contributes to the current only for those cases where the Coulombic
interaction energy between two excess electrons (captured by the lth and mth MOs) exceeds strongly the shift of
single-electron energies caused by the applied voltage.

To illustrate this statement we consider a low-temperature single-electron phonon-less transmission through a
LUMO-level and formulate the conditions at which such a transmission gives the main contribution to the current.
Let �1 be the energetic position of the unbiased LUMO-level in the absence of any Coulombic interaction. We take
the Coulomb energy in the form (26) which is valid at a strong inter-site electronic coupling. It means that the energy
gaps j~�l � ~�mj between the molecular levels satisfy the relation (24) and thus the LUMO-level is assumed to be well sep-
arated from the nearest LUMO+1-level. If the left lead is supported at zero voltage then at a strong inter-site coupling
each molecular level shows a linear shift (see more details in [79]). This shift is specified by the voltage division factor g
[55,61], so that the energetic position of the biased LUMO-level is defined through relation �1(V) = �1 + geV. At cer-
tain positive values V ¼ V ð1resÞ

L where
V ð1resÞ
L ¼ DELð0Þ=gjej; ð52Þ
the energy gap DE1L(V) � �1(V) � EF = DEL(0) � g|e|V may equal zero. Thus, at V P V ð1resÞ
L the current is originated

by a resonant single-electron transmission through a given energy level. If, however, the LUMO level l = 1 is already
occupied by the excess electron then a resonant transmission becomes possible only at V P V ð2resÞ

L where V ð2resÞ
L is an-

other critical voltage. Here, V ð2resÞ
L is fixed by the condition (2�1(V) + UU(11;11)) � (�1(V) + EF) = 0, and thus
V ð2resÞ
L ¼ ðDELð0Þ þ UUð11;11Þ=gjej. ð53Þ
One can see that at V > 0 a single-electron resonant transmission dominates the current formation only, if |e|V does not
exceed the effective energy gap
DEðeffÞ
L ¼ DELð0Þ þ UUð11;11Þ=g. ð54Þ
Note that this gap is defined by the position of the electrochemical potential relative to the single-electron energy
(the gap DEL(0)/g) as well as by the Coulomb contribution, UU(11; 11). In the same manner one can derive the
expressions for the critical voltages V ð1resÞ

R and V ð2resÞ
R related to the resonant electron transmission at negative values

of V. Related expressions follow from Eqs. (52) and (53) if one replaces the quantities DEL(0) and g by the
DER(0) � �1 � EF and 1 � g, respectively. Thus, at low temperatures a single-electron transmission is efficient at
V < V ð2resÞ

L (V > 0) or jV j < V ð2resÞ
R (V < 0). If V(|V|) becomes comparable to V ð2resÞ

L ðV ð2resÞ
R Þ or exceeds it, the current



392 E.G. Petrov et al. / Chemical Physics 319 (2005) 380–408
is realized via channels where one or more excess electrons are already captured by the molecule before the steady
current is formed [80]. At finite temperatures, due to thermally activated lead–molecule/molecule–lead electron-
transfer processes the observation of the resonant transmission is smoothed. Nevertheless, the presence of two type
of critical voltages associated with transmission through, respectively, the ‘‘empty’’ and singly occupied molecule, is
physically undoubted. The derivation of respective expressions for V ð1resÞ

L ðV ð1resÞ
R Þ and V ð2resÞ

L ðV ð2resÞ
R Þ will be the sub-

ject of separate studies.
In the present paper we will concentrate on electron transmission processes along single-electron channels only.

Note that a similar problem has been already discussed for the sequential mechanism of current formation in a short
molecular chain [63,64]. However, here we consider another case for which the current proceeds through extended
MOs. It supposes the presence of strong inter-site coupling V mm0 . Moreover, we have to take into consideration a
direct lead–lead transmission. The noted single-electron channel is characterized by the set of initial occupation
numbers {N} where all MOs m are empty, i.e. N mrm ¼ 0. If in the course of the charge transfer an electron leaves
a lead and occupies the lth MO, then the occupation number Nlrl ¼ 0 changes to N 0

lrl
¼ 1� Nlrl ¼ 1. After pop-

ulating a molecular level the excess electron undergoes a relaxational transitions l � l 0 and forms an equilibrium
distribution over all extended states of the molecule. Thus, the efficiency of the transmission depends on the relation
between intra-molecular and molecule–lead kinetic processes. The situation is different if a direct lead–lead transmis-
sion along the same channel is considered. Now, the transmission proceeds in such a way that a singly occupied
molecular state does not participate in intramolecular l � l 0 relaxation processes. It means that in Eq. (43) the
condition N mrm ¼ N 0

mrm
¼ N 00

mrm
¼ 0 holds for all MOs except a certain MO m = l. For such a MO the relation between

respective occupation numbers reads as N 00
lrl

¼ 1� Nlrl ¼ 1� N 0
lrl

¼ 1. Bearing in mind the noted relations one
may derive the concrete form of the nonlinear kinetic equations for all single-electron distribution functions (state
populations).

The kinetic equations for the population of a given electronic state follows from expression (38). Let an electron
with wave vector k and spin projection rk be in the conduction band of the left lead. Putting in Eq. (38) j = Lk, rj = rk,
then, one derives
_PLkrkðtÞ ¼ � 2p
�h

X
lrl

X
kal

jV Lkk;lal j
2drk ;rlð1� dr0l;rlÞ½W ðeð0Þk ÞPLkrkðtÞð1� P lrlðtÞÞ � W ðelalÞð1� PLkrkðtÞÞP lrlðtÞ�

� L ELk � Delal ;k
� �

ð1� P lr0lðtÞÞ
Y

mrm 6¼lrl ;r0l
ð1� P mrmðtÞÞ �

2p
�h

X
kk0

X
rkrq

jT Rqk0 ;Lkkj2drk;rq ½W ðeð0Þk ÞPLkrkðtÞ

� ð1� PRqrqðtÞÞ � W ðeð0Þk0 ÞPLqrqðtÞð1� PLkrkðtÞÞ�LðELk � ERq þ Deð0Þk;k0 Þ
Y
mrm

ð1� P mrmðtÞÞ. ð55Þ
The matrix elements V Lkk;lal are defined by the expression (9) while we have
T Rqk0 ;Lkk ¼
X
lal

V �
Lkk;lal

V Rqk0;lal

ELk � Elal � eð0Þk

�
X
lal

V �
Lkk;lal

V Rqk0 ;lal

ERq � Elal � eð0Þk0

. ð56Þ
The broadened d-functions (Lorentzian) LðELk � Delal;kÞ in Eq. (55) follow from Eq. (A.28) where one has to replace
clal by Clal , Eq. (20) while the Lorentzian LðELk � ERq þ Deð0Þk;k0 Þ is represented by Eq. (A.30).

The current is defined by the time-derivative of the integral lead population NL(t), (cf. Eqs. (11) and (12)). There-
fore, to find _NLðtÞ one has to sum up both parts of Eq. (55) over k and rk. Note, now, that NL(t) is a macroscopic
quantity, and thus undergoes a small change during the electron transmission through the molecule, only. This means
that PLkrkðtÞ deviates only a little from the equilibrium Fermi distribution (A.26). Therefore, we may set
PLkrkðtÞ ’ fLðELkÞ on the right–hand side of Eq. (55) (see the additional discussion in [26,63,64]). A similar approxima-
tion can also be introduced when one derives the kinetic equations for the populations P lrlðtÞ. Since any magnetic field
is absent we may set Pl"(t) = Pl#(t) � Pl(t), so that (1 � Pl"(t))(1 � Pl#(t)) = (1 � Pl(t))

2.
Introducing the nonlinearity factors
W 0ðtÞ ¼
Y
mrm

ð1� P mrmðtÞÞ ¼
Y
m

ð1� P mðtÞÞ2 ð57Þ
and
W lðtÞ ¼ SlðtÞW 0ðtÞ; ðSlðtÞ ¼ P lrlðtÞ=ð1� P lrlðtÞÞ; ð58Þ
we rewrite the complete set of nonlinear kinetic equations describing the charge transmission along the single-electron
channel. It follows
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_NLðtÞ ¼ �
X
l

ðKL!lW 0ðtÞ � Kl!LW lðtÞÞ � ðQL � QRÞW 0ðtÞ;

_P lðtÞÞ ¼ �
X
r¼L;R

ðKl!rW lðtÞ � Kr!lW 0ðtÞÞ �
X
l0
ðKl!l0W lðtÞ � Kl0!lW l0 ðtÞÞ ðl; l0 ¼ 1; 2; . . . ;NÞ;

_NRðtÞ ¼ �
X
l

ðKR!lW 0ðtÞ � Kl!RW lðtÞÞ � ðQR � QLÞW 0ðtÞ;

ð59Þ
where the single-electron rate constants (r = L, R),
Kr!l ¼ 2
X
k

Krk!l;Kl!r ¼ 2
X
k

Kl!rk; ð60Þ
are defined through respective lead–molecule and molecule–lead transfer rates. The Krk ! l are given in Eqs. (A.24)
and (A.32). The Kl!rk follow from the Eqs. (A.24) and (A.32) if one replaces fLðELkÞW ðeð0Þk Þ by W ðelalÞ. The quantity
QLðRÞ ¼ 2
X
kq

KLk!RqðRk!LqÞ ð61Þ
denotes an integral transfer rate which characterizes the direct lead–lead electron transmission (see Eqs. (A.29) and
(56)).

Our aim is to derive an expression for the stationary interelectrode current. For such a situation the electronic pop-
ulation of the molecule does not changes during electron transmission, i.e. _P lðtÞ ¼ 0. Accordingly, the set of nonlinear
equations (59) essentially simplifies. In particular, the electronic populations can be derived from the set of linear inho-
mogeneous equations for the auxiliary quantities Sl, Eq. (58),
X

l0
½ðKl!L þ Kl!R þ

X
m

Kl!mÞdll0 � Kl0!l�Sl0 ¼ KL!l þ KR!l. ð62Þ
Note that the Sl and thus the populations Pl are exclusively defined by inelastic transfer processes within the LMR-
system. Solving the set of Eq. (62) and using the definition of Sl, we find the stationary electron populations Pl to-
gether with the factors W0 and Wl. The latter determine _NL according to Eq. (62). The expression for the current,
Eq. (11) reduces to a sum of two contributions
I ¼ Idir þ I int; ð63Þ

where the first contribution,
Idir ¼ �eW 0ðQL � QRÞ ð64Þ

refers to a direct lead–lead electron transmission while the second one,
I int ¼ �eW 0

X
l

ðKL!l � Kl!LSlÞ; ð65Þ
reflects electron transmission through intermediate LMR electronic states accompanied by a population of the ex-
tended molecular levels by the extra electron (the transferred electron). If the rate constants Kl!m characterizing the
transitions between extended molecular states, are smaller than the electron-transfer rates Kl!L(R), the set of Eq.
(62) has the simple solution, Sl = (KL!l + KR!l)/(Kl!L + Kl!R) and thus the stationary populations are given by
the expression
P l ¼
KL!l þ KR!l

KL!l þ KR!l þ Kl!L þ Kl!R
. ð66Þ
5. Discussion of the results

The derivation of the set of nonlinear kinetic equations (38) for the reduced single-electron distribution functions at
the presence of a Coulomb interaction between the transferred electrons has to be considered as the main result of the
paper. It has been found that the related transfer rates, Eq. (36) include contributions from different transmission chan-
nels. Each of them refers to a definite number of excess electrons captured earlier by the molecule in the course of
charge transfer. Main emphasis has been put on the single-electron transmission channel. It may participate in the
charge transfer process if the molecule does not contain any excess electron. The probability of electron transfer
through the single-electron channel is defined by the statistical factor W0, Eq. (57). If the population of any electronic
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state Pl increases, then, W0 decreases and the current through the molecule may vanish. In the subsequent sections we
will consider this problem in more detail.

5.1. The direct lead–lead contribution to the single-electron channel of the current

Using the definitions (A.29), (56) and (61), we may introduce the spectral density operator C(r) (r = L, R) and
Green�s operator G(E) via their respective matrix elements
CðrÞ
lalmbm

ðEÞ ¼ 2p
X
k

V rkk;mbmV
�
rkk;lal

dðE � ELkÞ ð67Þ
and
GlalmbmðEÞ ¼
dlal ;mbm
E � Elal

. ð68Þ
[Form (68) follows also from a general expression (44) at E ¼ ELk þ eð0Þk , i.e. at NLkrk
= 1, N 00

Lkrk
¼ 0, Nlrl ¼ 0;

N 00
lrl

¼ 1;N mrm ¼ N 00
lrl

¼ 0.] Then, we may rewrite Eq. (64) to get
Idir ¼ W 0I
ðq-eÞ
dir ; ð69Þ
where we introduced the quasi-elastic current
I ðq-eÞdir ¼ � 2e
h

X
kk0

Z 1

�1

Z 1

�1
dEdE0 LðE � E0ÞT kk0 ðE0;E;V Þ½W ðeð0Þk ÞfLðE � eð0Þk Þð1� fRðE0 � eð0Þk0 � eV ÞÞ

� W ðeð0Þk0 Þð1� fLðE � eð0Þk ÞÞfRðE0 � eð0Þk0 � eV Þ�. ð70Þ
This current is formed by single-electron transmission if any electron–electron correlation in the course of electron mo-
tion has completely be ignored. The conducting properties of the molecule are covered by the transmission function
T kk0 ðE0;E;V Þ ¼ Tr CðRÞðE0 � eð0Þk0 ÞGðEÞC
ðLÞðE � eð0Þk ÞGþðEÞ

� �
. ð71Þ
The expression for the elastic current, I ðelÞdir , follows from Eq. (71) valid for a quasi–elastic current if eð0Þk0 ¼ eð0Þk and if
L(E � E 0) = d(E � E 0). As long as the I–V characteristics are measured at room temperatures or below the estimate
of the current can be performed by replacing the Fermi function fs(�) by the unit-step function h(EF � �) [55]. It yields
I ðq-eÞdir ’ I ðelÞdir ¼
X
k

W ðeð0Þk ÞI ðelÞk . ð72Þ
The partial elastic current through the molecule (note e < 0),
I ðelÞk ¼ 2e
h

Z EFþeV

EF

dET kkðE;E;V Þ; ð73Þ
displays the contribution from the transmission along the single-electron transmission channel when the molecule
(without an extra electron) is in the kth vibrational state. At low temperature, the elastic current is formed by the mol-
ecule which is in its vibrational state-ground. Putting eð0Þ0 ¼ 0 we arrive at the standard expression for the elastic inter-
electrode current [60–62] so that
I ðq-eÞdir � I ðelÞ ¼ 2e
h

Z EFþeV

EF

dET ðE; V Þ; ð74Þ
where
T ðE; V Þ � TrðCðRÞðEÞGðEÞCðLÞðEÞGþðEÞÞ. ð75Þ
5.2. The inelastic contribution to the single-electron channel of the current

This contribution to the overall current proceeds through intermediate states populated by the transferred electron.
We will restrict the considerations to the case where the lead–molecule (molecule–lead) transitions are much faster than
relaxation processes between the molecular levels l and l 0. Therefore, Eq. (66) can be used and, thus, the expression
for the inelastic current, Eq. (65) takes the following form:
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I int ¼ �e
X
l

W 0l
KL!lKl!R � KR!lKl!L

KL!l þ KR!l þ Kl!L þ Kl!R
ð76Þ
with
W 0l ¼ ð1� P lÞ
Y
m 6¼l

ð1� P mÞ2. ð77Þ
According to the definitions (60) and (A.24) and after replacing the Lorentzian by a d-function the lead–molecule and
molecule–lead transfer rates read
Kl!LðRÞ ¼ ðZ0=ZlÞeDElLðRÞðV Þ=kBTKLðRÞ!l; ð78Þ

KL!l ¼
2

�h

X
kal

CðLÞ
klalklal

ðelal � eð0Þk ÞW ðeð0Þk ÞfLðelal � eð0Þk Þ;

KR!l ¼
2

�h

X
kal

CðRÞ
klalklal

ðelal � eð0Þk ÞW ðeð0Þk ÞfRðelal � eð0Þk � eV Þ.
ð79Þ
The partition functions Z0 and Zl are defined in Eqs. (A.6) and (A.27), whereas DElL(V) and DElR(V) are the energy
differences between the lth MO and the Fermi level of the left and right lead, respectively (Eq. (88)).
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5.3. Interplay between the elastic and inelastic transmission

We compare the influence of the different contribution to the overall current (63) in using the same parameters that
define the elastic and inelastic transmission. To this end we consider a vibration–less electron transmission for which
the elastic lead–lead current is given by Eqs. (69) and (74). It is possible to show (see also [79]) that for strong inter-site
couplings Vmm±1 the transmission function (75) reduces to
Fig. 5.
throug
(76), (8
T ðE; V Þ ¼ CðLÞCðRÞ
XN
l¼1

ulð1Þu�lðNÞ
E � El þ i0þ

�����
�����
2

. ð80Þ
The complex energy of the lth molecular state,
El ¼ el þ geV � icl; ð81Þ
includes a voltage induced shift which is characterized by voltage division factor (cf. Fig. 1)
g ¼ ½1þ ðdL � dRÞ=d�=2; ð82Þ

while
cl ¼ ½julð1Þj2CðLÞ þ julðNÞj2CðRÞ�=2 ð83Þ
is the broadening of the lth level. It is caused by the lead–molecule interactions (C(L(R)) is the level broadening related
to left (right) terminal unit of the molecule). For a sake of clarity we consider a molecule with a regular arrangement of
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N identical sites. It means that in the absence of a voltage bias V the site energies Em coincide, E1 = E2 = 	 	 	 =
EN � EB. The same should hold for the inter-site couplings, Vmm±1 � b. Therefore, we may write
Fig. 6.
on Eqs
transfe
el ¼ EB � 2b cos
pl

N þ 1
;

ulðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2

N þ 1

r
sin

pln
N þ 1

ðl ¼ 1; 2; . . . ;NÞ.
ð84Þ
It follows from Eqs. (80) and (81) that
T ðE; V Þ ¼ T ðE � geV Þ � T ðxÞ; ð85Þ

and, thus, we obtain the following expression for the direct lead–lead current
Idir ¼ W 0I0

Z EFþgjejV

EF�ð1�gÞjejV
dxT ðxÞ; ðI0 � 2jej=hÞ. ð86Þ
Here, the transmission function T(x) does not depend on the voltage bias V. The shape of the I–V characteristics is
caused by the integration limits as well as by the factor W0. Note that the expression for the lead–lead current agrees
with the standard expression for the elastic current provided that the electronic populations become small (Pl 
 1)
and thus W0 ’ 1. If it is not the case, then, due to inelastic processes the molecule is populated by the transferred elec-
trons. As a result, W0 modifies the transmission through a single-electronic channel just reducing the current through
this channel.
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Assuming the same conditions as beforehand, the expression (76) for an inelastic current is reduced to
Fig. 7.
related
I int ¼ I0pCðLÞCðRÞ
X
l

W 0lðjulð1ÞulðNÞj2=clÞ
1

eDElL=kBT þ 1
� 1

eDElR=kBT þ 1

� �
ð87Þ
where energy gaps read (note Del = el � EF)
DElLðV Þ ¼ Del � gjejV ; DElRðV Þ ¼ Del þ ð1� gÞjejV . ð88Þ

Fig. 4 displays the typical steplike I–V characteristics of a molecule for the case where the current is formed by a direct
single-electron lead–lead transmission. The MOs are not populated by the transferred electrons and the lead–lead
transmission proceeds in an elastic manner. The number of steps in the I–V characteristics which might become visible
is given by the number of levels N. If a model with a single localized MO per site is taken then N coincides with the
number of sites (as it is the case for Fig. 4). The smooth transition from one step to subsequent step is caused by the
level broadening C(L) and C(R). An asymmetry of the I–V-curves with respect to V > 0 and V < 0 appears if the voltage
division factor g differs from 0.5 (compare Fig. 4(a) and (b)).

The shape of the I–V-curves essentially changes if an inelastic pathway contributes. Now the transferred electron
undergoes relaxational transitions in the molecule. The MOs are populated by the excess electron and the level pop-
ulations Pl differ from zero. This leads to a change of the factors W0, Eq. (57) andW0l, Eq. (77), which are responsible
for a change of the elastic and inelastic component of the current. An expression for both components can be found in
Eqs. (86) and (87). [However, it is necessary to remind on the fact that Eqs. (86) and (87) are only correct if the inequal-
ities (23) and (24) are fulfilled together with V < V ð2resÞ

L or jV j < V ð2resÞ
R (cf. definition (53)). Just the validity of the latter

condition guarantees that the Coulomb interaction does not change the single-electron rate constants given in Eqs.
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Asymmetric current–voltage characteristics of a molecule. Calculations are based on Eqs. (76), (80), (86), (57) and (77). The asymmetry is
to the difference between left lead–molecule and the right lead–molecule inelastic transfer processes as well as to the voltage division factor g.
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(A.24) and (A.29).] To become more concrete let us consider a 3-site molecule and let us take b = 2 eV, U = 3 eV. Now,
the inequalities (23) and (24) are valid for an arbitrary voltage bias. Although the I–V characteristics of the 3-site mol-
ecule includes three steps (cf. Fig. 4(a)) the inequality V < V ð2resÞ

L ðjV j < V ð2resÞ
R Þ restricts the correct computation of the

current to a certain voltage range. For an energy gap DEB = EB � EF = 2 eV, this range is given �2 to 2 V, where only
the first step of the complete I–V curve is included. Just this step is shown in Figs. 5–7. If the broadening C(L) and C(R)

coincide and if the voltage division factor g equals 0.5 the I–V characteristics becomes symmetric (cf. Fig. 5). Note, that
the direct lead–lead contribution to the current shows a non-monotonic behavior in the region 1 to 1.5 V and in the
region �1 to �1.5 V (see also Fig. 5(a)). Such behavior of the I–V curves is caused by the increase of the lowest level
population P1 from zero to 0.5 (cf. the insert in Fig. 5(b)). Correspondingly, the quantitiesW0 andW0l also changes. It
is worth mentioning that for |V| > 1.2 V, just originated by W0 and W0l, the inelastic current, Iint, exceeds the modified
elastic current, Idir. Consequently the total current I, Eq. (64) is formed by an elastic and inelastic contribution (see Fig.
5(b)). If the broadening C(L) and C(R) strongly differ a pronounced asymmetry in voltage dependence of Idir, Iint, and of
the total current I appears (compare Fig. 6(a) and (b)). The asymmetry in the I–V curves (the rectification effect) is
enforced if the voltage division factor g deviates from 0.5. One may highlight this result by comparing the regions
V > 0 and V < 0 in Figs. 6 and 7.

The influence of the factor g on the rectification properties of a single molecule is determined by the concrete form of
the voltage drop in the interelectrode region. This problem has been discussed in different papers (see, e.g.,
[55,60,61,74,79,82,83]). Therefore, we will concentrate on a different rectification effect which is related to the inelastic
transfer. To this end let us consider electron transmission through a molecule which is symmetrically disposed the two
lead surfaces so that g = 0.5. In this case the inequality C(L) 5 C(R) becomes valid if the contact of the molecule with
the left lead differs from that with the right lead (for instance, due to different types of terminal groups of the molecule).
The difference between C(L) and C(R) results in a non-symmetric electron transfer and the left lead ! right lead trans-
mission differs from the right lead ! left lead one. This results in different values of the stationary population P1 for
V > 0 and for V < 0 (cf. insert of Figs. 6(b) and 7(b)). Since the voltage dependence ofW0 andW0l follows from that of
P1, an asymmetric dependence of Idir and Iint on the applied voltage is also caused by that of P1. [As in the previously
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between the transfer rates of the incoming and of the outgoing charges. As an example, the inelastic transmission through the lowest energy level
l = 1 is shown. It is defined by the transfer rates KL1 and K1R, respectively.
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discussed symmetric case shown in Fig. 5(b), the populations P2 and P3 equal zero in the voltage range �2 to 2 V.
Therefore, P2 and P3 do not influence W0 and W0l.] Thus, a kinetic rectification effect appears resulting from different
populations of the molecule by the transferred electron whether the left–right or the right–left inelastic transmission is
considered. The formation of a non-symmetric stationary population P1 caused by non-elastic transfer processes is
illustrated in Fig. 8. Let V r � V ð1resÞ

L (cf. Eq. (52)) be the characteristic voltage at which resonance transmission appears
via the lowest molecular level l = 1. This voltage is defined by the condition DE1L(V) = 0 (at V > 0) and DE1R(V) = 0
(at V < 0, for the energy differences see Eq. (88)). If the voltage division factor g equals 0.5, then Vr becomes indepen-
dent on the voltage sign and equals 0.6 V. [To estimate Vr we took the parameters DEB, b and N identical to those used
in Fig. 6.] Let us consider an inelastic transmission process at V > 0. In the region V < Vr, the lead–molecule transfer
rates KL!1 and KR!1 are much smaller than the respective lead–molecule transfer rates K1!L and K1!R. Therefore, in
accordance with Eq. (66) the population P1 remains small. This yields W0 ’ 1, W0l ’ 1 (remember that in the region
�2 to 2 V one obtains P2 ’ 0, P3 ’ 0). Thus, in the region V < Vr any pronounced modification of both current com-
ponents by W0 and W0l is absent. The situation changes in the vicinity V � Vr where P1 starts to increase. If V > Vr

and if the relations KL!1 � K1!L, KR!1 
 KR!1 are fulfilled, the inelastic current is determined by the direct left–
right electron transmission through an intermediate state associated with the population of the MO l = 1 (cf. scheme
(c) in Fig. 8). In the course of the directed left–right electron transfer the population of the intermediate state saturates
at P1 ’ C(L)/(C(L) + C(R)) = 0.8. If V < 0 and if a direct right–left electron transfer takes place the saturated value is
given by P1 ’ C(R)/(C(L) + C(R)) = 0.2. One may notice the difference between the populations for V > 0 and for
V < 0 (see also the insert of Fig. 6(b)). Therefore, W0 and W0l also changes considerably for V > 0 and for V < 0. Note
again, that just this fact is responsible for the occurrence of non-symmetric I–V characteristics of the single-electron
current and thus for the observation of kinetic rectification effect.
6. Conclusion

In present paper we considered some general theoretical problems related to single-electron elastic and inelastic
transmission through a molecular wire. To remain sufficient simple the wire has been represented by an N-site
tight–binding model leading to N delocalized MOs. If embedded in between two leads the MOs participate in the elec-
tron transmission leading to a net current which is caused by two different electron transfer routes between the leads.
The first route is originated by an electron transfer process where the MOs are not populated by the transferred elec-
tron even if resonance conditions are fulfilled for the molecular levels. This route is responsible for formation of an
elastic inter-electrode current. The other route is related to a two–step transmission where the transferred electron
leaves the lead and undergoes relaxation in the wire including population of the MOs. Afterward the electron is trans-
ferred to another lead. This a transmission process forms the inelastic inter-electrode current.

It is usually assumed that in a left lead, molecule, right lead (LMR) system the current is formed either by an elastic
or by an inelastic transmission process. Generally, this is not the case and both type of transmission may be simulta-
neously contribute to the current. A proper description of such a situation has been achieved by using the density ma-
trix technique. The derived nonlinear kinetic equations for reduced single-electron distribution, Eq. (38) describe the
elastic as well as the inelastic electron transfer. The kinetic equations are valid for different situations including those
where the Coulomb interaction between the transferred electrons strongly affects the electron transmission through the
molecule. It is important to note that in the framework of the unified description the elastic as well as the inelastic
component of the current are expressed by a single set of parameters. This allows to correctly compare the contribution
of both current components to the total inter-electrode current. We consider the derivation of the nonlinear kinetic
equations (38) and the respective transfer rates (36) as the main result of our studies.

The unified description shows that the Coulomb interaction is responsible for the formation of the specific electron-
transfer channels associated with the number of extra electrons captured by the molecule in the course of charge
transmission. Among these channels the single-electron channel is of particular importance. This channel governs
the transmission through an ‘‘empty’’ molecule, i.e. the molecule which does not contain an extra electron except
the only one just being transferred. Therefore, the formation of the current through the single-electron channel pro-
ceeds in the absence of Coulomb interaction. However, the probability of elastic transmission through this channel
is not equal unity but is given by the factor W0, Eq. (57). It means that the direct lead–lead current Idir is defined
as a modified completely elastic current, Eq. (86). Moreover, the inelastic current, Eq. (87) is modified by the factor
W0l, Eq. (77). The appearance of W0 and W0l is related to the fact that in the course of electron transmission the
‘‘empty’’ molecule is kinetically populated by the transferred electron. Accordingly, each molecular state population
Pl, Eq. (66) is determined by the inelastic transfer processes. Our studies show that a completely elastic lead–lead cur-
rent only appears at an negligible population of the molecule by the transferred electron (i.e. if Pl 
 1 is valid for all
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molecular levels l). As one example for such a situation we refer to the superexchange lead–lead electron transmission.
Another example is given by an asymmetric electron transmission where the broadenings C(L) and C(R) strongly differ
one from another. Here, a small population of the molecule appears following from the directed inelastic transfer pro-
cess (cf. scheme (c) in Fig. 8 and discussion to Figs. 6 and 7).

The described interrelation between the elastic and inelastic component of the total current has to be considered as
further important result of the present paper. This conclusion also underlines that both components of the current give
a comparable contribution to the total current (see Figs. 5–7). Although this result has been obtained via the analysis
of low-temperature vibration-less electron transmission through the single-electron channel only, it reflects a general
physical situation. Inelastic transfer processes lead to a population of the molecule by the transferred electrons.
Accordingly, the direct lead–lead transmission proceeds via the transfer channels formed by extra electrons captured
in the course of inelastic transfer. The number of captured electrons as well as the character of electron-transfer chan-
nels depends on relation between dynamic and relaxational characteristics of the LMR system (position of molecular
levels with respect to the Fermi levels of the lead, Coulomb interaction between the extra (transferred) electrons,
couplings to the lead, couplings to various vibrational modes and other). The opening of a particular channel is deter-
mined by the strength of the applied voltage. For instance, if the Coulomb interaction is taken in the Hubbard-form
and if the inequalities (22) and (23) are fulfilled the single-electron channel may participate in charge transmission in

the voltage region V < V ð2resÞ
L ðjV j < V ð2resÞ

R Þ. The corresponding lead–molecule/molecule–lead and lead–lead rate con-
stants are defined by the expressions (86) and (87). Note, that the concrete expressions for these rate constants only
follow from the general expression for the transfer rate (36), if one analyzes a vibration-less transmission. But, Eq.
(36) contains contributions from the various electron-transfer processes as well. Moreover, it accounts for the broad-
ening of the electron-vibrational levels of the molecule due to fast vibrational relaxation as well as due to the interac-
tion with the macroscopic leads. [This is clearly demonstrated by Eqs. (47)–(50) specifying the lead–molecule transfer
rates.] Therefore, the kinetic equations (38) are able to describe the formation of interelectrode current caused by var-
ious elastic and inelastic transmission channels including the thermally activated phonon-assisted channels.

The proposed unified description of electron-transfer processes refers to LMR system where the molecule or molec-
ular wire positioned in between the leads is characterized by delocalized electronic states. The next step of our studies
will the description of electron transfer through molecular structures where the electron transmission proceeds across
localized electronic states.
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Appendix A. Kinetic equations for integral populations

The main purpose of the appendix is to derive kinetic equations governing the single-electron state populations
P jrjðtÞ at a situation where the molecule is coupled to the leads and the transmission occurs against the background
of fast intra-term vibration relaxation. To this end we employ the density matrix approach for the LMR system addi-
tionally coupled to a thermal bath (heat bath) to include vibrational relaxation. A similar approach has already been
used for the derivation of kinetic equations describing electron-vibrational dynamics in a donor-bridge-acceptor sys-
tem [73,77] as well as the LMR system studied here [65,26]. The kinetic equations are obtained from generalized master
equations (GME) for the reduced density operator q(t) governing the dynamics of an open quantum system like the
considered LMR system [66–69].

To offer a sufficient clear description we especially consider (in Section A.1) the derivation of a master equation for
the electron-vibrational level populations, Eq. (A.17). Moreover, it will be demonstrated in which way the fast vibra-
tional relaxation justifies a reduced description via kinetic equations for integral level populations, Eq. (A.5). Sections
A.2 and A.3 demonstrate how to account for the lead–molecule interaction in the kinetic equations (A.18) and how to
compute single-electron rate constants (A.24) and (A.29).

A.1. Kinetic equations for integral electronic state populations

In the following we will study in detail the way wherein fast vibrational relaxation processes influence the kinetic
processes within the molecule. Let us abbreviate the molecular electron-vibrational states jlrl;vlali by |sai. [Note that
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in the occupation number representation jlrl;vlali ¼ j1lrlijvlali ¼ aþlrl j0lrlijvlali.] Then, the GME in Markov
approximation written for the matrix elements of the density operator q(t),
qsass0as0
ðtÞ ¼ hsasjqðtÞjs0as0 i; ðA:1Þ
takes the following forms [73,81]:
_qsa s0bðtÞ ¼ �ixsa s0bqsa s0bðtÞ �
i

�h

X
kn

ðV sa;knqkns0bðtÞ � V kn;s0bqsa knðtÞÞ � 1� ds;s0ð Þð1=2Þ csa þ cs0b
� �

qsa s0bðtÞ

� ds;s0da;b
X
a0

wðsÞ
a!a0qsa saðtÞ � wðsÞ

a0!aqsa0 sa0 ðtÞ
� �

. ðA:2Þ
The couplings matrix elements V sa;s0a0 ¼ hsajV intjs0a0i are responsible for transitions between electron-vibrational states
|sai and |s 0a 0i related to different electronic levels s and s 0 (spin quantum number is timely omitted). The quantity
csa ¼ s�1

sa ¼
P

a0w
ðsÞ
a!a0 defines the inverse life-time of the electron-vibrational state |sai and coincides with the broaden-

ing of the respective electron-vibrational level. To find the csa one has to calculate the rate wðsÞ
a!a0 which characterizes the

relaxation between the vibrational states |sai and |sa 0i. It is possible to show that if the coupling to a heat bath is de-
fined by UðsÞ

aa0 , Eq. (6) then ðs ¼ l; a ¼ al; a0 ¼ a0lÞ
wðsÞ
a!a0 ¼

1

�h2

Z 1

�1
dse�ixðsÞ

aa0
s e�iHBs=�hUðsÞ

aa0e
iHBs=�hUðsÞ

a0a

D E
. ðA:3Þ
Here, HB is the bath Hamiltonian and esa � esa0 ¼ �hxðsÞ
aa0 denote the transition energies. The bracket h	 	 	i reflects the

thermal average with respect to the equilibrium state of the thermal bath.
The vibrational transition a ! a 0 described by the last term on the right-hand side of Eq. (A.2) are defined via the

same transition probabilities (A.3) as it is the case for the inverse life-times s�1
sa ¼ csa. The latter specify the relaxation

time. For t � ssa all off-diagonal matrix elements related to same electronic level s, vanish while the diagonal matrix
elements, i.e. the populations Psa(t) = qsa sa(t), describe a thermal equilibrium (Boltzmann) distribution versus the
states |vsai. Accordingly we may write
qsa sbðtÞ ¼ da;bW ðesaÞP sðtÞ; ðA:4Þ
where
P sðtÞ ¼
X
a

PsaðtÞ ðA:5Þ
denotes the integral population of the sth electronic level. Furthermore, we introduced the Boltzmann distribution of
the vibrational states of the sth electronic level
W ðesaÞ ¼ Z�1
s e�ðesa�es0Þ=kBT Zs ¼

X
a

e�ðesa�es0Þ=kBT

 !
. ðA:6Þ
Relation (A.4) represents a coarse-grained description [73,81] describing the electron transmission via kinetic equations
for integral populations Ps(t) (in our case, for P lrlðtÞ) only.

If one inserts the factorized distribution (A.4) into Eq. (A.2) and takes into consideration that wðsÞ
a!a0=w

ðsÞ
a0!a ¼

exp½ðesa � esa0 Þ=kBT �, the following set of equations for diagonal elements
_qsa saðtÞ ¼
i

�h
½qðtÞ; V int�sa sa ðA:7Þ
as well as off-diagonal elements
_qsa s0bðtÞ ¼ � i

�h
DEsa s0bqsa s0bðtÞ þ

i

�h
½qðtÞ; V int�sa s0b ðA:8Þ
is obtained. In the latter equation we introduced complex energy difference DEsa s0b ¼ Esa � E�
s0b with
Esa � esa � icsa. ðA:9Þ

These complex energies of the electron-vibration levels include level broadening csa caused by an interaction with the
heat bath. At t� ssa the presence of this broadening allows to neglect the time derivative of qsa s0bðtÞ, and a set of alge-
braic equations follows
qsa s0bðtÞ ¼
1

DEsa s0b
½qðtÞ; V int�sa s0b. ðA:10Þ
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Note that the description of a stationary electron transmission (related to a stationary current) requires _qsa s0bðtÞ ¼ 0
and automatically transforms the set of Eqs. (A.8) to Eqs. (A.10).

Eqs. (A.7) and (A.10) can be represented in operator form if we introduce the projection operators
T̂ d and T̂ nd ¼ 1� T̂ d . They should separate any operator Â into diagonal and off-diagonal components. Noting
qdðtÞ ¼ T̂ dqðtÞ and qndðtÞ ¼ T̂ ndqðtÞ, the following set of coupled operator equations is obtained:
_qdðtÞ ¼ �iT̂ dLV qndðtÞ;

qndðtÞ ¼ �i

Z 1

0

dsUð0ÞðsÞLV qdðtÞ � i

Z 1

0

dsUð0ÞðsÞLV qndðtÞ;
ðA:11Þ
with the time evolution superoperator defined as
Uð0ÞðsÞ ¼ e�iL0s. ðA:12Þ

In Eqs. (A.11) and (A.12), L0 � ð1=�hÞ½H 0; . . .� and LV � ð1=�hÞ½V int; . . .� denote the Liouville superoperators with re-
spect to the molecular Hamiltonian
H 0 ¼
X
sa

Esajsaihsaj ðA:13Þ
and with respect to the off-diagonal interaction Vint, respectively. Since Esa is complex (see Eq. (A.9)) and thus
H 0 6¼ Hþ

0 the time evolution superoperator Uð0ÞðsÞ acts on an arbitrary operator A according to
Uð0ÞðsÞA ¼ expð�iH 0s=�hÞA expðiHþ

0 s=�hÞ. Next we note that the second equation of the set (A.11) couples the off-diag-
onal part of the density matrix to the diagonal one. Therefore, an iteration procedure can be introduced to get equa-
tions for qd(t) only. They read
_qdðtÞ ¼ �QqdðtÞ. ðA:14Þ

Here, Q can be understood as a transmission superoperator which reads
Q ¼
X1
k¼1

Q2k. ðA:15Þ
Every term
Q2k ¼ �ð�i=�hÞ2kT̂ d

Z 1

0

ds2k�1

Z 1

0

ds2k�2 	 	 	
Z 1

0

ds1LV T̂ ndU
ð0Þðs2k�1ÞLV T̂ ndU

ð0Þðs2k�2Þ . . . T̂ ndU
ð0Þðs1ÞLV

ðA:16Þ

only contains an even number of operators Vint.

To derive kinetic equations for the integral populations Ps(t) we rewrite the master equation (A.14) in matrix form
_qsa saðtÞ ¼ �
X
s0b

hsa Qjs0bihs0bjð Þj jsaiqs0b s0bðtÞ. ðA:17Þ
An inspection of each term on the right-hand side of the kinetic equation (A.17) (by taking into account the expansion
(A.15) and the relations (A.4) and (A.6)) shows that it can be transformed into the following balance equation:
_P sðtÞ ¼ �
X
s0

js!s0P sðtÞ � js0!sP s0 ðtÞ½ �. ðA:18Þ
The rate constants characterizing the s ! s 0 transition read
js!s0 ¼
2p
�h

X
ab

T sa;s0b

�� ��2W ðesaÞL esa � es0b
� �

. ðA:19Þ
The matrix elements T sa;s0b ¼ hsajV ðeffÞjs0bi which couple electron-vibrational states sa and s 0b are defined via the effec-
tive transition operator
V ðeffÞ ¼ V int þ V intGðEÞV int. ðA:20Þ
It contains the operator Vint as well as Green�s operator G(E) = (E � H)�1, where E ¼ esa � es0b denotes the transi-
tion energy. The Hamiltonian H = H0 + Vint contains two terms, where the first coincides with the effective molecular
Hamiltonian (A.13) while the operator Vint describes transitions between different electronic levels and is identical with
VM�M, Eq. (5). Note, that energies (A.9) of the Hamiltonian (A.13) include level broadenings csa caused by vibrational
relaxation. Moreover,
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L esa � es0b
� �

¼ 1

p

csa þ cs0b

esa � es0b
� �2 þ csa þ cs0b

� �2 ðA:21Þ
denotes the normalized Lorentzian which reduces to a delta-function if csa as well as cs0b vanish.
After a proper specification of the electron-vibrational states |sai Eqs. (A.18),(A.19),(A.20) can be used for a

description of non-adiabatic as well as adiabatic transfer processes within the molecule. In the present consideration
the extended states are used to characterize electronic properties of molecule. Therefore the derived kinetic equations
(A.18) describe only relaxation transitions between extended electronic levels s = lr and s 0 = l 0r caused by interaction
Vint = VM�M, Eq. (5).
A.2. Coupling to the leads

To account for the leads we have to introduce the lead electronic states |Lkrki and |Rqrqiwhich complement the
molecular electron-vibrational states |sai. If the fast relaxation discussed beforehand is only present in the molecule
we arrive at the generalized set of kinetic equations
_P jðtÞ ¼ �
X
j0

Kj!j0PjðtÞ � Kj0!jP j0 ðtÞ
	 


; ðA:22Þ
where j and j 0 refer to all LMR electronic states. If j = s = l and j 0 = s 0 = l 0 the rate constants Kj!j0 coincide with those
given by Eqs. (A.19) and (A.20). However, the transition operator (A.20) now contains Green�s operator defined by the
electron-vibrational Hamiltonian H ¼ H ðe-vÞ

LMR of the total LMR system. H ðe-vÞ
LMR contains three parts. The first corre-

sponds to the molecular Hamiltonian (4), however with energies elal replaced by Elal , Eq. (A.9). The second part refers
to the lead Hamiltonian, Eq. (7), and the third one coincides with the interaction between the leads and the molecule,
Eq. (8). After introducing the abbreviations rk � rkk, n � lal the Hamiltonian reads (spin quantum numbers are
timely omitted)
H ðe-vÞ
LMR ¼

X
rk

Erkjrkihrkj þ
X
n

Enjnihnj þ
X
rk;n

½V rk;njrkihnj þ h.c.�. ðA:23Þ
If j indicates one of lead states (for instance, j = Lk) while j 0 = s = l refers to the lth molecular level then
KLk!l ¼
2p
�h

X
alk

jT Lkk;lal j
2fLðELkÞW ðeð0Þk ÞL ELk � Delal;k

� �
. ðA:24Þ
Here, the quantity
Delal;k ¼ elal � eð0Þk ðA:25Þ
is the difference between molecular electron-vibrational energies valid if an extra electron does or does not populates
the molecule. The summation in Eq. (A.24) covers the vibrational states of the molecule valid if it does and does not
contain an extra electron (indexes al and k, respectively). The factor fLðELkÞW ðeð0Þk Þ gives the probability that the mol-
ecule is in the kth vibrational state before the extra electron enters. Note the introduction of the Fermi function of the
left lead
fLðELkÞ ¼ fexp½ðELk � EFÞ=kBT � þ 1g�1
; ðA:26Þ
where EF is the Fermi energy of the lead and the introduction of
W ðeð0Þk Þ ¼ Z�1
0 e�ðeð0Þ

k
�eð0Þ

0
Þ=kBT Z0 ¼

X
a

e�ðeð0Þ
k

�eð0Þ
0

Þ=kBT

 !
ðA:27Þ
as well as of the Lorentzian
L ELk � Delal ;k
� �

¼ 1

p

ck þ clal

ELk � Delal;k
� �2 þ ck þ clal

� �2 . ðA:28Þ
Lorentzian contains the broadening of the molecular electron-vibrational levels involved in the lead–molecule electron
transition. The matrix element TLkk,lal = hLkk|V(eff)|lali has to be calculated with the transition operator (A.20) where

E ¼ ELk þ eð0Þk � elal and H ¼ H ðe-vÞ
LMR .
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If the electron transmission occurs between the leads then the left-to-right rate constant reads
KLk!Rq ¼
2p
�h

X
kk0

jT Lkk;Rqk0 j2fLðELkÞð1� fRðERq � eV ÞÞW ðeð0Þk ÞLðELk � ERq þ Deð0Þk;k0 Þ. ðA:29Þ
This formula is based on the supposition that the left lead is fixed at zero voltage (VL = 0) so that a lead–lead voltage
bias is defined by the potential V = VR applied to the right lead. The Lorentzian
LðELk � ERq þ Deð0Þk;k0 Þ ¼
1

p
ck þ ck0

ðELk � ERq þ Deð0Þk;k0 Þ
2 þ ðck þ ck0 Þ

2
ðA:30Þ
takes into consideration the relaxation processes in the molecule when the latter does not contain an extra electron.
Eq. (A.30) reflects the fact that during the lead-to-lead transmission the molecule can gain or lose the vibrational
energy Deð0Þk;k0 ¼ eð0Þk � eð0Þk0 . The matrix elements V Lkk;Rqk0 ¼ hLkkjV ðeffÞjRqk0i are calculated with the transition operator,
Eq. (A.20), where E ¼ ELk þ eð0Þk � ERq þ eð0Þk0 and H ¼ H ðe-vÞ

LMR .

A.3. The effective electron-vibrational Hamiltonian

The transition matrix elements which enter the rate constants given in the preceding section have to be calculated in
using the transition operator (A.20). It contains two contributions, the first, Vint = VM�M + VLR�M, characterizes the
direct coupling between molecular electron-vibrational states and between molecular levels and those of the leads (cf.
VM�M, Eq. (5) as well as VLR�M, Eq. (8), respectively). Therefore, one can calculate the corresponding rate constants
in using the following approximation for the matrix elements:
T sa;s0b � hlaljV M�M jl0bl0 i ¼ V lal ;l0bl0 ðA:31Þ

and
T Lkk;lal � hLkkjV LR�M jlali ¼ V Lkk;lal . ðA:32Þ

These expressions demonstrate that in the framework of the chosen approximation the noted matrix elements are ex-
pressed through those specifying the interactions (5) and (8), respectively.

The second part of V(eff) is given by VintG(E)Vint which may account for complex dynamic processes within LMR
system, in particular coupling the electronic states of the left and the right lead
T Lkk;Rqk0 ¼ hLkkjV intGðEÞV intjRqk0i. ðA:33Þ
To make the expression more concrete we note that Green�s operator is defined via the electron-vibrational Hamilto-
nian H ¼ H ðe-vÞ

LMR , Eq. (A.23). Let us suppose that |Fiand EF are the eigenstates and eigenvalues of the H ðe-vÞ
LMR . In this case

Green�s operator reduces to
GðEÞ ¼
X
F

jF ihF j
E � EF

ðA:34Þ
and thus we get
T Lkk;Rqk0 ¼
X
F

V Lkk;F V F ;k0Rq

E � EF
. ðA:35Þ
Here, VLkk,F = hLkk|VLR�M|Fiand V F ;k0Rq ¼ hF jV LR�M jk0Rqi are the matrix elements between the electronic lead states
|kLki and |k 0Rqi and the LMR states |Fi. To obtain the energies EF and the states |Fi we have to diagonalize the
Hamiltonian (A.23) using the transformation
jF i ¼
X
rk

HF ðrkÞjrki þ
X
n

HF ðnÞjni. ðA:36Þ
The HF(rk) and HF(n) as well as the eigenvalues EF are derived from the set of equations
ðErk � EF ÞHF ðrkÞ þ
X
n

V �
rk;nHF ðnÞ ¼ 0; ðEn � EF ÞHF ðnÞ þ

X
r¼L;R

X
k

V rk;nHF ðrkÞ ¼ 0. ðA:37Þ
It follows from the first equation of this set that
HF ðrkÞ ¼
1

EF � Erk

X
n

V �
rk;nHF ðnÞ. ðA:38Þ
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Substituting this relation into the second equation (A.37) leads to the reduced set of equations
X
n0

ðEn � EÞdnn0 þ RðLÞ
nn0 ðEÞ þ RðRÞ

nn0 ðEÞ
h i

HF ðn0Þ ¼ 0; ðA:39Þ
where we have introduced the self-energies
RðrÞ
nn0 ðEÞ ¼

X
k

V �
rk;nV rk;n0

E � Erk þ i0þ
. ðA:40Þ
The set is extremely appropriated to derive approximate expression for the energies E ¼ EF as well as for the coeffi-
cients HF(rk) and HF(n). Below we restrict ourself to the case where the leads are considered as a macroscopic system.
Therefore, both leads perturb the molecular states in a much stronger way then the molecule perturbed the leads. This
fact allows to split off the extended LMR states |Fi into two types [79]. The first type is identical to the lead states |rki.
It means that
HF ðrkÞðnÞ � 0 ðA:41Þ
and thus |Fi = |F(rk)i � |rki. The corresponding eigenvalues EF coincide with the unperturbed energies Erk (r = L, R)
of the leads, i.e. EF ¼ EF ðrkÞ � Erk. The second type of LMR states coincides with molecular electron-vibrational states,
jF i ¼ jF ðnÞi �

P
nHF ðnÞjni. Due to the condition (A.41) the set (A.39) is reduced to the subset
X

n0
hnjH ðeffÞ

M jn0i � Ednn0
h i

Hf af ðn
0Þ ¼ 0 ðA:42Þ
where the notation faf � F(n) for the molecular electron-vibrational states formed from initial molecular electron-
vibrational states |ni = |lali is employed. Here, we had introduced the effective molecular Hamiltonian
H ðeffÞ
M ¼

X
n

Enjnihnj þ R̂
ðLÞ þ R̂

ðRÞ ðA:43Þ
which apart from the main contribution (the first term on the right-hand side) contains self-energy operators defined by
Eq. (A.40). The solution of Eq. (A.42) is essentially simplified by the fact that self-energies exhibit a negligible depen-
dence on the energy E [10,55,60,61]. Therefore, the diagonalization of H ðeffÞ

M represents an algebraic problem only.
Denoting the eigenenergies of this Hamiltonian by Ef af one obtains the form (17). In the case of macroscopic leads
the influence of the molecular states on the lead states may be ignored. According to relation (A.38) and condition
(A.41), we obtain
HF ðrkÞðr0k0Þ � dr;r0dk;k0 ; ðA:44Þ
and may conclude that only those matrix elements hLkk|VLR�M|Fi do not vanish where F = F(n) � faf. Noting this fact
the matrix elements (A.35) reduce to
V Lkk;Rqk0 ¼
X
n

X
n0

V Lkk;nGnn0V
�
Rqk0 ;n0 . ðA:45Þ
Here, the couplings Vrkk,n � Vrkk,lal (r = L, R) are defined by Eq. (9), while the matrix elements of Green�s operator
read
Gnn0 ¼
X
f af

Hf af ðnÞH�
f af

ðn0Þ
E � Ef af

. ðA:46Þ
This expression shows that only in the case of macroscopic electrodes the calculation of the LMR Green�s operator can
be replaced by the calculation of molecular Green�s operators defined via the effective Hamiltonian (A.43). The latter
includes imaginary parts caused by the interaction of the molecule with a heat bath as well as with the lead. Obviously,
these interactions result in broadening of the molecular electron-vibrational levels.
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