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Abstract

A theoretical description of electron transmission through a molecular wire embedded in between two leads is carried out using
the density matrix method. Accounting for the Coulomb repulsion among the transferred electrons nonlinear kinetic equations for
the reduced single-electron distributions are derived. The respective transfer rates contain contributions from different transmission
channels which are characterized by the number of excess electrons present in the wire in the course of the charge transmission.
Special attention is focused on the study of single-electron transmission. It is shown that a direct lead-lead (elastic) transmission as
well as a transmission including the population of intermediate wire states (inelastic transmission) becomes possible if the electron
to be transferred moves through a wire without a further excess charge. The probability to find a molecule in such an “empty”’
wire state follows from a relation between the rates of incoming and outgoing lead—molecule/molecule-lead charge transfer. In
turn, they are responsible for the formation of the inelastic component of the current. Thus, it could be demonstrated that the
inelastic charge transmission not only determines the inelastic part of the current but is able to control the elastic component
as well. Moreover, the inelastic transmission may result in a specific kinetic rectification effect.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Molecular wires represent one example of nanostructures where the diversity of molecular structures may influence
the electron transfer in a characteristic way [1-11]. Such a pronounced structural control of charge transfer and thus of
the molecular wire-mediated current, additionally, can also be achieved by the application of external dc- and ac-fields
[12-16]. (A discussion of the various methods to control distant electron transfer through molecular systems can be
found in [3-5,17-19] and the reviews [8,20,21].) The description of the wire-mediated inter-electrode tunnel process
may be undertaken for the case where all units of a linear molecule form the bridging structure for electron transmis-
sion (elastic inter-electrode tunneling, see [3-5,12], or tunneling including energy dissipation at the bridged sites, cf.
[19,22)). Alternatively, one may consider the case where the terminal sites of the wire localize the transferred electron
(inelastic inter-electrode tunneling mediated by the terminal sites, see [6,23-26]). Any of these studies underlined the
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importance of relaxation processes disturbing the charge transmission. Relaxation processes are mainly caused by the
interaction of electronic degrees of freedom with environmental vibrations. Moreover, intramolecular vibrational
modes are involved in electron transmission, too, forming phonon sidebands [27]. Recent theoretical studies on the
phonon-assisted inelastic tunnel current and the related conductance gave good insight into the particular nature of
the vibronic states related to single-molecule electron transport (see, e.g., [28-30] and especially [31]). It has been also
shown that the reorganization energy associated with the nuclear displacements and caused by the electron transmis-
sion through the molecule plays a key role in controlling charge localization as well as inelastic scattering events [25].
Additionally, the importance of the Coulomb interaction among different transferred electrons has been underlined in
[5,9,32-36].

It is typical for the huge variety of molecular metals, conducting polymers, and supramolecular compounds fabri-
cated so far (see, e.g., [37-39]) that the charge transmission within them is dominated by relaxation processes (leading
to the destruction of coherency). Electron motion in macromolecular systems like oligoporphyrin and polythiophene
structures [7], electrically conductive metallomacrocyclic assemblies [40], molecular chains containing transition metal
complexes [41], metal containing fullerene structures [42] and others [39,43,44] is mainly hopping transport between the
different sites of electron localization. In contrast, nonlinearities in the current-voltage (/-V) characteristics of single
molecules (see [45-57]) have been explained in the Landauer—Biittiker theory [58-60], which exclusively assumes elastic
scattering processes of the electron moving through the molecular wire [55,56,60-62]. However, inelastic processes
should also influence the current through the molecular wire [25,26,47,63-65]. A respective unified theory should de-
scribe elastic and inelastic processes, probably, also accounting for the Coulomb interaction among different trans-
ferred electrons (or holes).

The goal of the present paper is to undertake such a unified description. We will consider electron transmission
through a molecule/molecular wire characterized by molecular orbitals (MOs) extending over the whole molecule.
If embedded between two electrodes the system ““left lead—molecule-right lead” (LMR) is formed. Charge transmission
through the LMR system which is accompanied by a population of the MOs cause the inelastic component of the cur-
rent. However, the same MOs act as scattering centers in a direct (elastic) lead—lead transmission what results in the
elastic component of inter-electrode current. Both types of charge transmission will be described in the framework of
the well-established density matrix theory [66-69]. A similar approach has been already used for a unified description
of bridge mediated electron transfer in donor—acceptor complexes [70,71]. To account for many-electron effects in the
course of single-electron transmission the occupation number representation will be utilized and the derivation of non-
linear kinetic equations is demonstrated.

The paper is organized as follows. Section 2 introduces the model used to describe electron transfer in the LMR
system. Nonlinear kinetic equations governing electron transport to a molecular wire including inter-electron Coulomb
repulsion are derived in Section 3. The corresponding transfer rates characterizing single-clectron transitions between
multi-electron states of the LMR system are also presented. Section 4 concentrates on single-electron transmission. A
comparison between the direct lead—lead electron transmission and the transmission through intermediate states of the
LMR system is given in Section 5. Moreover, the conditions are identified at which the overall current through a single-
electron transmission channel is given by additive contributions from elastic and the inelastic transfer processes. The
Conclusions offer a general discussion on the importance of inelastic processes on formation of the inter-electrode
current.

2. Model and basic Hamiltonian

Let a linear molecule (molecular wire) be embedded in between two leads (cf. Fig. 1). If an excess electron leaves
a lead and enters the molecule it can be localized within one of N molecular sites. We will employ a simple tight-
binding model where each molecular site is characterized by a single MO |m). The energy of the transferred extra
electron at the mth molecular site, E,,(Q) (here, Q denotes the set of vibrational coordinates leading to a modulation
of the electronic energy), and transfer coupling between neighboring sites, V,,,,,+;, define the electronic part of the
molecular Hamiltonian. Introducing electron creation and annihilation operators a/_ and a,,,, respectively, we may
write

Hg\?) = Z Z[En7(Q)5m,m’ + me’(ém’,m+1 + 5m’,m71)]a:;gam’zr' (1)
The summation covers all sites (m, m’ =1, 2, ..., N) and all electronic spin projections (¢ = £1/2). To get the complete

molecular Hamiltonian H,; one has to add a kinetic energy of nuclei.
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Molecular wire

Fig. 1. The molecular wire (N-site linear molecule) embedded in between two leads. The inter-site matrix elements V5, Vi3, ..., Vy_1y lead to the
formation of the extended MOs of the molecule. The coupling to the leads is covered by the ¥y and Vgq. The quantities 6, = I, /e;, dg = Ig/eg, and
8 = L/ear denote the effective lengths (/; and I are the distances between the terminal molecular sites and respective lead surfaces, /,, is the distance
between neighboring molecular sites). The quantities ¢; (eg) and €,, denote the permitivities near the left (right) lead and in the vicinity of the
molecule, respectively. The effective distance between the leads is 6 = J; + ZZ;II(S,,I.

Below we will consider the case of strong intersite transfer coupling. Therefore, extended MOs, defined via
W) =Y uu(m)|m), 2)

have to be introduced. The u,(m) are found via a diagonalization of Hamiltonian /7 ](\jl), Eq. (1) at E,, = E,(Qp) where Qg
denotes the set of equilibrium nuclear coordinates. The related energies are denoted as &,. Now we use a conventional
scheme [69,72]. To derive an electron-vibrational coupling one may expand the H,, with respect to the displacements
0 — Qp. Introducing the vibrational eigenstates |y ,#> for each uth MO one obtains (for more details see, e.g., [73])

Hy=HY + Vi + Virs. 3)
The first part,
0
I—I/(l/l> = Z Z Slliita:o-alw |Xﬂo€“> <Xuotu |7 (4)
1,0 o

defines the electron-vibrational states, where ¢, and a,, (a,,) denote the electron-vibrational eigenenergy and the
electron creation (annihilation) operator, respectively. (The latter are connected with the a; (a,,) via the transforma-
tion (2).) The coupling expression

Vi =3 Z 2 (1= 0w )Vt el ) i | (5)

wt By

is responsible for transitions among different electron-vibrational states, whereas

VM B — Z Z 1 - 50;10( 1“ ’a/l(raiw'ilwy‘,></{,uac i (6)

HO oy 0

describes transitions between different vibrational levels of the same electronic state. Note, that matrix elements
Ve, and <D , depend on additional vibrational degrees of freedom forming a thermal bath, thus the Hamiltonians
®) and (6) allow to describe relaxation processes within the molecule.

Embedding the considered molecule in between two leads, we have to account for the additional lead—-molecule cou-
pling. Just the details of this coupling are of crucial importance for the electron transmission through the molecule
[10,47,74,75]. We will consider the leads as a macroscopic system with a continuous spectrum associated with the con-
duction band. The Hamiltonian covering the states of the two leads can be written as

HLR = Z ZErka;;m—arkm (7)

r=LR k,o

where E,y is the energy of an electron with wave vector k in the conduction band of the rth lead. To specify the lead—
molecule interaction we introduce the vibrational energy and the Ath vibrational state of the molecule in the absence of
any excess electrons as s ), and lz1), respectively. Moreover, Vi (Vgi) is the transfer coupling between the first (Nth)
molecular site and the left (right) lead. The lead—molecule interaction follows as

View =), > [Vrkmtariwaw|xi><XM| +h.c.|. (8)

uo doy r=L,R
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Here, the lead—molecule coupling matrix elements

V ik, = Vi (1) (1 X;L:<“>7 V R i, = Vit (N) (1 X;m“> 9)

account for the MOs extending over the whole molecule (via u,(1) and u,(N)) and include the vibrational overlap inte-
grals (;]7,,,)- In most cases the molecule-lead coupling is realized via specific terminal groups which are bonded to the
leads either directly or through sulfur [54,61,62] or silicon [76] atoms. In any case, the empty levels of terminal groups
should be energetically positioned far above the LUMOs of the molecule so that the molecule-lead couplings V7 and
Vizk, Eq. (9) are originated by superexchange mechanisms between the surface atoms of the lead and the terminal
groups of the molecule. Accordingly, charge transmission through the molecule is related to the terminal sites
m=1and m = N as well as to the sites m =2, 3, ..., N — 1. The corresponding single-electron energies ¢,,,, Eq. (4)
correspond to the extended states formed by the localized states of all N sites of the molecule.
All terms discussed so far are comprised in the LMR-system Hamiltonian

H=Hpx+Hy+Hp_y+ Hcou- (10)

All following derivations of kinetic equations and of the interelectrode current will be based on it. The Hamiltonian
contains contributions formed by single-electron states as well as the coupling of these states to vibrational substates
(see Egs. (3)-(8)). Moreover, we included Hcy referring to the Coulomb repulsion between different excess electrons.
It has to be considered whenever more then a single excess electron participates in transmission through a molecule.

3. Nonlinear kinetic equations

The current formation through the molecular wire is characterized by coherent charge motion as well as relaxation
processes. We will assume that only intra-molecular relaxation modifies the coherent electron transmission. These pro-
cesses are governed by the Hamiltonian V;,_ 3, Eq. (6) and proceed on a picosecond time scale [72,77]. To compare this
time scale with the time 1., of charge motion through the molecule let us use the relation I ~ |e|/t, with I being the
current and |e| the absolute value of the electron charge. Measured values of the current through single molecules
may reach 1 up to 100 nA, leading to 7, in the order of 107'°-107'?s. Therefore, the intramolecular current proceeds
against the background of fast vibrational relaxation, and a coarse-grained description of the electron motion becomes
possible. Accordingly, the current can be expressed via integral electronic state populations Pj, (¢). Here, the index j
indicates the electronic lead states (j = Lk, Rq) and the electronic levels of the molecule (j = /'), whereas o; denotes
the electron spin.

The stationary current / may be obtained from the general relation

IZQNL, (11)

where N, (= -N r) is the time-derivative of the electron number of the left (right) electrode. Since the total left elec-
trode population is determined as

Ni(t) =) Pukg, (1), (12)

koy

we have to determine the time—derivative of the single electron state distribution Py, () (here, oy denotes spin which
belongs to the electron with wave vector k). To calculate the total current we have to derive kinetic equations for the
distribution functions Py, (7) as well as for the populations Py, /(1) of the electronic levels of the molecule.

In the problem under consideration, more then one excess electrons can occupy the molecule in the course of elec-
tron transmission. Therefore, a Coulomb interaction between the transferred electrons modifies the single-electron
transmission. To account for this fact in kinetic equations for single electron distribution functions P, () (j = LK,
Rq, f), one has to derive kinetic equations for multi-electron distribution functions (populations) 2y,(f) where
{N} = {Nixo, }{Nrqo, }{N s, } denotes the complete set of LMR electronic occupation numbers. Here, {Nyy, } and
{Nrqo,} are the sets related respectively to the left and right lead occupation numbers whereas {Nys, } refers to the
molecular occupation numbers. If kinetic equation for the #y,() is known then using the definitions

PN )= S 20 (13)
{N}#N s,
and
Py ()= > NjP(Njs, 1) (14)

N/"j =0,1
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as well as normalization conditions

> PN, 1) =1, (15)

Njo,=0,1

one comes to kinetic equations for desirable overall single electron populations (distribution functions) Pj, (¢). [Note

that in line with relation (14) populations Pj, (f) and 1 — Pj, () are directly connected with the occupation number
distribution functions P(N,,, ), with respectively N;;, = 1 at the presence of an electron in the jth state with spin-pro-
jection g; and with N, = 0 at its absence.] Each P(N,,¢) follows by a summation of the multi-electron population

P vy (t) with respect to all occupation numbers except N,
3.1. Single-electron and multi-electron LMR states

In the present paper, the specification of the single-electron states |jo;) is achieved in the framework of a model
where the leads are considered as macroscopic systems. It has been shown in Appendix A, that in such a case the influ-
ence of the lead—molecule interaction on the lead states |L(R)koy) as well as the lead energy levels E; gy may be
ignored. At the same time, this interaction strongly influences the electron-vibrational states |uo,) = |10, )%y, ) =

a5y [046,)|7,,) as well as the electron-vibrational energy levels ¢, of the molecule. In line with the results obtained
in the Appendix, the molecular electron-vibrational states |fay) = >_,, Oy, (uo,)|puo,) and the corresponding single-
electron energies &,, are derived from a set of algebraic equations (A.42) which cover an effective molecular
Hamiltonian

(eff)
e Z Z Moy, luu w o + Z ;W“u %y ‘IUOCH><,U OC;, | (16)

poy, Uy

Hamiltonian (16) takes into account the broadening of molecular levels caused by vibrational relaxation (via the ener-

gies E,,,, Eq. (A.9)) as well as by the influence of the macroscopic leads (via the self-energies =" g0 Eq. (A.40)).
When diagonalized it obeys the form
Hf(\jff Z Z éaf“fafa ></Cfa<f| (17)

fooray

[Note that |fo)(fos| = ay, aro|17s,) (Xss,|-]1 I off-diagonal parts of self-energies =0
coupling between different molecular states (2), i.e. if the inequality

gty Q1€ of less importance for a

g R
é;taﬂ - é)ll Oy > ’ pot oy |2 ;(mz(u’a“/ (18)
is satisfied in the precise LMR system, the proper energy & ,, takes a simple form
éa/“/ ~ éal‘va;t = eﬂ“u - ir,u‘xu‘ (19)

Here, the quan.tity €uy = g, + Dy RReZ/(f;“ 4, 18 the renormalized energy of the electron-vibrational state |uo,) of the
uth extended single-electron molecular level, and

#% /;w“ + Z F;nu (20)

r=L,R

defines the integral broadening of the uo,th electron-vibrational energy level. The broadening contains a contribution
7, Originated by relaxation processes in the given molecular level as well as the contributions I’ L’ = Imz") sty which
result from the molecule-lead interaction.

Once single-electron states |Lkoy), |[Rqox), |fo;) and respective single-electron energies Erx, Erq, 7., have been
specified, the problem arises to construct the multi-electron states and the multi-electron energies. Generally, multi-
electron states have to include the information on molecular spin which is able to change its value in the course of
electron transmission through a molecule (see, for instance [12,21,23,64]). But, if the exchange interaction associ-
ated with the transferred electrons gives a minor contribution in energy of the LMR system one can specify the
spin states of multi-electron system only fixing the spin projections of separate electrons (the leads are assumed to
be fabricated from nonmagnetic metals). It is definitely happen when a molecule does not contain the paramag-
netic ions and, additionally, the location of the transferred electrons within the molecule occurs at well separated
sites. It is not the case when the excess electrons occupy the strongly delocalized MOs. As such, the exchange
interaction between the transferred (excess) electrons can be ignored only, if special physical conditions are
satisfied.
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As an example, we consider a Coulomb interaction written in the Hubbard form [78]
Hecou = UZa;TamTa;laml. (21)

The parameter U characterizes the repulsion between two transferred electrons occupying the same localized MO at
the mth molecular site but having different spin projections, +1/2 = Tand —1/2 = |. In the basis of extended MOs,
Eq. (2) Hcou changes to

+
Hcou = UZ Z (TR 18y 1@, A

[CN AN

(22)
(45(#1#’1;#2#’2)=¢(ﬂzu’2;u1u1 Zum m)uy ( ;2(m)uu;(m)>-

The Hamiltonian includes single-electron as well as two-electron transitions between the extended molecular states. Note
that the two-electron transitions reflects the direct as well as the exchange scattering processes. But, if the inequality

(€ + €, + UP(i i3 patts)) — (€ + € + UP (i 11y ;u’zu’z))‘ > U@ (py 3 p215) | (1 = 0y ) (1 = Gy ) (23)

is satisfied for any set of extended states u, then the single-electron transitions mainly contributes to the transition pro-
cesses. Following from this the terms with u; = p} or p, = i) should dominate. If the additional inequality

)| (EH =, +UY ¢(MM;W)> (24)

is valid then the electron—electron interaction can be described in using the truncated form of the Hamiltonian Hcgy. It
reads

Hcon ~ HIM™ = UZ P(vv)aya,ay ay,. (25)
I
Accordingly, the use of the Hamiltonian from Eq. (25) instead that of Eq. (22) is justified either for a large energy gap
le, — €| between single-electron extended states or due to a large energy difference between local molecular levels (as
compared with sitesite electronic couplings V,,», Eq. (1)). Moreover we note that the Hamiltonian, Eq. (25) is diag-
onal with respect to the occupation numbers and thus does not contain the exchange interaction between the excess
electrons occupying the extended MOs. Matrix elements of the Hamiltonian (25) are diagonal and read

U{N} =UY_ ®(u;w)N 4N,y (26)
1y
In the present description we restrict ourself to the case where exchange interaction associated with the transferred elec-
trons is of less importance and thus one can apply a Hartree approach. The Hartree approach indicates that a total
LMR electronic state |a) = [{N},v({Ny,, })) appears as a product of single-electron states,

H |NLk<7k H |NRqu H |th7/ {Nfﬂf})> (27)

koy qoq for

It means that a LMR spin state is determined by a set of electronic spin-projections. Multi-electron states (27) contain
the set of molecular vibrational states denoted through the [v({Ny,, })). Within the set each separate vibronic state
coincides either with the [y, ) (extra electron occupies the fth MO, Ny, = 1) or with [z;) (no extra electron at the
fth MO, Z N 7o, = 0). The states (27) are the proper states of the effective LMR Hamiltonian

HY = Hig + Hy"Y + Heou, (28)

where the terms in the right side of Eq. (28) are defined by Hamiltonians (7), (17) and (25), respectively.
3.2. Kinetic equations for the multi-electron distribution function

The kinetic equations for the 2y, () are obtained from a generalized master equation (GME) which is obeyed by
the reduced density operator p(¢) describing the dynamics of an open quantum system. The main problem here is to
simultaneously account for the fast relaxational transitions among the vibrational substates of each molecular level,
the lead—molecule coupling, and the Coulomb interaction between the excess electrons. To offer a sufficient clear
description we separately consider in Appendix A the derivation of a master equation for the single-electron
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distribution functions. It is demonstrated how the fast vibrational relaxation as well as the lead—molecule interaction
justifies a reduced description via kinetic equations for the integral level population. In what follows we employ a sim-
ilar approach to derive the master equation for multi-electron distribution functions. This becomes possible since the
transitions between multi-electron states are determined by one-particle transition operators (5) and (8), while the Cou-
lomb interaction, taken in the form (25), conserves the number of electrons occupying the precise MOs and thus does
not lead to electron—electron transitions.

It has been shown earlier in [26] that the occupation number representation offers a convenient way to derive kinetic
equations in a multi-electron transfer system. Here, we use the same representation and suppose that the single-
electron states as well as the corresponding single-electron energies are already known. Thus, each single-electron state
lio;) (j = LK, Rq, f) is associated with the occupation number state |[N,,) at N, = 1. [Remember that N;,;, = 0, 1 is the
number of electrons occupying the single-electron state j with spin-projection ¢;.] Choosing the Coulomb interaction in
the form (25) we are able to represent multi-electron states (27) as the product of single-electron states. Because the
states (27) are diagonal with respect to the occupation numbers the diagonal elements 2,(¢) = (a|p(f)|a) of the
LMR density operator p(¢) can be derived from relation

Pa(t) = (alpy(O)]a) = {NI({N o, DIpa(OUN}o({N s, })), (29)

where p,(t) = Typ(t) is a diagonal density matrix of the LMR system. The time—evolution of the latter is defined by the
master Eq. (A.14) but now written in a multi-electron basis. Therefore, the matrix form of the corresponding master
equation coincides with the following set of linear equations for the multi-electron populations 2,(¢) (see also [26]),

Pa(t) = = _(al(2|b)(b])|a)Zs(1). (30)

b

It is very important that the form of the superoperator 2 is given by the same expansion (A.15) and (A.16) where,
however, the single-electron states |sa) have been replaced the multi-electron states (27). [This follows from the fact
that we consider only single-electron transitions caused by the same one-particle operator Vine= Vi + Vir—um
(cf. Egs. (5) and (8)).]

Now we take into consideration the two following points. The first is related to the form of LMR states (27) which
appear as a product of single-particle states. It means that one can represent a many-particle population 2,(¢) as a
product of single-particle populations,

= HP(NLkUk7t) HP(NRquat) HP(N_/’“[U({N./’G/})’I)' (31)

kag qoq for

Here, the quantities P(N,,, ) define the probability that a transferred excess electron with spin quantum number o;
does (Nj;, =1) or does not (N, =0) occupy a single-electron lead state j= Lk, Rq. The probabilities
P(Nyo,v({Nys,}),t) indicate that an excess electron with spin quantum number o, does or does not occupy the
v({Nys, })th vibrational level belonging to the fth molecular electronic level. The second point notices the fast intra-
state relaxation. Accordingly, the probabilities P(N 4, 0({N /s, }),?) can be expressed by the integral populations

P(Njot)= Y P(Nov({Nyo, }),1) (32)

o({N7e, 1)

in noting the relation
P(Nso,v({Nys, }),1) = W(E(@W({N7s, })))P(N 7o, 1) (33)
where the probability to populate the vibrational state v({Ny,, }) reads
( {Nja/ ) 6[’1/ Nfo-/ + W(E/l )(1 _Nfaf)' (34)
If Ny, =1 then P(ly,,,t) coincides with the population Py, (f) of the fth MO. Therefore, the weights
W(E (({lf,,/}))) W(es,) are identical with those given by the relation (A.6). For Ny, =0 the weights
W (E(v({04,,}))) = W(e,”) are defined by Eq. (A.27).

In line with Eq. (31) he multi-electron population 2,(t) = Z({N}v({Ny, },1) is expressed by its integral population
Pn(t) =X Nyog})’ ?,(t) via the same relation (A.5) that exists between molecular populations P(N,,,?)
and P(N;,,v({Nys,}),t). This circumstance along with the fact that in our case the operator Vi, is identical with
the sum off-diagonal operators (5) and (8), allows us to reduce the basic equations (30) to the balance-like equations
of the multi-electron populations
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P (1) ==Y (K- Zim (1) = K- 2wy (). (35)
W

The rate constants

Koy = S0 S TIWECUN o, D) |7 (30,1, N30, 1)) 208~ ) (36)

o({Nye 1) o({N7, 1) Tor

characterize a transition from the multi-electron state [{N}) = Hkgk INko) % Tlgo, [N raoo) I 114, INsa,) to the state
H{N'}) = [ IV Lkok)Hqu|N rao) % 1o, Nf) In Eq. (36), the summation covers all "vibrational states related to the
molecular levels involved in the electron transmission. Quantity L(E, — E,) = (1/m0)[(74 + 75)/(Es — Ep)* + (74 + 75))]
is the normalized Lorentzian with y, and y, being the total broadenings of single-electron levels participating in a given
|a) — |b) transition (see below). Note that L(E, — E,) reduces to a delta-function o(E, — E}) if y, — 0 and y, — 0. Such
a situation appears if an elastic lead-to-lead electron transmission occurs in the LMR system. The energy
E, = E({N},v({Nys})) of the ath multi-electron state reads

E, = ZELkNLkak + ZERqNRqu + Z €fay — Nfrf + U({N}). (37)

ko qoy fr/

It contains the contributions of single-electron energies Ery, Erq and €7, = Re &, as well as the term U({N}) includ-
ing the interaction between the extra electrons when the latter populate the molecule in the course of charge transmis-
sion. The energy E,, is defined by the same form (37) (but with the replacement of the set {N} by the set {N'}). To
calculate the matrix elements V({N}v({Ny, }), {N'}o({N}, )= {NYo({N o, DIV DN Jo({Nyo, 1)) one has to em-
ploy the effective operator (A.20) where th 1s the off- dlagonal transfer operator and G(E) = (E — H) "' is Green’s
operator of the total LMR system (H = H LMR is the effective Hamiltonian of the LMR system, Eq. (28), and
E = E, = E, is the transition energy, respectively). Note again that if only single-electron transitions are responsible
for electron transmission then Viy = Vs - ptVir— s

3.3. Kinetic equations for the reduced single-electron distribution functions

Noting the linear balance-like set of equations (35) for multi-electron distribution functions the kinetic equations for
the Pj,,(¢) follow in using the relations (13) and (14). Furthermore, we introduce the ansatz (31) into kinetic equations
(35), sum up both parts of Eq. (35) over complete set of initial ({N}) and final ({/N'}) occupation numbers, and, finally
apply the normalization condition (15). This all yields the following set of nonlinear kinetic equations for the single-
electron populations

1(7/ Z Z H H HN,(;/ {K{N}H{N’}P(NLkam t)P (NRqaq,t) X P(Nf,,/,t) fK{Nr}H{N}P(N’Lka, t)P (N;?qo'q t)P (N,fffr )}

{N} {N'} kox qoq foy

(38)

The nonlinearity is caused by the Coulomb interaction among different transferred electrons. It influences the transfer
rates K.y, Eq. (36) via the energy differences E, — E, between the multi-electron states |a) =|{N}) and
|b) = [{N'}). According to Eq. (37) the E, — E, may be specified to the molecular energy e/, together with a Coulomb
term.

Moreover, condition (18) allows to represent the energy difference E, — E;, between two multi-electron states in the
form (cf. Eq. (37))

Eo—Ey~ Y En(Niko, = Niw) + Y Erg(Nrga, — Nigo,) + > (g, — &) (N, = N,,)+(U{N}) —U({N'})).

k,ox q,0q Hoy
(39)

Eqgs. (39) and (26) define the general expressions for the energy difference between multi-electron states |¢) = [{N}) and
|b) = [{N'}) which are involved in the a — b-transition.

3.4. Single-electron transmission channels

For the transfer problem under consideration respective transitions are described by the operators (5) and (8).
Therefore, each elementary electron-transfer step connects only two precise electronic states. This means that only
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two states change their electronic population while that of the remaining states remains unchanged. Thus, in the case of
lead—-molecule transfer the corresponding transition matrix element follows as

V{N,}{N} = Z Z[VLI‘LW;!NLI‘“I{(I - Nurr!,) + VLk/ N N}‘kak(l N;w )}

ko uoy

X 55,(,@5 N1 =Ny N’Lk A=Nikg, H 5N ny Vi H 51\’1,( , Héquﬂq Npq0yq- (40)

K’ o #Kkoy W oy Fuoy qoq
In the case of a transition between extended molecular states one may derive

V{N/}{N} = Z Z(l - 5“'H/) [Vlm“u/ﬁ#’N’w“ (1 - Nﬂ/ail') + V;kw‘u#/ﬁ ’Nl”’; (1 - N;ﬂ(fﬂ’ )]5 um A NWH 5N;(/6#/ ‘liNMU“/ 50!“0;(’

oy p’a}/
X | |5 / I | O | |5 / . 41
N ko N ko N, Nu’auf Nanq.Nanq ( )
ko ;t’a‘ﬁéuau ‘ qaq

The matrix element 7y, which characterizes electron transitions between the two leads is calculated in using the
second term of the effective operator (A.20) written in the occupation number representation. As it has been shown
in part A.3 of the Appendix, the calculation of the single-electron lead-lead matrix element, Eq. (A.33) can be carried
out in using the simple form (A.35). ThlS follows from the fact that Green function G(E) becomes diagonal if the elec-
tron-vibrational Hamiltonian H = H' LMR, Eq. (A.23) of the complete LMR system is replaced by an effective electron-
vibrational Hamiltonian (17) with (complex) eigenvalues &, . [Note that single-electron Hamiltonian H£MR represents
particular version of the multi-electron Hamiltonian HER,&, compare Egs. (A.23) and (25).]

If one and more excess electrons are already captured by the molecule the transmission of an additional electron
through the molecule occurs against the background of a Coulomb interaction between the transferred electrons. It
means that Green function G(E) = [E — H] ' has to be calculated with the effective LMR Hamiltonian H = Hf,g;
which contains the noted Coulomb interaction. Taking this circumstance into consideration and choosing the Cou-
lomb interaction in the form (25), it becomes obvious that the effective Hamiltonian of the LMR system, Eq. (28)
is diagonal in the occupation number representation, ie. it reads H = H\ %) = 2Em N ({N}, where the
multi-electron energy reads

Eny = Z ZErkNrkﬂk + Z oty 0 Nuaﬂ + UZ P tN 1N o - (42)

r=L.R Koy oy

Note that this expression accounts for fast relaxational transitions as well as for the influence of the leads on the molec-
ular levels via the single-electron energies &, Eq. (19). As far as the Hamiltonian of the LMR system is diagonal,
Green’s function in the transition operator (A.20) is diagonal as well. We may write

Ty = AN HVimGE)Vim {NY) = D Vivyivn Gy (E)V vy vy (43)
{N"}
where the matrix elements V vy and Vyyrygyy are given by Eq. (40), while we get (E = Eqyy = Eqyry)

Gy (E) = ((NHGE){N"Y) = [Eqwy — Eqny] ™

’ 0 /
= 1D EuWika, = Njip) + D (6 = & )Ny, = Nty )+ U > (s, w)(N Ny, = NyNT)

koy Hoy iy
(44)

Note that energy &, includes the influence of the leads on the single-electron molecular energies while.

One can see that two different types of electronic pathways participate in the formation of the coupling 7'y/y(yy. The
first is associated with the same state uo, connecting the two lead states, Lkoy and Rqoq. For instance, if an electron is
transferred from the left lead to the right lead then

% 1
Toryy = D D D> VisiuVraras, [y = Evy)” Nika, (1= Nyug, ) (1 = Niggy)

(N} ko aoq 1o,

X 56k auéawﬂq 5N” NRqoq 5N’R(wq

Sy Sy H Sy Oy H Sy Sy ) 45
H le, NLk/ ! /n NLk/ N“U/N N“J’Nﬂ/ﬂ_‘/ N;{q,”ql,NRq/Uq/ NRq/aq,’NRq/Jq‘ ( )

K oy #koy w 0, FHOp q Oy #40q

Lkoy =Ny kay 5N/ liN’ Koy 5N!1«",u 1 N“"ﬂ 5N N“”ﬂ 5N}éqnq i1 7NR‘1”‘1
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It can be seen that the coupling 7y (v} is formed in such a manner that it contains the sum of terms each being pro-
portional to the factor Ny, (1 — Ny, )(1 — Ngge, ). The conservation of electron spin during transition (oy = 0, = gq)
results in a specific dependence of Ty (v, on the occupation numbers.

Fig. 2 displays the elastic electron transmission from the Lkth level of the left lead to the Rqth level of the right lead
through an “empty”” molecule as well as a molecule containing a single excess electron at a certain u'th MO. To let
become the picture more clear the molecular vibronic levels are not represented in the schemes (a) and (b). This means
that instead of actual initial, intermediate and final LMR energies (Ex + 820), &, and Epq + SEL()), respectively) only sin-
gle-electron energies, Eyy, ¢, and Egq are displayed. Correspondingly, only electronic couplings, Vi and Vg, indicate
the transitions between single-electron levels instead of the electron-vibration couplings (9). Note, that just these cou-
plings to the intermediate state connect the initial and final states. Since each separate single-electron transition does
not influence the spin-projection of the transferred electron (cf. Eq. (8)), the transmission of an electron through an
“empty”” molecule occurs without any change of spin-projection of the transferred electron so that oy = ¢, = 0g4. A
similar spin conservation is also valid during the transmission through a molecule which already contains an excess
electron at a certain u’'th MO provided that the excess electron does not leave the molecule during the transmission
process (cf. scheme (b) in Fig. 2).

The second type of pathway covers two different states uo, and y'c, in single-electron transmission. Therefore,

* -1
Ty =D 2, O3> Vi Vearwsy [Ev = Egen]” Nk (1= Nyg )Ny, (1= Naga,) (1= 8y6,00,)

{N"} kox qoq poy ;t/(fﬂ/

X 5 5 5 1" _ 5 ! _ (S " _ 5 ! _ 5 " 5 1 _ 5 " 5 / _
ok,0.Y0,1,0q N““’k . NLkgk NLka N NLkuk NM” N Nyoy NW“ 1 Nyay N“,G“/ ‘NM/G“/ N)/Jﬂr 1 Nyoy NRquq ,qu,,q NRqaq N NR!qu
X || Onr On || Onr On' Onr On' . (46)
N N Ny N Koy Nikoy N“,U“/ Ny o N iy N Way NRq’aq, Neg T Ny oy Ny %0,
K o 7kok V0,101, ooy 240

This expression shows that the second type of transmission pathway contains the sum of terms each being proportional
to the factors Nye, (1 — N6, )N Woy (1 — Ngqq,)- Spin conservation results in oy = 7, 6, = g4. The second type of path-
way may work even through one and the same extended MO, p’ = . But, in contrast to the first type the transmission
becomes only possible if 6, # o, (at @’ # p) or o), # o, (at p’ = p). Fig. 3 displays a transfer process where the uth
molecular level (preliminary occupied by an excess electron) controls the transmission. It is seen that in this case
the spin projection of the incoming (into the molecule) and the outgoing (out of the molecule) electron can differ (com-
pare the schemes (a) and (b)).

(a) — B
€
Ex Vix "
_;_ ER,‘.
Evi E Er
(final)
(b) iy
gy
Vl k VR'F

(initial) (intemediate) (final)
G, =0y =0y
Fig. 2. Single-electron scheme of electron transmission through an “empty” (a) and singly occupied (b) molecule. Only single-electron levels with
energies E;y, ¢,, and Egq are represented. Transitions between the corresponding electronic states are characterized by couplings V;y and Vgq. The

LMR intermediate state is characterized by the presence of one or two excess electrons. The transmission does not change a spin state of the
transmitted electron, oy = 6, = g,
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€,

Ey
Vi Vra

_t_' ERg
Er
(initial) (intemediate) (final)
0, =0) =0y

&y E

t En

Vik Vg

'y- Erg

(initial) (intemediate) (final)

G, =0y, Gq =0y # 0,

Fig. 3. Electron transmission through a singly occupied molecular level p. The spin of the transmitted electron is either conserved or changed.

Now we are able to write down the precise form of transfer rates (36) specifying the kinetic equations (38). As an
example, let us derive the transfer rate which characterizes an electron jump from the left lead into the molecule. Such a
hopping transition occurs from the set of electronic lead states Lkoy to the set of extended molecular states yio,. During
the transfer of an electron from a particular lead state Lkoy to the molecular level ug, the occupation numbers changes
in such a way that Ny, — N}, =1 — Ny, and Ny, — N;w“ =1-N,. In line with Egs. (39), (26) and (40) it
yields

Koy = > > Kooy (Lo — po,). (47)

(N} Kox oy

ko

The summation covers all possible lead—-molecule electron transitions each being characterized by partial transfer rate

K 1000 (0Koy = 10,0 = 0, 1V PN ik (1= Ny J(FC) 0, (Lo — 10, (48)

Here, the rate depends on the population of the molecule by the preliminary captured electrons. The latter are ac-
counted for by the set of occupation numbers {/N,} which all enter the Franck—Condon factor

2 2
1 0 |uﬂ(1)| <X‘X oz“> (,yl + F;ux“)
(FC), oy (LR — o) = = > W ()~ — p (49)
I E{Nu}{N‘,}(Lkak — uo,) + (v, + Tya,)
via the energy difference
AE (v, (ko — 10,) = Epc — (6, — 2) + U Y @(us) (Nyg, = Ny J(Noy 30,1 + Niii, ). (50)

In accordance with Eq. (48) the transfer only takes place if N, = 0,N, = 1. Therefore, bearing in mind the fact
that Franck—Condon factor is maximal if AEy,, y(Lkoy — poy) = O 'we are led the condition for a resonant
lead—molecule transition

En+ g(;)) N €, + UZ D(pup;vv)(Ny 06,1 + Nyi g, ) (51)

Eqs.(47)—(51) define the completely lead—molecule electron-transfer rate. Analogously, one can specify the lead—lead
electron-transfer rate. To this end one has to employ Eqs.(43)—-(46) as well as Eq.(36) where the matrix element
VHNTo({N] .Jf}), {N}v({Nys,})) is associated with the T'(yy(xy. It is important to note that the lead-molecule (as well
as molecule-lead) and the lead—lead transfer rates appear as the sum of transfer rates related to different transmission
channels. The latter are defined by the number of extra electrons preliminary captured by the molecule.In the case of
lead—molecule transitions the channels are determined by the occupation numbers {N,}. This conclusion follows just
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from Eq. (51). For instance, there exists a transfer channel defined via the condition N,,, = 0, which is valid for all
molecular states v including the v =y, 6, = 0, # 6,,. This channel corresponds to electron jumps from the lead into
the molecule provided the molecule does not contain an extra electron. The corresponding channel transfer rate be-
comes maximal at the resonance condition Eyy + 950) ~ €4, If a single electron has been already captured by the mol-
ecule, the lead—molecule transfer proceeds along another transmission channel. Let for instance an extra electron be
captured by the molecule in the state ,uq so that all occupatron numbers Ny, are zero except Nys, = Nyg = 1 where
0, # o,. Then, the resonance condition (51) reduces to Epx + 8 N €, + UP(uspup). It differs essentially from the
prevrous one according to the presence of an additional Coulomb term U®(uu; pp).

Each transmission channel specifies the character of the nonlinearity present in the kinetic equation (38). Thus, if the
electron transition proceeds from the lead to the molecule, whereas the latter does not contain an extra electron then
the corresponding term on the right-hand side of the kinetic equation (38) includes the product Py, (£)(1 — P, (1))
(1 =Py, (t))Hm‘#q e, (1 = Py, (). [Note that Pj; () = P(l,,t), 1 — Pjs,(t) = P(0j5,,¢).] If a single extra electron with
spin projection o, # g, is already occupies the uth MO, the product of state populations reads P (1) (1 = Py, (1))
Py, (t)]_[w‘ sugpu,(1 = Pya,(1)). In contrast to the foregoing product it contains the population P, (¢) instead of
1 =Py (). Generally, the precise form of the nonlinear kinetic equation is defined by those types of transmission
channels which, at a given voltage bias V, provide the major contribution to the formation of the current. In a given
LMR system, it strongly depends on the number of MOs involved in the transfer process as well as on the relation
between the site-site couplings V,,,» and the Coulomb interaction.

4. Restriction on single-electron transmission processes

The theoretical expressions derived in the preceding section allow us to describe the kinetics of current formation
along various types of transmission channels, which differ from each other by the number of excess electrons prelimin-
ary captured by the molecule. During the transmission along a single-electron channel the molecule can capture only a
single excess electron. Such a channel mainly contributes to the current only for those cases where the Coulombic
interaction energy between two excess electrons (captured by the uth and vth MOs) exceeds strongly the shift of
single-clectron energies caused by the applied voltage.

To illustrate this statement we consider a low-temperature single-electron phonon-less transmission through a
LUMO-level and formulate the conditions at which such a transmission gives the main contribution to the current.
Let €; be the energetic position of the unbiased LUMO-level in the absence of any Coulombic interaction. We take
the Coulomb energy in the form (26) which is valid at a strong inter-site electronic coupling. It means that the energy
gaps |, — &, between the molecular levels satisfy the relation (24) and thus the LUMO-level is assumed to be well sep-
arated from the nearest LUMO-1-level. If the left lead is supported at zero voltage then at a strong inter-site coupling
each molecular level shows a linear shift (see more details in [79]). This shift is specified by the voltage division factor n
[55,61], so that the energetic position of the biased LUMO-level is defined through relation €,(¥) = ¢; + neV. At cer-
tain positive values ¥ = V'{"™ where

Vi = AEL(0)/nle], (52)

the energy gap AE; (V) = /(V) — Er = AEL(0) — nle|]V may equal zero. Thus, at ¥ > V" the current is originated
by a resonant single-electron transmission through a given energy level. If, however, the LUMO level =1 is already
occupied by the excess electron then a resonant transmission becomes possible only at ¥ > V™™ where V™ is an-

other critical voltage. Here, V'™ is fixed by the condition (2¢;(V) + U(11;11)) — (&,(V) + Er) = 0, and thus
v — (AEL(0) + UD(11;11)/n]e]. (53)

One can see that at "> 0 a single-electron resonant transmission dominates the current formation only, if |¢|} does not
exceed the effective energy gap

AES™ = AE;(0) + Ud(11;11) /1. (54)

Note that this gap is defined by the position of the electrochemical potential relative to the single-electron energy
(the gap AE;(0)/n) as well as by the Coulomb contribution, U®(11; 11). In the same manner one can derive the
expressions for the critical voltages V'{™ and V7™ related to the resonant electron transmission at negative values
of V. Related expressions follow from Egs. (52) and (53) if one replaces the quantities AE;(0) and n by the
AER(0) =¢; — Er and 1 — 5, respectively. Thus, at low temperatures a single-electron transmission is efficient at
V< VS (r>0) or V] < V) (V<0). If {(|V]) becomes comparable to V™ (V™)) or exceeds it, the current
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is realized via channels where one or more excess electrons are already captured by the molecule before the steady
current is formed [80]. At finite temperatures, due to thermally activated lead-molecule/molecule-lead electron-
transfer processes the observation of the resonant transmission is smoothed. Nevertheless, the presence of two type
of critical voltages associated with transmission through, respectlvely, the “empty” and singly occupied molecule, is
physically undoubted. The derivation of respective expressions for ¥\ (V™)) and ¥ (') will be the sub-
ject of separate studies.

In the present paper we will concentrate on electron transmission processes along single-electron channels only.
Note that a similar problem has been already discussed for the sequential mechanism of current formation in a short
molecular chain [63,64]. However, here we consider another case for which the current proceeds through extended
MGOs. It supposes the presence of strong inter-site coupling V.. Moreover, we have to take into consideration a
direct lead-lead transmission. The noted single-electron channel is characterized by the set of initial occupation
numbers {N} where all MOs v are empty, i.e. N,,, = 0. If in the course of the charge transfer an electron leaves
a lead and occupies the uth MO, then the occupation number N, = 0 changes to N;wu =1-N,, = 1. After pop-
ulating a molecular level the excess electron undergoes a relaxational transitions ¢ = p’ and forms an equilibrium
distribution over all extended states of the molecule. Thus, the efficiency of the transmission depends on the relation
between intra-molecular and molecule-lead kinetic processes. The situation is different if a direct lead-lead transmis-
sion along the same channel is considered. Now, the transmission proceeds in such a way that a singly occupied
molecular state does not participate in intramolecular ¢ = u’ relaxation processes. It means that in Eq. (43) the
condition N,,, = N, =N’ =0 holds for all MOs except a certain MO v = pu. For such a MO the relation between

respective occupatlon numbers reads as N/ o, =1 =Ny, =1-N,, =1. Bearing in mind the noted relations one
may derive the concrete form of the nonlinear kinetic equations for all single-electron distribution functions (state
populations).

The kinetic equations for the population of a given electronic state follows from expression (38). Let an electron
with wave vector k and spin projection oy be in the conduction band of the left lead. Putting in Eq. (38) j = Lk, g, = 0y,
then, one derives

Pri, (1) Z D1V ik, a0, (1= 800, ) W (& Pk () (1 = P, (8)) = W (8, ) (1 = Py (£)) Py, (0)]
Hoy AOLH
X L(ELk - As#%v’l)(l - P#UL(t))H‘,u_‘_#quG;‘(l - va‘ ; Z |TRqA Lk/| 561{ Uq[ ( ,O))PLkUk (t)
A OkOq
X (1= Pryg, (1) = W (&) Pragy () (1 = Pro, ((DIL(En — Erg + Ael)) [T(1 = Pos, (1) (55)

voy

The matrix elements Vy; .., are defined by the expression (9) while we have

* *
T _ Z Vi, " VRq;]_’,mu N Z VLk).,WM Vqu’w,L (56)
RqJ Lki — E P (0) ~ E P (0) -
oy Lk = O poy, — &) oy Rq = Opoy — S;Ll

The broadened é-functions (Lorentzian) L(Ey — Agy,, ;) in Eq (595) follow from Eq. (A.28) where one has to replace
Yz, OY T'yo,» EQ. (20) while the Lorentzian L(Ejx — Epq + As ) is represented by Eq. (A.30).

The current is defined by the time-derivative of the 1ntegral lead population N, (¢), (cf. Egs. (11) and (12)). There-
fore, to find NL( ) one has to sum up both parts of Eq. (55) over k and 0. Note, now, that N,(7) is a macroscopic
quantity, and thus undergoes a small change during the electron transmission through the molecule, only. This means
that Py, (¢) deviates only a little from the equilibrium Fermi distribution (A.26). Therefore, we may set
Pixo, () ~ fL(Ex) on the right-hand side of Eq. (55) (see the additional discussion in [26,63,64]). A similar approxima-
tion can also be introduced when one derives the kinetic equations for the populations P, ( ). Since any magnetic field
is absent we may set P,;(f) = P, (¢) = P,(1), so that (1 — P,(2))(1 — P, (¢)) = (1 — ,,(l))

Introducing the nonlinearity factors

wo(t) =] = P, (1) = [J(1 = P(1))° (57)
and
W (1) = S (O)Wo(2), (Su(t) = Py, (1) /(1 = Py, (1)), (58)

we rewrite the complete set of nonlinear kinetic equations describing the charge transmission along the single-electron
channel. It follows
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Nu() = =D (KiWolt) = Kyes W, (1)) = Q1 — Q) Wo(0),

u

Pu(t» = Z (KuHrWu(t) - KHMWO(K)) - Z(Kuﬂt’ W;t(t) - K;t’HuW;t’(O) (,U, H/ = 1727 s ,N), (59)

r=L,R W

Ne(t) == (KeeuWo(t) = KW (1) = (Qr — Q1) Wo(0),

n
where the single-electron rate constants (r = L, R),

Krﬂu =2 ZKrkﬂ;uK,uﬂr = 22Ku~>rk7 (60)
k k

are defined through respective lead—-molecule and molecule-lead transfer rates. The K, _, , are given in Eqgs. (A.24)
and (A.32). The K,,_,,x follow from the Eqgs. (A.24) and (A.32) if one replaces fL(ELk)W(aﬁf))) by W (e,s,). The quantity

QL(R) =2 Z K x—Rq(Rk—Lq) (6 1)
kq

denotes an integral transfer rate which characterizes the direct lead—lead electron transmission (see Eqgs. (A.29) and
(56)).

Our aim is to derive an expression for the stationary interelectrode current. For such a situation the electronic pop-
ulation of the molecule does not changes during electron transmission, i.e. P,(¢) = 0. Accordingly, the set of nonlinear
equations (59) essentially simplifies. In particular, the electronic populations can be derived from the set of linear inho-
mogeneous equations for the auxiliary quantities S,, Eq. (58),

Z[(KIHL + K/HR + Z K/Ht')émt’ - Kﬂ’ﬂt]S#’ = Klﬁu + KR*’M‘ (62)
HI v

Note that the S, and thus the populations P, are exclusively defined by inelastic transfer processes within the LMR-
system. Solving the set of Eq. (62) and using the definition of S, we find the stationary electron populations P, to-
gether with the factors W, and W,. The latter determine N, according to Eq. (62). The expression for the current,
Eq. (11) reduces to a sum of two contributions

I = Igic + Ling, (63)
where the first contribution,
Lo = —eWo(Qr — Or) (64)
refers to a direct lead—lead electron transmission while the second one,
Ly = —eWo Y (Kimy—K,1S,), (65)
u

reflects electron transmission through intermediate LMR electronic states accompanied by a population of the ex-
tended molecular levels by the extra electron (the transferred electron). If the rate constants K,,_,, characterizing the
transitions between extended molecular states, are smaller than the electron-transfer rates K,_.,(r), the set of Eq.
(62) has the simple solution, S, = (K., + Kz_.,)/(K,—.r + K,_.r) and thus the stationary populations are given by
the expression

P = KL—»u + KR—»,u
YK A Kry Ky + Kk

(66)

5. Discussion of the results

The derivation of the set of nonlinear kinetic equations (38) for the reduced single-electron distribution functions at
the presence of a Coulomb interaction between the transferred electrons has to be considered as the main result of the
paper. It has been found that the related transfer rates, Eq. (36) include contributions from different transmission chan-
nels. Each of them refers to a definite number of excess electrons captured earlier by the molecule in the course of
charge transfer. Main emphasis has been put on the single-electron transmission channel. It may participate in the
charge transfer process if the molecule does not contain any excess electron. The probability of electron transfer
through the single-electron channel is defined by the statistical factor Wy, Eq. (57). If the population of any electronic
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state P, increases, then, W, decreases and the current through the molecule may vanish. In the subsequent sections we
will consider this problem in more detail.

5.1. The direct lead-lead contribution to the single-electron channel of the current

Using the definitions (A.29), (56) and (61), we may introduce the spectral density operator I’ (r =L, R) and
Green’s operator G(E) via their respective matrix elements

,uccuxﬂ =2n E : V’k/L vB, rkA.,;mué(E - Elk) (67)
and
0 100,V
Gunp, (E) = E‘_’—(Dp (68)
Moty

[Form (68) follows also from a general expression (44) at E = ELk+si ,
N!' =1,N,, = N” = 0.] Then, we may rewrite Eq. (64) to get

Hoy

Idlr = WOIdlr ’ (69)

ie. at Nio, =1, Njj, =0, Ny, =0,

where we introduced the quasi-elastic current
_ 2 o0 o0
109 — he > / / dEAE'L(E — ENT 1 (EEsV) W () f(E — e)(1 — fr(E — &) — eV))
P —00 J—0

—W(ei‘?))(l—ﬁ( — e NfR(E — &) —eV)]. (70)

This current is formed by single-electron transmission if any electron—electron correlation in the course of electron mo-
tion has completely be ignored. The conducting properties of the molecule are covered by the transmission function

T,,(E EV) =Tr (F<R> (E — &)GE) T (E - &V)G (E)). (71)

The expression for the elastic current, 1€ dlr, follows from Eq. (71) valid for a quasi-elastic current if s ) = sﬁ and if
L(E — E'")=(E — E'). As long as the I-V characteristics are measured at room temperatures or below the estimate
of the current can be performed by replacing the Fermi function fj(€) by the unit-step function O(Er — €) [55]. It yields

159~ 1§ = Z (e (72)

The partial elastic current through the molecule (note e <0),

2e

(el) _
I).e l’l

Ep+telV
Ef
displays the contribution from the transmission along the single-electron transmission channel when the molecule
(without an extra electron) is in the Ath vibrational state. At low temperature, the elastic current is formed by the mol-
ecule which is in its vibrational state-ground. Putting sf)o) = 0 we arrive at the standard expression for the elastic inter-
electrode current [60-62] so that

_ 2@ Ep+telV
15579 ) — / dET(E,V), (74)
h Ef
where
T(E,V) = Tr(I'™(E)G(E)T"W (E)G' (E)). (75)

5.2. The inelastic contribution to the single-electron channel of the current

This contribution to the overall current proceeds through intermediate states populated by the transferred electron.
We will restrict the considerations to the case where the lead—molecule (molecule-lead) transitions are much faster than
relaxation processes between the molecular levels x4 and u'. Therefore, Eq. (66) can be used and, thus, the expression
for the inelastic current, Eq. (65) takes the following form:
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T = —e Z w KKy = Kpy Kyt
int 0 ONKLHH—"_KRHIM +K/4HL ""_KpHR

with
Wou=(1-P)]](1-P)" (77)
VA
According to the definitions (60) and (A.24) and after replacing the Lorentzian by a J-function the lead—molecule and
molecule-lead transfer rates read

KpﬂL(R) _ (Z()/Z,JCAE#L(RWV)/kBTKL(R)H#, (78)

2 ) © © )
KLH/‘ :% Z F/‘.uoc,‘iwﬂ(gﬂfxu — ¢ )W(‘O/L )fl(glw(u — & )7
em
79)
2 R 0 0 0 (
KR—’H :% Z Fg,,ulc‘,/lum#(gﬂau - SEL ))W(SEL )),fR(S;m,( - 85, ) - eV)

),oc,‘

The partition functions Z; and Z,, are defined in Egs. (A.6) and (A.27), whereas AE,;(V) and AE, g( V) are the energy
differences between the uth MO and the Fermi level of the left and right lead, respectively (Eq. (88)).
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Fig. 4. Direct lead-lead single-electron current through a linear 3-site (a) and 10-site molecule (b). The transmission occurs through 3 or 10 extended
MOs, respectively. Inelastic processes are not taken into consideration. The calculations are based on Egs. (80) and (86) at W, = 1.
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5.3. Interplay between the elastic and inelastic transmission

We compare the influence of the different contribution to the overall current (63) in using the same parameters that
define the elastic and inelastic transmission. To this end we consider a vibration—less electron transmission for which
the elastic lead—lead current is given by Egs. (69) and (74). It is possible to show (see also [79]) that for strong inter-site
couplings V,,,,+1 the transmission function (75) reduces to

N oou,(Dut (N

T(E,V) = rOr® ; % (80)
The complex energy of the uth molecular state,

&y =&y +neV —iy,, (81)
includes a voltage induced shift which is characterized by voltage division factor (cf. Fig. 1)

n=[1+ (. —dr)/3]/2, (82)
while

= Jua(DPT® + (V) PT®) 2 (83)

is the broadening of the uth level. It is caused by the lead—molecule interactions (I'“® is the level broadening related

to left (right) terminal unit of the molecule). For a sake of clarity we consider a molecule with a regular arrangement of
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through the molecule, 7 = I4;; + fin, and the state population P, of the lowest molecular level (b). Symmetric case, calculations according to Eqs.
(76), (80), (86), (57) and (77).
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N identical sites. It means that in the absence of a voltage bias V the site energies E,, coincide, £ = FE,="--- =
Ey = Ep. The same should hold for the inter-site couplings, V,,,,+1 = . Therefore, we may write

i

N+1’

2 . mun
u“(n):\/—lsmNJrl (u=1,2,...,N).

It follows from Egs. (80) and (81) that
T(E,V)=T(E —neV)=T(x), (85)

g, =Eg —2fcos
(84)

and, thus, we obtain the following expression for the direct lead—lead current

Ep+ilelV
T = WOIO/ dxT(x), (Io = 2|e|/h). (86)
Ep—(1=n)le[V

Here, the transmission function 7(x) does not depend on the voltage bias V. The shape of the /- characteristics is
caused by the integration limits as well as by the factor W,. Note that the expression for the lead—lead current agrees
with the standard expression for the elastic current provided that the electronic populations become small (P, < 1)
and thus W, ~ 1. If it is not the case, then, due to inelastic processes the molecule is populated by the transferred elec-
trons. As a result, ¥, modifies the transmission through a single-electronic channel just reducing the current through
this channel.
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Fig. 6. Direct lead-lead and inelastic currents (a). Total current and state populations of the molecule (b). Asymmetric case, calculations are based
on Egs. (76), (80), (86), (57) and (77). The asymmetry is related to the difference between the left lead—molecule and the right lead-molecule inelastic
transfer processes.
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Assuming the same conditions as beforehand, the expression (76) for an inelastic current is reduced to

2 1 1
Ling = 10TEF<L)F(R) Z WO;I(|”#(1)U/4(N)| /'Vy) (eAEuL/kBT +1 - eAEw/kaT | (87)
u

where energy gaps read (note Ae, = ¢, — Ep)
AE, (V) = Aey —nlelV,  AER(V) = Agu+ (1 —n)lelV. (88)

Fig. 4 displays the typical steplike /- characteristics of a molecule for the case where the current is formed by a direct
single-electron lead-lead transmission. The MOs are not populated by the transferred electrons and the lead-lead
transmission proceeds in an elastic manner. The number of steps in the I~V characteristics which might become visible
is given by the number of levels N. If a model with a single localized MO per site is taken then N coincides with the
number of sites (as it is the case for Fig. 4). The smooth transition from one step to subsequent step is caused by the
level broadening '™ and I'®. An asymmetry of the I-V-curves with respect to V> 0 and ¥ < 0 appears if the voltage
division factor # differs from 0.5 (compare Fig. 4(a) and (b)).

The shape of the I-V-curves essentially changes if an inelastic pathway contributes. Now the transferred electron
undergoes relaxational transitions in the molecule. The MOs are populated by the excess electron and the level pop-
ulations P, differ from zero. This leads to a change of the factors Wy, Eq. (57) and W, Eq. (77), which are responsible
for a change of the elastic and inelastic component of the current. An expression for both components can be found in
Eqgs. (86) and (87). [However, it is necessary to remind on the fact that Eqgs. (86) and (87) are only correct if the inequal-
ities (23) and (24) are fulfilled together with ¥ < V> or [V'| < V'™ (cf. definition (53)). Just the validity of the latter
condition guarantees that the Coulomb interaction does not change the single-electron rate constants given in Egs.
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Fig. 7. Asymmetric current-voltage characteristics of a molecule. Calculations are based on Egs. (76), (80), (86), (57) and (77). The asymmetry is
related to the difference between left lead—molecule and the right lead-molecule inelastic transfer processes as well as to the voltage division factor 5.
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(A.24) and (A.29).] To become more concrete let us consider a 3-site molecule and let us take f =2 eV, U =3 eV. Now,
the inequalities (23) and (24) are valid for an arbitrary voltage bias. Although the I~V characteristics of the 3-site mol-
ecule includes three steps (cf. Fig. 4(a)) the inequality V' < V™ (|| < V'$™) restricts the correct computation of the
current to a certain voltage range. For an energy gap AEp = Ep — Er = 2 eV, this range is given —2 to 2 V, where only
the first step of the complete I~V curve is included. Just this step is shown in Figs. 5-7. If the broadening I'”) and I'®
coincide and if the voltage division factor  equals 0.5 the -V characteristics becomes symmetric (cf. Fig. 5). Note, that
the direct lead—lead contribution to the current shows a non-monotonic behavior in the region 1 to 1.5V and in the
region —1 to —1.5 V (see also Fig. 5(a)). Such behavior of the I~V curves is caused by the increase of the lowest level
population P; from zero to 0.5 (cf. the insert in Fig. 5(b)). Correspondingly, the quantities W, and W}, also changes. It
is worth mentioning that for || > 1.2 V, just originated by W, and Wy, the inelastic current, i, exceeds the modified
elastic current, I4;;. Consequently the total current 1, Eq. (64) is formed by an elastic and inelastic contribution (see Fig.
5(b)). If the broadening '™ and I''® strongly differ a pronounced asymmetry in voltage dependence of Iy, I, and of
the total current 7 appears (compare Fig. 6(a) and (b)). The asymmetry in the I-V curves (the rectification effect) is
enforced if the voltage division factor # deviates from 0.5. One may highlight this result by comparing the regions
V>0 and V<0 in Figs. 6 and 7.

The influence of the factor # on the rectification properties of a single molecule is determined by the concrete form of
the voltage drop in the interelectrode region. This problem has been discussed in different papers (see, e.g.,
[55,60,61,74,79,82,83]). Therefore, we will concentrate on a different rectification effect which is related to the inelastic
transfer. To this end let us consider electron transmission through a molecule which is symmetrically disposed the two
lead surfaces so that # = 0.5. In this case the inequality I'®) # I'® becomes valid if the contact of the molecule with
the left lead differs from that with the right lead (for instance, due to different types of terminal groups of the molecule).
The difference between I'™ and I'® results in a non-symmetric electron transfer and the left lead — right lead trans-
mission differs from the right lead — left lead one. This results in different values of the stationary population P; for
V> 0 and for V<0 (cf. insert of Figs. 6(b) and 7(b)). Since the voltage dependence of W, and W, follows from that of
P, an asymmetric dependence of Iy;, and I, on the applied voltage is also caused by that of P;. [As in the previously
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Fig. 8. Kinetics of an inelastic process responsible for the appearance of non-zero steady state populations P,. If V< V, the populations are small
and thus no strong influence of the inelastic transfer process on the elastic one appears. For > V, the populations are defined by the relation
between the transfer rates of the incoming and of the outgoing charges. As an example, the inelastic transmission through the lowest energy level
w=1 1s shown. It is defined by the transfer rates K; and K|, respectively.
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discussed symmetric case shown in Fig. 5(b), the populations P, and Pz equal zero in the voltage range —2 to 2 V.
Therefore, P, and P; do not influence W, and W;,.] Thus, a kinetic rectification effect appears resulting from different
populations of the molecule by the transferred electron whether the left-right or the right-left inelastic transmission is
considered. The formation of a non-symmetric stationary population P; caused by non-elastic transfer processes is
illustrated in Fig. 8. Let V', = V(Llres) (cf. Eq. (52)) be the characteristic voltage at which resonance transmission appears
via the lowest molecular level u = 1. This voltage is defined by the condition AE; (V) =0 (at V> 0) and AE | z(}V) =0
(at V<0, for the energy differences see Eq. (88)). If the voltage division factor 5 equals 0.5, then ¥V, becomes indepen-
dent on the voltage sign and equals 0.6 V. [To estimate V, we took the parameters AEp, f and N identical to those used
in Fig. 6.] Let us consider an inelastic transmission process at V> 0. In the region V' < V,, the lead—molecule transfer
rates K; .| and Kz_,; are much smaller than the respective lead—molecule transfer rates K;_,; and K;_, z. Therefore, in
accordance with Eq. (66) the population P; remains small. This yields W, ~ 1, W, ~ 1 (remember that in the region
—2to 2V one obtains P, ~ 0, P3; ~ 0). Thus, in the region V' < V, any pronounced modification of both current com-
ponents by W, and W, is absent. The situation changes in the vicinity V'~ V, where P; starts to increase. If V>V,
and if the relations K;_,; > K _;, Kr_1 < Kr_, are fulfilled, the inelastic current is determined by the direct left—
right electron transmission through an intermediate state associated with the population of the MO p =1 (cf. scheme
(c) in Fig. 8). In the course of the directed left-right electron transfer the population of the intermediate state saturates
at Py ~ IT'O)r'™™ + 1) =0.8. If V<0 and if a direct right-left electron transfer takes place the saturated value is
given by Py ~ I'®/(r'Y 4+ r®) =0.2. One may notice the difference between the populations for V>0 and for
V' <0 (see also the insert of Fig. 6(b)). Therefore, W, and W, also changes considerably for V"> 0 and for V" <0. Note
again, that just this fact is responsible for the occurrence of non-symmetric /- characteristics of the single-electron
current and thus for the observation of kinetic rectification effect.

6. Conclusion

In present paper we considered some general theoretical problems related to single-electron elastic and inelastic
transmission through a molecular wire. To remain sufficient simple the wire has been represented by an N-site
tight-binding model leading to N delocalized MOs. If embedded in between two leads the MOs participate in the elec-
tron transmission leading to a net current which is caused by two different electron transfer routes between the leads.
The first route is originated by an electron transfer process where the MOs are not populated by the transferred elec-
tron even if resonance conditions are fulfilled for the molecular levels. This route is responsible for formation of an
elastic inter-electrode current. The other route is related to a two-step transmission where the transferred electron
leaves the lead and undergoes relaxation in the wire including population of the MOs. Afterward the electron is trans-
ferred to another lead. This a transmission process forms the inelastic inter-electrode current.

It is usually assumed that in a left lead, molecule, right lead (LMR) system the current is formed either by an elastic
or by an inelastic transmission process. Generally, this is not the case and both type of transmission may be simulta-
neously contribute to the current. A proper description of such a situation has been achieved by using the density ma-
trix technique. The derived nonlinear kinetic equations for reduced single-electron distribution, Eq. (38) describe the
elastic as well as the inelastic electron transfer. The kinetic equations are valid for different situations including those
where the Coulomb interaction between the transferred electrons strongly affects the electron transmission through the
molecule. It is important to note that in the framework of the unified description the elastic as well as the inelastic
component of the current are expressed by a single set of parameters. This allows to correctly compare the contribution
of both current components to the total inter-electrode current. We consider the derivation of the nonlinear kinetic
equations (38) and the respective transfer rates (36) as the main result of our studies.

The unified description shows that the Coulomb interaction is responsible for the formation of the specific electron-
transfer channels associated with the number of extra electrons captured by the molecule in the course of charge
transmission. Among these channels the single-electron channel is of particular importance. This channel governs
the transmission through an “empty’”” molecule, i.e. the molecule which does not contain an extra electron except
the only one just being transferred. Therefore, the formation of the current through the single-electron channel pro-
ceeds in the absence of Coulomb interaction. However, the probability of elastic transmission through this channel
is not equal unity but is given by the factor W, Eq. (57). It means that the direct lead—lead current I;, is defined
as a modified completely elastic current, Eq. (86). Moreover, the inelastic current, Eq. (87) is modified by the factor
Wou Eq. (77). The appearance of W, and W), is related to the fact that in the course of electron transmission the
“empty” molecule is kinetically populated by the transferred electron. Accordingly, each molecular state population
P,, Eq. (66) is determined by the inelastic transfer processes. Our studies show that a completely elastic lead-lead cur-
rent only appears at an negligible population of the molecule by the transferred electron (i.e. if P, < 1 is valid for all
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molecular levels i). As one example for such a situation we refer to the superexchange lead-lead electron transmission.
Another example is given by an asymmetric electron transmission where the broadenings I'“ and I'® strongly differ
one from another. Here, a small population of the molecule appears following from the directed inelastic transfer pro-
cess (cf. scheme (c) in Fig. 8 and discussion to Figs. 6 and 7).

The described interrelation between the elastic and inelastic component of the total current has to be considered as
further important result of the present paper. This conclusion also underlines that both components of the current give
a comparable contribution to the total current (see Figs. 5-7). Although this result has been obtained via the analysis
of low-temperature vibration-less electron transmission through the single-electron channel only, it reflects a general
physical situation. Inelastic transfer processes lead to a population of the molecule by the transferred electrons.
Accordingly, the direct lead—lead transmission proceeds via the transfer channels formed by extra electrons captured
in the course of inelastic transfer. The number of captured electrons as well as the character of electron-transfer chan-
nels depends on relation between dynamic and relaxational characteristics of the LMR system (position of molecular
levels with respect to the Fermi levels of the lead, Coulomb interaction between the extra (transferred) electrons,
couplings to the lead, couplings to various vibrational modes and other). The opening of a particular channel is deter-
mined by the strength of the applied voltage. For instance, if the Coulomb interaction is taken in the Hubbard-form
and if the inequalities (22) and (23) are fulfilled the single-electron channel may participate in charge transmission in
the voltage region ¥ < V™™ (|1] < V™). The corresponding lead-molecule/molecule-lead and lead—lead rate con-
stants are defined by the expressions (86) and (87). Note, that the concrete expressions for these rate constants only
follow from the general expression for the transfer rate (36), if one analyzes a vibration-less transmission. But, Eq.
(36) contains contributions from the various electron-transfer processes as well. Moreover, it accounts for the broad-
ening of the electron-vibrational levels of the molecule due to fast vibrational relaxation as well as due to the interac-
tion with the macroscopic leads. [This is clearly demonstrated by Eqs. (47)—(50) specifying the lead—-molecule transfer
rates.] Therefore, the kinetic equations (38) are able to describe the formation of interelectrode current caused by var-
ious elastic and inelastic transmission channels including the thermally activated phonon-assisted channels.

The proposed unified description of electron-transfer processes refers to LMR system where the molecule or molec-
ular wire positioned in between the leads is characterized by delocalized electronic states. The next step of our studies
will the description of electron transfer through molecular structures where the electron transmission proceeds across
localized electronic states.
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Appendix A. Kinetic equations for integral populations

The main purpose of the appendix is to derive kinetic equations governing the single-electron state populations
P, (¢) at a situation where the molecule is coupled to the leads and the transmission occurs against the background
of fast intra-term vibration relaxation. To this end we employ the density matrix approach for the LMR system addi-
tionally coupled to a thermal bath (heat bath) to include vibrational relaxation. A similar approach has already been
used for the derivation of kinetic equations describing electron-vibrational dynamics in a donor-bridge-acceptor sys-
tem [73,77] as well as the LMR system studied here [65,26]. The kinetic equations are obtained from generalized master
equations (GME) for the reduced density operator p(#) governing the dynamics of an open quantum system like the
considered LMR system [66-69].

To offer a sufficient clear description we especially consider (in Section A.1) the derivation of a master equation for
the electron-vibrational level populations, Eq. (A.17). Moreover, it will be demonstrated in which way the fast vibra-
tional relaxation justifies a reduced description via kinetic equations for integral level populations, Eq. (A.5). Sections
A.2 and A.3 demonstrate how to account for the lead-molecule interaction in the kinetic equations (A.18) and how to
compute single-electron rate constants (A.24) and (A.29).

A.1. Kinetic equations for integral electronic state populations

In the following we will study in detail the way wherein fast vibrational relaxation processes influence the kinetic
processes within the molecule. Let us abbreviate the molecular electron-vibrational states |uo,;%,,,) by |so). [Note that
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in the occupation number representation [uoy:%,,,) = 110, %) = @, 1040, |%,)-] Then, the GME in Markov
approximation written for the matrix elements of the density operator p(¢),

pSO(;S’W,Sr (t) = <SO!S|p(l)|S,O(Sr>, (Al)
takes the following forms [73,81]:

, . i
pszxs’[f(t) = _lwmslﬁpws’[f(t) - % Z(VS&,kipkg's’/f(t) - Vké,s’ﬁpmki(t)) - (1 - 555/)<1/2) (’ym + Vs’[f)pms’/f(t)

k&

= 0usdap 3 (WL Praat) = WLt 1) (A2)

The couplings matrix elements Vi, g, = (sa|Vin|s'e') are responsible for transitions between electron-vibrational states
|se) and |s'a’) related to different electronic levels s and s’ (spin quantum number is timely omitted). The quantity
Yoy = To) = D W &_,1 defines the inverse life-time of the electron-vibrational state |so) and c01n01des with the broaden-
ing of the respective electron-vibrational level. To find the y,, one has to calculate the rate Wo(—»/ which characterizes the
relaxation between the vibrational states |sa) and |sa’). It is possible to show that if the coupling to a heat bath is de-
fined by v Eq. (6) then (s = p, 00 = o, 0 = o1

oo’ >

© = / ) dre@ls < e—ngr/ﬁ@gl)/eiHm/h¢$i>_ (A3)
Here, Hp is the bath Hamiltonian and &, — &,y = hwif, denote the transition energies. The bracket (---) reflects the
thermal average with respect to the equilibrium state of the thermal bath.

The vibrational transition « — o’ described by the last term on the right- hand side of Eq. (A.2) are defined via the
same transition probabilities (A.3) as it is the case for the inverse life-times 7., = y,,. The latter specify the relaxation
time. For ¢ > 1, all off-diagonal matrix elements related to same electronic level s, vanish while the diagonal matrix
elements, i.e. the populations Py,(?) = py,s(t), describe a thermal equilibrium (Boltzmann) distribution versus the
states |y,,). Accordingly we may write

Paasp(t) = OupW (8)Ps(2), (A4)

where

w,

0= Pul) (A.5)

denotes the integral population of the sth electronic level. Furthermore, we introduced the Boltzmann distribution of
the vibrational states of the sth electronic level

W(Sm) Z e (6su—&50)/kBT (Zs — Ze(ﬁwﬁsn)/kBT> ) (A6)

Relation (A.4) represents a coarse-grained description [73,81] describing the electron transmission via kinetic equations
for integral populations Py(z) (in our case, for P, () only.

If one inserts the factorized distribution (A.4) into Eq. (A.2) and takes into consideration that wl_w, /wa,_m =
exp[(esw — &) /kpT), the following set of equations for diagonal elements

i

psocsoc(t) = % [p(t)7 Vim]sazxoc (A7)
as well as off-diagonal elements

. i i

psots’/f(t) - - %AEWS/.HPMS’[?(Z) + % [p(t)? Vim]sats’/} (AS)

is obtained. In the latter equation we introduced complex energy difference AE,, 5 = E, — Ej; with
Em = Ego — iym' (Ag)

These complex energies of the electron-vibration levels include level broadening y,, caused by an interaction with the
heat bath. At 7> 1, the presence of this broadening allows to neglect the time derivative of p,, 4(¢), and a set of alge-
braic equations follows

1
pxom’ﬂ(t) = AE p [p(t)7 Vint]ms/ﬁ- (AIO)
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Note that the description of a stationary electron transmission (related to a stationary current) requires p,, y4(f) = 0
and automatically transforms the set of Egs. (A.8) to Egs. (A.10).

Egs. (A.7) and (A.10) can be represented in operator form if we introduce the projection operators
T,and T,y =1— T, They should separate any operator 4 into diagonal and off-diagonal components. Noting
pa(t) = Tap(t) and p,,(t) = T,ap(t), the following set of coupled operator equations is obtained:

pa(t) = —iTaLyp,(t),
pul) = =i [ 4@ Lrp ) =i [ deH @ Lm0
0 0
with the time evolution superoperator defined as
UO (1) = 007, (A.12)

In Egs. (A.11) and (A.12), &y = (1/h)[H,,...] and Ly = (1/B)[Vin, - - .| denote the Liouville superoperators with re-
spect to the molecular Hamiltonian

Hy =Y Eglso)(se] (A.13)

(A.11)

and with respect to the off-diagonal interaction V;,, respectively. Since E,, is complex (see Eq. (A.9)) and thus
Hy,# H} the time evolution superoperator %(0>(7:) acts on an arbitrary operator A according to
U (1)4 = exp(—iH,t/h)A exp(iH{ t/h). Next we note that the second equation of the set (A.11) couples the off-diag-
onal part of the density matrix to the diagonal one. Therefore, an iteration procedure can be introduced to get equa-
tions for p(t) only. They read

Palt) = =2py(1). (A.14)
Here, 2 can be understood as a transmission superoperator which reads
"@:ZQZ"' (A.15)
k=1
Every term

321( = —(—i/h>2de/ dTZk—l / d‘L'Zk_z < / dflgVTnd%(O)(TZk—l)gVTnd%m)(TZk—Z) s Tnd%<0)(71)$V
0 0 0
(A.16)

only contains an even number of operators Viy,,.
To derive kinetic equations for the integral populations P(z) we rewrite the master equation (A.14) in matrix form

Poasa(t) = = Y (52| (2] BY (' B se0) py g (0)- (A.17)
¥

An inspection of each term on the right-hand side of the kinetic equation (A.17) (by taking into account the expansion
(A.15) and the relations (A.4) and (A.6)) shows that it can be transformed into the following balance equation:

PS(t) = Z [KSHS’PS(I) - KS’HSPS’(t)]- (A.IS)
The rate constants characterizing the s — s’ transition read

2n

Ks—y = 7/ ZW(S_W)L(SW - Ss’,li) . (Alg)
h 7

Tszx,s’[i

The matrix elements Ty, 5 = (s«|V™|s'B) which couple electron-vibrational states sx and s'f are defined via the effec-
tive transition operator

VN = Vi 4+ Vi G(E) Ving. (A.20)

It contains the operator Vi, as well as Green’s operator G(E) = (E — H) ', where E = ¢, ~ &yp denotes the transi-
tion energy. The Hamiltonian H = Hy + Vj,, contains two terms, where the first coincides with the effective molecular
Hamiltonian (A.13) while the operator Vj,, describes transitions between different electronic levels and is identical with
Var— > Eq. (5). Note, that energies (A.9) of the Hamiltonian (A.13) include level broadenings 7, caused by vibrational
relaxation. Moreover,
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L(8sa - 8s’ﬂ) = % /S; ey 2
(Ssoc - 8S’ﬂ) + (ysa + ys’ﬁ)
denotes the normalized Lorentzian which reduces to a delta-function if y,, as well as yy,; vanish.
After a proper specification of the electron-vibrational states |sa) Eqgs. (A.18),(A.19),(A.20) can be used for a
description of non-adiabatic as well as adiabatic transfer processes within the molecule. In the present consideration
the extended states are used to characterize electronic properties of molecule. Therefore the derived kinetic equations

(A.18) describe only relaxation transitions between extended electronic levels s = puo and s = p/o caused by interaction
Vine = Vum—m» Eq. (5).

(A.21)

A.2. Coupling to the leads

To account for the leads we have to introduce the lead electronic states |[Lkoy) and |Rqoq)which complement the
molecular electron-vibrational states |so). If the fast relaxation discussed beforehand is only present in the molecule
we arrive at the generalized set of kinetic equations

Pi(t) == [K;pPi(t) = Ky iPr(1)], (A.22)

o

J

where j and ' refer to all LMR electronic states. If j = s = pand j' = s’ = y’ the rate constants K, coincide with those

given by Eqs. (A.19) and (A.20). However the transition operator (A.20) now contains Green’s operator defined by the
electron-vibrational Hamiltonian H = H' LMR of the total LMR system. H LMR) contains three parts. The first corre-
sponds to the molecular Hamiltonian (4), however with energies ¢,,, replaced by E,,,, Eq. (A.9). The second part refers
to the lead Hamiltonian, Eq. (7), and the third one coincides with the interaction between the leads and the molecule,
Eq. (8). After introducing the abbreviations rk = rk/, ¢ = u«, the Hamiltonian reads (spin quantum numbers are

timely omitted)

HY _ZEk|rk rk|+ZE|f (E[+ ) [V melrk) (€] +he]. (A.23)

rk,¢

If j indicates one of lead states (for instance, j = Lk) while ;' = s = u refers to the uth molecular level then
2n

Kiew =5 D | Tukson | S En) W (&)L (B — Ay, 7). (A.24)
oty
Here, the quantity
Aeys, i = i, — 85.0 ) (A.25)

is the difference between molecular electron-vibrational energies valid if an extra electron does or does not populates
the molecule. The summation in Eq. (A.24) covers the vibrational states of the molecule valid if it does and does not
contain an extra electron (indexes o, and 4, respectively). The factor f; (Ex) W(sgf))) gives the probability that the mol-
ecule is in the Ath vibrational state before the extra electron enters. Note the introduction of the Fermi function of the
left lead

fL(ELk) = {exp[(ELk — EF)/kBT] + 1}_17 (A26)
where Ef is the Fermi energy of the lead and the introduction of
W(biO)) _ Zale*(ﬂgo)*ﬂf)o))/knr <Z _ Ze t<0)7c(0 /kBT> (A27)

as well as of the Lorentzian

L(ELk - Ag,ua,,,/l) = - —

R
T (ELk - Agﬂau,i)z + (V} + y;m“)

(A.28)

Lorentzian contains the broadening of the molecular electron-vibrational levels involved in the lead—molecule electron
transition. The matrix element Ty, par, = (Lk/| V°m| uo,) has to be calculated with the transition operator (A.20) where

E=E;+ 820) R &y, and H = ng;;%
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If the electron transmission occurs between the leads then the left-to-right rate constant reads

2n .
Kuory =7 D 1 Tings [ Se(En) (1 = fa(Erg = V)W (e ) L(En — Eng + Ae)). (A.29)
vy

This formula is based on the supposition that the left lead is fixed at zero voltage (7, = 0) so that a lead—lead voltage
bias is defined by the potential V= V', applied to the right lead. The Lorentzian
1 Vit v
L(Ew — Egg + Ad) = = L
! ' T (Exx — Egq + Ag(f,)l/)z + (7 +70)

(A.30)

takes into consideration the relaxation processes in the molecule when the latter does not contain an extra electron.
Eq. (A. 30) reflects the fact that during the lead-to-lead transmission the molecule can gain or lose the vibrational
energy As ), = sﬁ‘” — s ). The matrlx elements Vikirgr = (Lk} |V |Rq.) are calculated with the transition operator,

Eq. (A. 20) ‘where E = Epy + s ~ Epq + s), and H = HLMR
A.3. The effective electron-vibrational Hamiltonian

The transition matrix elements which enter the rate constants given in the preceding section have to be calculated in
using the transition operator (A.20). It contains two contributions, the first, Vi, = Vis_ar + Vir_m, characterizes the
direct coupling between molecular electron-vibrational states and between molecular levels and those of the leads (cf.
Vai—ar Eq. (5) as well as Vir_as, Eq. (8), respectively). Therefore, one can calculate the corresponding rate constants
in using the following approximation for the matrix elements:

Tougp = <,U0‘;z|VM—M‘ﬂ/ﬁ,ﬂ> = Vmu,u’ﬁ“, (A.31)
and

T ki, = (LKA tr-pe|100) = V ik, - (A.32)
These expressions demonstrate that in the framework of the chosen approximation the noted matrix elements are ex-
pressed through those specifying the interactions (5) and (8), respectively.

The second part of P g given by Vi, G(E) Vi, which may account for complex dynamic processes within LMR
system, in particular coupling the electronic states of the left and the right lead

Tixirgy = (LKAVinG(E)Vini|[RqZ'). (A.33)
To make the expression more concrete we note that Green’s operator is defined via the electron- Vlbratlonal Hamilto-

nian H = H LeM}), Eq. (A.23). Let us suppose that |F)and & are the eigenstates and eigenvalues of the H LMR In this case
Green’s operator reduces to

1) (F
A.34
Z E—ér (A.34)
and thus we get
VixirVr /' Rq
T r= —r A.35
Lk/,Rq/ ; E— gF ( )

Here, Vi, r= (LKAV i r_mlF)and Vi yzy = (F|Vr-u|4'Rq) are the matrix elements between the electronic lead states
|ALKk) and |A'Rq) and the LMR states |F). To obtain the energies & and the states |[F) we have to diagonalize the
Hamiltonian (A.23) using the transformation

= Or(rk)|rk) + > Or(9)¢). (A.36)
rk 13
The OHrk) and @&) as well as the eigenvalues & are derived from the set of equations
(En — 67)OF(rk) + Z V:k,:@F(é) =0, (E:—d&F)Ok(&)+ Z Z Vi cOp (rk) = 0. (A.37)
¢ r=L.R

It follows from the first equation of this set that

Or(rk) = ZV* Op(& (A.38)

(5p—
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Substituting this relation into the second equation (A.37) leads to the reduced set of equations

3 {(Eé —E)oz + ZU(E) + ZX(E)|0#(&) = 0, (A.39)

&

where we have introduced the self-energies

V* z V'k £
SOE) =Y ke e A.40

LE=Y (A.40)
The set is extremely appropriated to derive approximate expression for the energies £ = & as well as for the coeffi-
cients @rk) and O ¢&). Below we restrict ourself to the case where the leads are considered as a macroscopic system.
Therefore, both leads perturb the molecular states in a much stronger way then the molecule perturbed the leads. This
fact allows to split off the extended LMR states |F) into two types [79]. The first type is identical to the lead states |rk).
It means that

Or (&) = 0 (A41)

and thus |F) = |F(rk)) = |rk). The corresponding eigenvalues &5 coincide with the unperturbed energies E, (r = L, R)
of the leads, i.e. & = &r(x) ~ Ex. The second type of LMR states coincides with molecular electron-vibrational states,
|F) = |F(&)) = >_:0r(£)|E). Due to the condition (A.41) the set (A.39) is reduced to the subset

> [(rie) — Boe] 07, (£) = 0 (A42)

S

where the notation fa,= F(£) for the molecular electron-vibrational states formed from initial molecular electron-
vibrational states |¢) = |ua,) is employed. Here, we had introduced the effective molecular Hamiltonian

HEY = S Ee e+ 5 4 50 (A.43)
I3

which apart from the main contribution (the first term on the right-hand side) contains self-energy operators defined by
Eq. (A.40). The solution of Eq. (A.42) is essentially simplified by the fact that self-energies exhibit a negligible depen-
dence on the energy E [10,55,60,61]. Therefore, the diagonalization of H}(\Zm represents an algebraic problem only.
Denoting the eigenenergies of this Hamiltonian by &, one obtains the form (17). In the case of macroscopic leads
the influence of the molecular states on the lead states may be ignored. According to relation (A.38) and condition
(A.41), we obtain

@F(rk) (V/k/) S 5k,k’ ) (A-44)

and may conclude that only those matrix elements (LkA|V,g_p|F) do not vanish where F = F(¢) = fa,. Noting this fact
the matrix elements (A.35) reduce to

VLkZ,Rq)/ == Z Z VLk/lAfG&:f/ V;q).’,cf" (A45)

< ¢

Here, the couplings Vi, ¢ = Vikiu, (r = L, R) are defined by Eq. (9), while the matrix elements of Green’s operator
read

014, ()67, ()

Ger =) —F_s. (A.46)
Sfor Soy

This expression shows that only in the case of macroscopic electrodes the calculation of the LMR Green’s operator can
be replaced by the calculation of molecular Green’s operators defined via the effective Hamiltonian (A.43). The latter
includes imaginary parts caused by the interaction of the molecule with a heat bath as well as with the lead. Obviously,
these interactions result in broadening of the molecular electron-vibrational levels.
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