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Abstract. The non—Markovian version of the Quantum Master Equation responsible for the time—evolution
of a reduced density operator is discussed with emphasis on the influence of external field—pulses. Different
methods to account for the retardation effect in the course of the numerical solution of the Quantum Master
Equation are reviewed. An application is given for femtosecond optical transitions in molecular systems and
the resulting vibrational relaxation processes. The expansion in terms of Laguerre polynomials is introduced
as an effective scheme for the numerical description of retarded vibrational energy dissipation. As a result
of numerical simulations one can state that retardation effects become more and more pronounced with
decreasing duration of the exciting laser pulse. Finally, analytical solutions are presented for non—trivial
versions of the non—Markovian Quantum Master Equation.

PACS.

1 Introduction

In nearly all experiments on molecular systems or con-
densed matter systems one is faced with the special fea-
ture that a direct access, for example via the coupling to
external fields, is only possible to a particular subset of
the system degrees of freedom (DOF). These DOF are
usually named active DOF whereas the remaining DOF
are called passive DOF. The latter one influence the ex-
perimental output and the observed dynamics only in an
indirect way.

If a quantum description of the system dynamics is
necessary one takes notice of this circumstance by working
with probability distributions reduced to the active DOF.
In the most general description this leads to the concept of
the reduced density operator. All the ideas behind are dis-
cussed in the field of dissipative quantum dynamics. This
field is well-established since the fifties and early sixties
and has been documented in various excellent textbooks
(for a more recent overview see [1-6]). It is also a well-
known fact that the equation governing the probability
distribution of the active DOF shows retardation effects.
These retardation effects are caused by the coupling to the
passive DOF (in most cases the DOF of a thermal envi-
ronment surrounding the small active subsystem) and can
be accounted for by certain correlation functions.

Of course, these retardation effects are the result of
the mathematical description of the system and not of its
physical properties. Retardation only expresses the fact
that the motion of the active system does not appear de-
coupled from the remaining set of DOF. Therefore, it is
matter of course to state that non—-Markovian behavior is
only caused by the point of view we occupied when de-

scribing a system. What appears as a retardation effect
in one approach may be the result of the coupling among
a somewhat larger set of DOF in another one. But hav-
ing chosen a particular description the need to account for
retardation naturally arises.

If the time—evolution of the reduced density opera-
tor is concerned the type of equations showing retarda-
tion effects are known as non—Markovian equations of mo-
tion, and the neglect of the retardation is usually termed
Markov approximation. To put all this into a more con-
crete form, first, let us denote the active system by S
and the passive system (the reservoir) by R. The com-
plete system S + R is described by the nonequilibrium
time—dependent quantum statistical operator W(t) Con-
sequently, the reduced statistical operator p(t) is obtained
from W (t) by taking the trace with respect to the states
related to the passive DOF (reservoir states), i.e.

p(t) = trr{W (1)} - 1)

Since the equation of motion determining p is of the oper-
ator type, retardation and thus non—-Markovian behavior
is governed by a superoperator acting in a time non-local
manner on j

t
D(t,t03) = — / dEM(t, D)p(P) ()

The quantity M defines the (superoperator) memory ker-
nel. It depends on the difference of ¢ and t if any time—
dependent external perturbation is absent. According to
the well-established approach leading to the Nakajima—
Zwanzig equation for p(t) an exact expression for M(t) is
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known (see, e.g. [2,7]), which usually saves as a starting
point for a perturbational expansion. The decay of M(t)
with increasing ¢ fixes the characteristic time-scale Tmem
for which retardation (memory effects) are important.

The approach described so far is based on the con-
struction of an equation of motion to get p. Alternatively
one can try to derive directly a closed expression for the
density matrix. As it is well-known this becomes possi-
ble in using the path integral representation of quantum
mechanics. (For a recent overview on the application to
chemical physics problems we refer to [8].) If p has been
taken in the coordinate representation the respective den-
sity matrix is given as a double path integral including all
possible paths which connect the coordinate distribution
at the initial time ¢ty with that at the actual time ¢. Here,
again retardation appears which is accounted for by the
so—called influence functional. This quantity stems from
the passive DOF and is nonlocal in time. The approach
incorporates the coupling between the active and passive
DOF in an exact manner beyond any perturbation theory,
but it is numerically strongly demanding what restricts it
present applications to active systems with a number of
quantum levels less than 10.

Beside many other applications the concept of dissipa-
tive quantum dynamics has been used to describe relax-
ation phenomena in molecular systems and to achieve a
quantum mechanical foundation of chemical reaction dy-
namics. Focusing on optical experiments, electronic tran-
sitions and vibrational motion, the research work done up
to the dawn of fs—spectroscopy can be characterized by
the following peculiarity. The time—scale of preparing an
excited molecular state appeared to be much longer then
the characteristic time nuclear DOF need to reach equi-
librium. In the course of numerical simulations this aspect
allowed for the neglect of particular coherence effects and
justifies a certain time coarse graining. The coarse graining
is achieved in removing unimportant ultrafast fluctuations
from the description and, in this way, non—-Markovian, i.e.
retardation effects dissappear.

Meanwhile optical pulses with a duration less than
10fs are available and one can detect coherent nuclear
dynamics (dynamics unaffected by environmental fluctu-
ations) [9-12]. This experimental achievement initiated a
renaissance of the theory of the dissipative quantum dy-
namics putting emphasis on the description of ultrafast
nuclear dynamics in polyatomic molecules and molecular
systems in the condensed phase [7,10-12]. And, there is an
argument that one has to expect pronounced retardation
effects just in this limit of ultrashort optical excitation.
Obviously, if the excitation process i.e. the preparation of a
non—equilibrium initial state is long or even comparable to
the time 7em characterizing retardation there will be not
any chance to observe non-Markovian effects. However,
in the opposite case where the initial state preparation
process is fast retardation effects may become observable.
Such an observation of retardation has to be understood
in the sense that the experimental data should deviate
from a related simulation which works completely in the
Markovian limit. We will demonstrate this in comparing

the Markovian as well as the non—Markovian description
of an optical excitation process (using a sufficient simple
model for a molecular system).

But it is not the aim of the present contribution to re-
main at a single example. Instead, we will give an overview
on recent theoretical achievements to incorporate retarda-
tion effects into the description of open quantum systems.
Although a parallel development took place in solid state
physics (see, e.g. [13] and references therein) the present
paper concentrates on the field of chemical physics putting
emphasis on optical transitions and electron—vibrational
dynamics in molecular systems. Since it is a task by itself
to clarify the importance of non—Markovian effects when
solving density matrix equations we will not comment on
the experimental background.

The paper is organized as follows. In the next section
a sufficient general model is introduced and we give the
basic equation of motion for the reduced density oper-
ator. According to the structure of the dissipative part,
Eq. (2) a treatment possible in many applications will be
explained. The respective idea is made somewhat more
concrete in Section 3. The Fourier-Laplace transforma-
tion method is discussed in Section 4. In Section 5 the
expansion by means of Laguerre polynomials is applied
to describe optical excitation into an excited potential
energy surface (PES) and to study resulting vibrational
relaxation. In the last section analytical solutions of the
non-Markovian density operator equations are presented.

2 The Non—Markovian Quantum Master
Equation

2.1 The Model

According to the introduction of active DOF our discus-
sion will start with a respective separation of the complete
Hamiltonian

H = Hs(t) + Hs g + Hgr , ()
which is standard in dissipative quantum dynamics. The
first part describes the molecular system of interest (active
system with Hamiltonian Hy,e) together with its coupling
to an external radiation field (with Hamiltonian Hgeld(t))

(4)

The part Hs_g accounts for the coupling of the active
system to the reservoir, whereas the reservoir is described
by Hg. The molecular contribution to Hg will be given by
the expression

Hunot = Y Ha(Q)|¢a){al -

HS(t) = Hmol + Hﬁeld(t) .

()

It corresponds to an expansion with respect to the adia-
batic electronic states ¢, (with electronic quantum num-
ber a) and the neglect of any non—adiabatic coupling. The
vibrational Hamiltonian H, = Ty, + Uy (Q) contains the
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kinetic energy operator 7y;, and the respective PES U,
defined with respect to the set Q = {Q;} of active vibra-
tional DOF. The eigenfunctions of the various H, will be
denoted as xom(Q), where M stands for the set of related
vibrational quantum numbers.

The molecular Hamiltonian is general enough to carry
out different considerations. Performing concrete numeri-
cal calculations (see [14,15]) it will be further reduced to
the minimal model used in [16,17] for the simulation of ul-
trafast optical data obtained for a dissolved dye molecule.
In particular, this model will serve as a reference system
to study the interplay of the external field excitation of
the molecule and the non—-Markovian relaxation of the vi-
brational DOF in the excited electronic state. The mini-
mal model consists of two electronic levels modulated by
a single effective vibrational coordinate . In this case the
H,(Q) are vibrational Hamiltonian corresponding to the
the ground (a = g) as well as to the excited electronic
states (a = e ) and incorporating harmonic oscillator PES

hwyib

Ua(@) = UY + =52(Q - Qa)” (6)

For the coupling to the radiation field we have in mind a
description within the electric dipole approximation

Hgeaa(t) = —E(t)fi . (7)

Here E(t) is the electric field-strength of a laser pulse (or
a sequence of pulses). It reads in detail

E(t) = nAE(t)e” ™0t +c.c. (8)

where n is the polarization unit vector, A the complex
field amplitude, £(¢) the normalized pulse envelope and
wo the carrier frequency. Furthermore, we introduced in
Eq. (7) the molecular dipole operator

fi=") (1= Gap)dasla) (s ,

a,b

(9)

which only contains off-diagonal contributions connect-
ing different electronic states. dgp is the related transition
matrix element. In the concrete computations it will only
connect the ground state yp, with a single excited state
Pe-

A common notation of the system reservoir coupling
is given by the following multiple factorized expression

Hs_gr = Zlcu¢u ) (10)

where the K, are operators exclusively defined in the state
space of the active system and the &, are operators acting
in the reservoir state space. Noting the specification of the
molecular systems of interest we identify u and v with the
electronic quantum numbers a and b, and set

Ko = Ka(Q)l‘Pa)(‘;oa| . (11)

The assumption of a coupling diagonal with respect to the
electronic states is not the most general one but reason-
able for the present case where the electronic levels are

connected by optical transitions. The dependence of the
K,(Q) on the @ remains arbitrary whereas it represents
a widely used ansatz to set

B, =hY ke(a)Ze , (12)
13

i.e. the &, depend linearly on the reservoir DOF. The
latter are often understood as decoupled harmonic oscil-
lators.

2.2 The Density Operator Equation

It is well-established how to get an exact equation of mo-
tion for p(t) via the Nakajima-Zwanzig identity (see, e.g.
[2,7,18,19]). The respective memory kernel superoperator
M, Eq. (2) includes the complete perturbation expansion
with respect to the system reservoir coupling via a partic-
ular S—matrix type superoperator. According to this com-
plicated structure, however, there is no chance to compute
M beyond some trivial examples. But this difficulty may
be overcome, for example, by a time—-dependent projection
operator approach as suggested in [20,21] allowing for an
partial summation with respect to Hg_gR.

As an alternative, and this is the point of view we will
take for the following, one can try to define the active sys-
tem large enough to cover all strong coupled DOF. Then,
the coupling to the remaining passive system should be
weak enough to be treated in a perturbational approach.
Providing weak or intermediate system reservoir coupling
one can carry out the so—called second Born approxima-
tion. This is achieved by approximating the equation of
motion for p in the second order with respect to Hs g
(fourth—order approximations have been discussed in [22,
23] and just higher contributions in [24,25]).

We will not recall the derivation of the equation of
motion for p here since it can be found in many textbooks
(see, e.g. [1,2,7]). It follows

9 ) = (1,10

— S [Hs() + Hor, p(0)] +Dlttosp).  (13)
This equation is usually called Quantum Master Equation
(QME). The first term on the right—hand side is responsi-
ble for the decay of correlations between the active system
and the reservoir, which are present at the initial time ¢q.
The appearance of such initial correlations corresponds to
a non—factorized form (into a system and into a reservoir
part) of the complete statistical operator (at the initial
time to). We will not further comment on it here but refer
to the recent nice discussion in [26].

The contribution Hpy,s which extends Hg on the right—
hand side is the so—called mean—field term

Hpye = Z < &, >r ICu ) (14)
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with < ... >g denoting the thermal average with respect
to the reservoir states. R

In accordance with Eq. (2) the dissipative part D(t, to; p)
incorporates the convolution of the density operator p(t)
and a memory kernel (memory superoperator) M(t,t). Its
definition is given by the following equation

Dt to‘ﬁ) =

—Z/

U,V to

= Cou(=t+ 1) (K, Us (1, DDKUS (1,9)] )

E(Cunt = B [ICus Us (. DA OUS (0]

(15)

Beside the direct appearance of the external field in the
QME via the commutator with Hg the field also enters
in an indirect way. Such an indirect field—dependence of
the memory kernel is induced by the time—evolution oper-
ator Us which is defined by Hs. The reservoir correlation
functions read

1
Con(t) = ?( < Uf@,Un®, >n — < By >r< B, >n ) -

(16)
For some further application it is useful to introduce the
interaction representation of the QME, which should be
defined here by the complete system Hamiltonian, Eq. (4).
The respective representation of the density operator fol-
lows as

P (t) = U (t,0) () Us (1, o) - (17)

The QME for 57 (t) is obtained in similarity to Eq. (13)
but without Hg(t) on the right—hand side. Furthermore,
I, Hy¢, and D have to be translated into the interaction
representation. For the latter quantity one obtains

DO (1,03 p1)) =
t

[ di(Cutt-D[KL 0, K DF D]

wu o

= G-t +D KD 0,0 OKP D) ) -

Usually one takes this expression to change to the Markov—
limit by replacing the density operator with time argu-
ment ¢ by the one at time ¢ (see, e.g.[7]).

Finally, we remind on the well-known fact that the
perturbational treatment of the system reservoir coupling
may lead to some wrong behavior of the density opera-
tor, i.e. the violation of its positivity. This property can
be ensured by taking the so—called Lindblad-type of dis-
sipation. However, the latter provide the Markov approx-
imation together with a neglect of certain parts of the
time-local dissipative superoperator (secular type approx-
imations, for a recent discussion see, e.g. [27]).

(18)

2.3 Introduction of Auxiliary Density Operators

To characterize the retardation effects and to construct
time—local equations of motion it will be of great advan-

tage to change the notation of the d1ss1pat1ve part, Eq.
(15). Therefore, we write D = Dy + D, and identify D,
with the contribution given by the time-independent part

@) = _ < &, >p< B, > /B> of Cuy, Eq. (16). The
first contribution Dy follows from the time—dependent first
term in Eq. (16).

We start to give an alternative notation for ﬁl. It is ob-
vious from Eq. (15) that we can write D; = > ulCus -
(where 3, is easily deduced from Eq. (15)). This expres-
sion removes the time non-locality from the QME. Un-
fortunately, one cannot derive a separate equation of mo-
tion for f]u. This only becomes possible if the various cor-
relation function C,(ﬁj), which depend on the two time—
arguments ¢ and ¢ can be replaced by the following mul-
tiple factorization ansatz

o) t—i)—

(2 ()8 (3)
Z (t) 8%

Such an expression may be constructed by a double ex-
pansion with respect to an orthogonal set of functions.

(19)

Providing the multiple factorization of CI%) we can intro-
duce the following new auxiliary density operators (note
the use of the interaction representation, Eq. (17))

101 / 4 B UL (7, t0)KopOUs(F t0) , (20)
and
0 / @ B3) (~DUZ (o) s, Us o)

(21)
which remove the time—-nonlocality in Dy to give
A i
Dity=5> >
[Kus als) ()63, (8) — al2) (—1)682), (D] _ (22)
The equations of motion for the auxiliary operators read
0
5(+) 5(+) (s) (¢
2 4(0) = 7 [Hs(0),653, 0] + %55 (0Kup(t)
(23)
and
NS i 5(-) (s)
aas,uv (t) = _ﬁ [Hs(t), as,u'u( )] ﬂ ( ) ( )IC
(24)

We note that the term stemming from initial correlations
can be handled in a similar manner [26]. However, for
the description of the external field influence initial cor-
relations are of less importance. Any simulation can be
performed without this term in letting the external field
pulse start to act definitely after the decay of the initial
correlations.
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Next we deal with term 152 determined by the time—
independent part of C\,. It can be rewritten by introduc-
ing a single additional density operator &

~ {
Dy(t,to) = —5

= [Hne, ()] (25)

Using the interaction representation as introduced in Eq.
(17) the new operator reads

60(0) = 3 [ UL E.t0) [Hot, 50] _Us(Erto) . (20)

This expression can be related to the following equation
of motion (in the Schrédinger representation)

— & [, )] _

O sty=_1

5;0(0) = =7 [Hs(1),6(0)]_ (27)

The introduction of the auxiliary operators &gﬁ)v and &

demonstrates that the time-nonlocality can be removed
with any accuracy one needs. In which manner the two
types of auxiliary operators contribute depends on the
properties of the reservoir correlation functions. If the
time—independent part dominates the dissipation one may
have the chance to find an analytical solution of the non—
Markovian QME (cf. Section 7).

2.4 Expansion with Respect to Electronic States

It is of basic importance for the description of optical tran-
sitions and the simulation of nonlinear optical experiments
to expand the density operator and the QME with respect
to the electronic states |¢,). It results the set of quanti-
ties Pap(t) = {pa|p(t)|@s), which just represent operators
in the state space of the vibrational coordinates. To deal
with formulas which are not too complicated we assume
< &, >p=0 and get from Eq. (13)

i) = o) = (Tapu0) = pus ()11
+ %E(t) Z(dacﬁcb(t) - dcbﬁac(t)) + Dab(ta tO) -(28)

C

The electronic matrix elements of the dissipative part are
obtained as

i

Dab(t, to) = —Z /dt_

c,d to
( CaC(t - E)KaUaC(ta f)KCﬁcd(f)Uzi_i(ta f)
+ Cdb(_t + ﬂUac(ta f)pAcd(E)KdUIj;i(ta E)Kb
- Cbc(t - ﬂUac(ta 'E)Kcﬁcd(f)U;,_i(t; 'E)Kb
- Cda(_t + i)KaUac(ta E)ﬁcd(i)KdUlj:i(ta fI29)
Note Eq. (11) and Uap = (@a|Us|es)-

It remains to specify the various Cp. In the case where
the simple expression (12) is valid and where the reservoir
DOF can be considered as coordinates obtained from a
normal mode analysis, i.e. the Z; form a set of indepen-
dent harmonic oscillators it is advantageously to introduce

Jap(w) =Y ke(a)ke (b)5(w — we) - (30)
¢

These quantities are known as spectral densities (coupling—
strength weighted density of normal-mode oscillator fre-
quencies). They determine the correlation functions ac-
cording to (note the vanishing of < &, >Rr)

Canlt) = / dio € (14 1)) (Jap (@) — Jap(—w))

(31)
with n(w) = 1/(exp(hw/kpT)—1) being the Bose-Einstein
distribution. A common ansatz for j(w) representing the
normalized part (in the frequency interval between 0 and
o0) of a certain Jyy is given by j(w) = wexp(—w/w,)/w?.
The inverse of the cut—off frequency w. gives an estimate
of the characteristic time Tem for which the correlations
of the reservoir DOF decay. We will denote the inverse of
we by te.

2.5 Time—Dependent Markov Approximation

As an alternative to the Nakajima-Zwanzig equation an
equation of motion for 4(t) has been suggested which is
exact but local in time. Now, dissipation is described by
D(t)p(t) where D(t) is an explicitely time—dependent su-
peroperator. Such an approach is known as the time—
convolutionless density matrix equation [28] (see also the
discussion in [29]). Within this approach the absence of
the time-nonlocality has been achieved by introducing
into D(t) the reverse time-evolution from the actual time
back to the initial time. This can be understood as the
presence of additional partial expansions with respect to
the perturbation (the system reservoir coupling Hg_g).

Both types of density operator equations may be re-
lated one to another if one changes to the interaction rep-
resentation, Eq. (17) and expands p{0) (t — 1), after replac-
ing t in Eq. (18) by 7 = t —#, in powers of 7 [30]. This pro-
cedure, if carried out at the non—Markovian QME, leads
again to a dissipative term of type D(t)p(t) (of course
with D defined in the second—order with respect to Hs_R).
Since any non—-Markovian effect has been removed we will
call this approximation the time-dependent Markov ap-
proximation. If the second-order version of D(t) with re-
spect to Hg_pg is taken a nearly correct reproduction of the
non—-Markovian dynamics (of this second—order perturba-
tion type) can be obtained [14]. Other applications of the
time—dependent Markov approximation can be found in
[17,31-34].
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3 Ansatz for the Reservoir Correlation
Function

Before dealing with techniques based on a certain expan-
sion of the density operator and the QME we refer to
methods which try to solve the non—-Markovian QME di-
rectly, i.e. in the time-domain. In [35] the introduction
of the fictious bath modes to simulate a spectral density
of the bath has been suggested. Behind this idea is the
common observation that a given non-Markovian process
can be related to a Markovian process of a system with a
larger set of DOF. The easiest way would be to enlarge the
system in question by a single fictious harmonic-oscillator
mode. If the latter interacts with a zero—correlation time
bath, the spectral density obtained after tracing over the
fictious mode turns out to be of a Lorentzian shape. Al-
though originally suggested for the Monte Carlo wave-
function method [35], where the scaling of the problem
(related to the involved level number) is much more fa-
vorable than that of the density matrix approach, it is
obvious that the system cannot be enlarged by more than
a few fictious modes. Therefore, the flexibility to chose a
particular shape of the effective spectral density is rather
small.

The scaling problem can be avoided if we view the fic-
tious bath modes only as a numerical trick for the decom-
position of the spectral density. To this end the following
parameterization of the correlation function has been sug-
gested in [26] (for a single electronic state, see also [23])

W

1 14
Tw) =3 5:21 % [(w+ws)? + 73][(w — ws)? + 73]

, (32)

where the parameters Jg, ws and v, are arbitrary and
real. It is the great advantage of such a generalized multi—
Lorentzian form that an analytical determination of the
time—dependent correlation function according to Eq. (31)
becomes possible. One obtains (note the absence of elec-
tronic quantum numbers)

Re C(t) = Z Is

(coth (g (ws + i’ys))eiwst—’Yst)

=1 WsTs
- JS ,8 . —twet—st
+ ; o (coth (E(ws —ivs))e K )
2 & ot
+3 > I(ivs)et (33)
s=1

and
= Js o o
Im C t) = —i _Ys ezwst st _ e iwst—"yst , 34
" ;wﬂs( ). 6

where vy = 2wskgT are the Matsubara frequencies. If for-
mulated for the difference time-argument ¢t — ¢ the real
and imaginary part of the correlation function are just of
the type introduced in Eq. (19). Therefore, the original

QME can be completed by the equations of motion for
the auxiliary density operators, Eqgs. (20) and (21).

The resulting equations would represent the time lo-
cal equivalent to the original time non-local Eq. (13) if
the parameterization (32) is exact. Although this is not
the case it has been noted in [26] that it gives a good
approximation for an Ohmic spectral density even if one
incorporates only a few terms in the expansion Eq. (32).
But the main advantage of this method is that one can
easily account for an external field influence. So, the ap-
proach is suitable for strong field problems as well as for
problems of laser pulse control of molecular dynamics, e.g.
in the framework of the optimal control scheme [36].

4 Fourier—Laplace Transformation and the
Description of Retardation Effects in the
Frequency—Domain

Inspecting the general form of the QME, Eq. (13) the idea
arises to use the Fourier—Laplace transformation method
for the solution of the time non-local problem. Under cer-
tain additional conditions and for a few level systems one
can obtain results by analytical calculations which are ap-
plicable, for example, to the computation of pump—probe
spectra (see [30,37-40]).

Omitting any field dependence (Hs = H01), provid-
ing that the mean—field term, Eq. (14) does not exist and
setting to = 0, one easily constructs the Fourier-Laplace
transformed version of Eq. (13). Its solution reads

pw) = {iw — iLmor — M(w)} !
x (I(w) - pt =0)) ,

where L,0) denotes the Liouville superoperator correspond-
ing to the commutator with Hp,, and M (w) is the mem-
ory kernel, Eq. (2) transformed into the frequency do-
main. Choosing a concrete representation the respective
Fourier—Laplace transformed density matrix can be deter-
mined, at least numerically. After a back transformation
the time—dependence of the complete set of density matrix
elements is available (see, e.g. [41]). But all those problems
connected with the presence of a time—dependent external
field cannot be treated in this manner. After the transfor-
mation into the frequency domain a convolution integral
of the Fourier-Laplace transformed field and the density
operator occurs. However, if a linearization with respect
to the field can be carried out (or some higher—order ex-
pansions) the problem becomes tractable again. This will
be demonstrated in the following for the case of the linear
absorption coefficient.

We start with the time—dependent formulation of the
frequency—domain absorption coefficient

(35)

drw )

o(w) = Mol / gt e, (36)
0

where nmo denotes the volume density of the absorbing
molecules, and the dipole—dipole correlation function is
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given by Céi)d (t). For the molecular systems under con-
sideration the dipole operator, Eq. (9) should exclusively
act on system DOF and should realize transitions from
the electronic ground-state ¢, to the excited state ¢,.
Accordingly, the dipole—dipole correlation function can be
written as (tryipq...} denotes the trace with respect to the
active vibrational DOF)

Cih(t) = dyetrvin{ (pel6 (D))}

+ degtrvin{(g|0(t)|e)} - (37)
The operator 6(t) is a solution of the non—Markovian
QME but with the initial condition 6(0) = [fi, feq]— (feq is
the vibrational equilibrium statistical operator in the elec-
tronic ground-state, see also [27]). Furthermore, since only
electronic off-diagonal matrix elements of 6 are needed the
initial correlation term vanishes.

Eq. (37) together with (36) is a generalization of the
well-known formula which gives the absorption coefficient
at frequency w via the Fourier transformation of the vibra-
tional wavepacket motion on the excited electronic state
PES after an instantaneous transition from the ground—
state at time ¢ = 0 (see, for example [7]). In this picture
the ultrafast wavepacket motion within a sub—picosecond
time-region determines the cw—absorption. If the vibra-
tional wavepacket motion on the excited state PES in-
volves dissipation but without retardation effects (Marko-
vian relaxation), or in other words if the coherences re-
sponsible for linear absorption decay according to an expo-
nential law the frequency—domain line broadening appears
to be of the Lorentzian type. Obviously, non—Markovian
effects, i.e. non—exponential decay of the coherences will
result in a deviation from the Lorentzian line—shape. This
fact is well anticipated in semiconductor optics but has
been discussed not in a similar clear fashion in chemi-
cal physics. Therefore, we shortly demonstrate the non—
Lorentzian line-broadening of a vibrational progression
corresponding to an electronic transition coupled to a sin-
gle vibrational DOF (compare the Hamiltonian Eq. (5)).

To end up with an analytical formula we consider the
special case where the coupling of the active vibrational
DOF to the reservoir modes is much larger in the ex-
cited electronic state than in the ground-state, i.e. we set
K, = 0in Eq. (11). A compact treatment is achieved if
we introduce the Green’s function type matrix Gy (t) =
O(t) (xent (el 500 xan)-

According to the initial value of 6 we get Gun(t =
0) = deg(Xem|xgn)f(Awgn), where f gives the thermal
distribution versus the vibrational levels Eyn = hwyn of
the electronic ground—state. This Green’s function enables
us to rewrite the first electronic matrix element in Eq.
(37). The second matrix element can be neglected since it
leads to non-resonant (anti-resonant) contributions. Be-
fore giving the equation of motion for Gy we note

ATwng, "
a(w) = WMRe{deg Z (XgN|XeM)GMN(w)} .

M,N
(38)

Taking the general non—Markovian QME expanded with
respect to electronic states (cf. Eq. (28)) and concentrat-
ing on a coupling to the reservoir DOF in the excited—state
only gives after a Fourier—transformation (w. M,gN are re-
spective transition frequencies)

—inMN(w) = GMN(t = 0) — iweM,gNGMN(w)
— ZGMK(W +ng)GKN(w) . (39)
K

The frequency—dependent correlation function has been
introduced according to

Crare(w) = / 0t Crolt) (tent| Ko (Q) Ue(t) Ku(Q)lxerc)
0

(40)
The general absorption coefficient is obtained after invert-
ing the matrix formed by the prefactor of Gy in Eq. (39)
[42,43). Tf one neglects the off-diagonal parts of Cpr one
obtains

AT WNmol | deg |2

Z F(hwgn) | (xgnlxenr) |? ReCarne(w + won)
M,N

X ((w — WeM,gN + IméMM(w +ng))2

~ -1
+ (ReC’MM(w + ng))2) (41)
The derived expression clearly shows that the correla-
tion function (the quantity being responsible for non—
Markovian effects) if transformed into the frequency do-
main, strongly influences the concrete line-shape of the
optical absorption spectrum. The real part of Cysps is re-
sponsible for a line broadening of the transitions whereas
the imaginary part shifts the position of the transitions.
But _the frequency dependence of both, i.e. ReCarar and
ImCapr may result in strong deviations from a simple
Lorentzian line shape [43].

5 Laguerre Polynomial Expansion

To find an alternative to the expansion into a continu-
ous set of functions as discussed in the preceding section
one should search for methods using a discrete set. How-
ever, this set of functions should posses some special prop-
erties to allow for an easy handling of the time deriva-
tive and the convolution integral. In [44-46] an expan-
sion has been used based on generalized Bessel functions
Jn(@t) = (n + 1)Jpp1(t)/t (n = 0,1,2,...), where Jp(t)
are the ordinary Bessel functions of the first kind. One
can verify, that the time derivative of a single J,(t) and
the convolution of two J,,(t) can be represented by a lin-
ear combination of a restricted number of the generalized
Bessel functions. These properties enables one to convert
the original set of integro—differential equations into a set
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of algebraic equations for the expansion coefficients. The
generalized Bessel functions have been successfully used in
[47] and [48] to investigate a two-level system interacting
with a single harmonic oscillator coupled to a Markovian
bath (in analogy to [35]).

A similar system has been investigated in [49] and
[50], but using the orthogonal set of Laguerre polynomials
(compare also [51,52]). In [14] and [15] this method has
been extended to solve the QME (13). Laguerre polynomi-
als are defined via L, (t) = exp(t) d™/(dt)™(t" exp(—t))/n!
(n =0,1,2,...) and are orthonormal with respect to the
scalar product (f,g) = [ dtexp(—t)f(t)g(t). Here and
in the following the variable ¢ has to be understood as a
dimensionless time. It has to be chosen in such a manner
that it covers the relevant time-region of the correlation
function if expanded in Laguerre polynomials.

It is the key point of the whole approach that the La-
guerre polynomials obey the relation

6 n—1

_Ln - - Lm 3

o Ln(®) mZ (t)
and the relation

/Ot dt—Ln(t - E)Lm (t_) =Lpim (t) — Lypym+1 (t) . (43)

Both enable one to transform the non—-Markovian QME to
an infinite set of algebraic equations (provided any time—
dependent external field is absent). First we note the ex-
pansion of the density operator

o) =3 L), (44)
n=0
as well as its back transformation
p = [ dte L) (45)
0

In a similar manner an expansion is possible for the mem-
ory kernel M and the initial correlation term I. If one
applies this expansion one obtains recursion formulas for
the density operator expansion coefficients

5 = (14 il + M) (= 0) +

n—1

S {1+ MP _M(n—k—l)}ﬁ(k)) ,

k=0

(46)

Provided we know the expansion coefficients M (™) of the
memory kernel and of the initial correlation term, we are
in the position to recursively compute the expansion coef-
ficients of the density operator. Since we have to expand
the correlation function to get the expansion coefficients
of the memory kernel, any type of correlation function and
thus any type of spectral density can be described within
this method. Again, as in the case of the Fourier—Laplace
transformation, the main disadvantage of the method is
its disability to include time—dependent external fields.

But this difficulty can be circumvented if an expansion
with respect to field—strength is carried out. In [15] an
expansion up to the second order in the field—strength
has been used to derive a source term describing a laser
excitation of the system. The resulting source term will
be introduced in the next section where we show that it
can be treated in similarity to the initial correlation term.

6 Interplay of Non—Markovian Relaxation and
Optical State Preparation

In order to demonstrate the effect of retardation and of
optical state preparation and their interplay, if both pro-
ceed on the same time scale, we will consider a simple
version of the model introduced in Section 2.1. Further-
more, we will concentrate on the weak—field regime where
the field-influence on dissipation can be neglected. Result-
ing from this assumption the computation can be easily
performed in applying the Laguerre polynomial method.
Before discussing this in detail we shortly comment on the
strong—field limit and the field—alternation of dissipation.

6.1 Field-Modulation of Dissipation

As already mentioned in Section 2.2 there is an indirect
field dependence of the QME, Eq. (13), which is induced
via a field dependence of the dissipative part, Eq. (15).
This indirect field dependence has been discussed in Ref.
[17] for the case of vibrational relaxation proceeding after
ultrafast photoexcitation of a molecular system into an
excited electronic state. The description of the modulation
of vibrational relaxation in an electronic ground state after
infrared laser pulse excitation can be found in [23,26,34].

Additionally, emphasis has been put in [17] on the rela-
tion of this field dependence of dissipation to continuous—
wave driven open quantum systems (see, e.g. [53]). In a
continuous—wave driven situation an external field may
change the position and mutual distance of the molecular
levels. Since the position of the related transition frequen-
cies within the spectral density (describing the coupling to
the reservoir) decides whether or not the dissipation works
effectively a change of the transition frequencies may al-
ternate the strength of dissipation. For the field—influence
of sub—picosecond pulses, however, one has to change from
this frequency domain description to a description in the
time—domain [17].

We start our discussion in using the interaction repre-
sentation of the QME introduced in Eqs. (17) and (18),
where the external field influence is completely contained

in the time depended operators K\ (t) and P (t). Let
us introduce the S—operator defined by the external field

S(t,to)
t
i +
=Texp (= 3 [ dr Uy(r = ) Hraa(r)Umar (1 — t0) ) ,
to

(47)
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where Up is the molecular time—evolution operator. Ac-
cordingly we may write K3 (£) = S+ (¢, to) Ut (t,t0)Ku
Ut (t,t0)ST(t,t0). This expression is particularly suited
to discuss the external field influence on dissipation since
separate equations of motion can be derived for S(t,to)
(its matrix elements within a concrete representation) [17].

In the limit of an impulsive excitation an analytical
consideration becomes possible. This limit follows if we
set for the external field amplitude £(t) = 6(¢t — tr). The
S—operator simplifies drastically S(¢,t0) = O(tp — t) +
O(t—tr) exp(—i). As long as the pulse is absent S equals
the unity operator. After the pulse had been present an op-
erator acts in such a manner that a phase changes appears.
The respective operator reads ¢ = 2 | A/h | cos(wotr +
arg(A)) i{m°D (tg), where here and in the following ”mol”
indicates the time—dependence given by Upe- According
to the type of S—operator introduced so far the following
generalized form of the dissipative part DU of the QME
can be computed

DéQl(ta tO; ﬁ(l)) = @(tp — t)f)(m()l) (t, tO; ﬁ(mol))

+ 0t — tr) (At t0; :50) + AD (1,13 57) ) (48)

The first contribution on the right—hand side is only valid
in the time interval before the pulse enters the probe. It
is identical with the form introduced in Eq. (18) but with
KD (t) and KV (&) replaced by L™V () and K™ (%),
respectively. This has to be expected since for ¢t < tg the
quantity kP (t) is identical to the field-independent form
fe{men (t). In the time interval after the pulse action we
have the contribution proportional to dD . Tt follows from
the general expression Eq. (18) if the upper limit ¢ of the
integration is replaced by tg but with the argument ¢ re-
maining in the correlation functions C,,(t — t). Further-
more, K™V () has to be replaced by exp(ig)K™ (¢)
exp(—i@). Finally, AD (¢, tp; pD) is obtained if the lower
integration limit is replaced by tg, and, besides ICS:“OI) (1),
also the quantity K™ (f) is replaced by exp(i®)K ™Y (7)
exp(—ig).

The whole expression Eq. (48) shows on the one-hand
side that the ultrafast (impulsive) action of the exter-
nal field sets up a new initial correlation term given by
dD (ty, to; t; pD). As explained, it only depends on the
running time ¢ via the correlation functions, and thus de-
cays with the characteristic reservoir correlation time. Af-
ter the pulse had been excited the molecular system, dis-
sipation acts in similarity to the time before the pulse
arrived but with somewhat changed coupling functions to
the reservoir DOF.

The finite pulse duration necessary to consider real ex-
perimental situations weakens the structure of Eq. (48).
The expected initial correlation effects leading to certain
oscillation of the time—dependence of the density operator
are shown in Fig. 2 for the example of vibrational relax-
ation rates in an excited electronic state.

6.2 Reduction to a Single Electronic State

After having discussed the strong—field case we concen-
trate on the opposite situation where the field can be
treated within a perturbation expansion. This weak—field
limit allows to focus on the interplay of excited state prepa-
ration and retardation effects which appear during the re-
laxation of the active vibrational coordinate. As already
stated earlier the initial correlation term can be neglected
since the external field pulse should act at a time (set equal
to zero in the following) where these correlations already
disappeared. Furthermore, the minimal model introduced
in Section 2.1 is used for the concrete computations (see
also Fig. 1). In the weak field regime the set of equations
for pup can be reduced to a single effective equation for
the diagonal density operator p.. which describes vibra-
tional dynamics on the excited—state PES only. As it is
well-known a closed equation for p.. is obtained if one
determines p4 linearly with respect to E and inserts the
expression into the equation of motion for p... According
to Eq. (28) one easily derives the QME for p.,. To have

a sufficient simple expression we replace the respective
d1551pat1ve contribution Deg by a time-local expression

I.p Peg + pegl" and a deviation ADeg from this expression.
On the one hand side this procedure enables us to de-
rive an analytical formula for the field—dependent source
term in the equation of motion for p.,. And, a guideline is
established to improve the result step by step. The oper-
ators I, realize dephasing and are given by I, = fooo dr
Coo(T) KoK, (—7). Instead of a contribution proportional
t0 peg, now the equation of motion for p.. contains a
source term. The complete equation reads

0 . i R
apee(t) - E(Heapee(t)>_
- Dee (t; ﬁee) + Fee (t:O;E) . (49)
For the source term one gets
E, (t 0;E)
1
= / (AegB(0) (dge BTt — Deally (6 -1
0
+ h.c., (50)

with the (electronic ground-state) vibrational equilibrium
density operator pey. The evolution operators U,(t) and
U, (t) are defined according to U,(t) = exp(—iH,/h —

A

I,) i.e. they are formed by non—hermitian Hamiltonian
including the dephasing operators Ij,.

6.3 Energy Representation

For the numerical computation of the density matrix we
have to change from the operator expression to a con-
crete representation which in the present case is defined
via the harmonic oscillator like eigenstates of the vibra-
tional Hamiltonian H,.. We neglect the electronic quantum
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number and get the respective density matrix as ppn (t) =
(XeM|Pee(t)|Xen)- The equation of motion follows from
Eq. (49) as

0
apMN(t) = —iwmNpmn(t)

-2 / dr MunkL(T)prr(t —7) + Fun(t) (51)

Note the abbreviation wyny = (Eem — Een)/h, where
the E.pr are the eigenvalues of He. The tetradic matrix
Muyn, ki (7) following from the memory kernel superop-
erator reads in detail

Munkr(T) = 6m Kk Z Mipaan(—T)e™aMT
A

+ on,z Z Mura, ax(T)e™nNaT
A

IWNKT WLMT

- MLN,MK(—T)e —MLN,MK(T)G (52)
with MMN,KL(T) = Cee(T)<XeM|Ke|XeN) <XeK|Ke|XeK>-
The energy representation of the inhomogeneity is ob-

tained as

d. Al
| ;2 | > (Xemxor)(XorXen) f (Bgnr)
L

Fyn =

t
x £(2) / dF E(F) e=i@mi=20)t=D 4 e . (53)
0

Here, f(Eg4n) denotes the thermal distribution versus the
electronic ground—state vibrational levels.

For the concrete computations we took the field—pulse
envelope as £(t) = {/2/m72 exp(—2(t—7;)?/73). The time
7t where the pulse reaches its maximum has to be cho-
sen large compared to 7, in order to get £(t = 0) = 0.
We set 77 = 50 fs. The field amplitude A (cf. Eq. (8))
together with the transition dipole moment is not spec-
ified explicitely. Instead, we choose A x nd., in such a
manner to achieve an excited state population sufficiently
smaller than 1. For our computation this choice guaran-
tees pyn(t = o0) ~< 1073. Beside the envelope we in-
troduced in Eq. (53) the quantity Aw giving the detuning
between the energetic distance of both PES and the pho-
ton energy, i.e Aw = wp — (U§°) - Ug(o))/h. Eq. (51) is a
closed equation of motion for the vibrational dynamics in
the excited electronic state involving both, the excitation
and the relaxation processes.

To compare the non—Markovian dynamics with those
obtained within the standard Markov approximation (see
the detailed discussion in [15]) the time-dependence of the
vibrational level population Pas(t) = parar(t) (for the first
four levels on the PES corresponding to the excited elec-
tronic state ¢e) will be drawn. Fig. 3 displays the popula-
tion dynamics after laser pulse excitation with pulse dura-
tions extending from 5 fs up to 30 fs. One can immediately
notice that the main difference between the Markovian

and non—Markovian dynamics lies in the different behav-
ior in a time—interval just after the excitation process. The
populations achieved just after the laser pulse action are
different, and for sufficiently short pulses the oscillatory
behavior of the population shows rather different patterns
in both cases. Different decay rates of the populations can
be also observed.

As it has to be expected a change of the laser pulse
length results in a change of the level population (ex-
cept that of the second excited one, which is excited reso-
nantly). Therefore, in part A of Fig. 3 the shortest pulse
results in a moderate population of all shown levels and
gives a pronounced deviation of the non—-Markovian dy-
namics from the Markovian one. While the curves corre-
sponding to the Markov approximation show regular os-
cillations with the period 27 /wy; the corresponding non—
Markovian curves display oscillations with a larger ampli-
tude and a larger period approximately twice that of the
Markov case. The origin of this change of the oscillation
period will be discussed in the next section.

A similar behavior as in part A can be found in part B
of Fig. 3. Interestingly, in this case and even for longer
pulses the Markovian approximation fails to guarantee
the positivity of the populations. This effect has been dis-
cussed at length in [54] and [32,33]. There, so—called slip-
page of the initial condition valid for the Markovian equa-
tions of motion has been proposed to assure the positiv-
ity and to reproduce the non-Markovian dynamics within
the Markovian approximation. In the present case, how-
ever, due to the deviations between the oscillatory pat-
terns such a slippage of the level population just after the
laser pulse action would not lead to the reproduction of
non—-Markovian results within a Markovian description.
On the other hand, looking at part C and D of Fig. 3
where the pulse length has been further increased the pos-
sible reproduction of the non—-Markovian populations by
a Markovian theory comes into question. Now, any oscil-
lations of the populations are absent, and it should be-
come possible that a careful choice of the parameters in
the Markovian model would allow to reproduce the non—
Markovian dynamics.

Additionally to the present considerations one may
find in [15] results showing the influence of the system-—
bath coupling strength and the length of the bath corre-
lation time. In all cases the same typical non—-Markovian
effects, as discussed so far, have been found. For short laser
pulses an increase of the system—bath coupling makes the
non—-Markovian effects to be visible for shorter bath cor-
relation times and vice versa.

7 Analytical Description of Non—Markovian
Effects

In this section we present two examples for an analytical
solution of the non—Markovian QME. The possibility for
such a treatment is related to a time—independent part
of the correlation function, Eq. (16). The basic ideas to
remove the time non-locality from the QME have been
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explained in Section 2.3. In both examples we will describe
the motion of a vibrational DOF which proceeds in an
excited—state PES after photo—excitation.

The first example deals with the dynamics of a vi-
brational wavepacket showing non-Markovian relaxation.

The situation will be characterized by the inequality Tem >

1/wyib. It corresponds to the case in which the internal
motion of the vibrational DOF is faster than the retar-
dation effect resulting from the environmental influence.
Furthermore, we will provide ¢ <~ Tiem, What reduces
the actual time to the interval from the beginning of the
evolution up to times not larger than 7y,em. Both inequal-
ities enable us to replace the correlation functions C(t — %)
and C(—t+1) from Eq. (15) by the common and real value
C(0) (note that the restriction to a single PES allows to
disregard the electronic quantum numbers). According to
Section 2.3 we identify ifiy/C(0)K with Hps of Eq. (14)
leading to the single auxiliary operator . Or alternatively
we set ') (¢) and B (?) from Eq. (19) equal to i%\/C(0).

One easily verifies that an equation of motion for &
is given by Eq. (27) (or by one of the two Egs. (23) and
(24)). A decoupling of the equations of motion for p and
0 becomes possible after introducing the new density op-
erators w(¥) = p + ¢ with initial conditions @) (0) =
p(0) (note to = 0 and 6(0) = 0). To be able to carry
out an analytic calculation two additional assumptions
are necessary. First, we assume a linear dependence of K
on the vibrational coordinate (), and second, we provide
that the initial state is the result of an impulsive photo—
excitation process from the electronic ground-state. Ac-
cordingly, the initial state can be taken as the displaced
vibrational ground-state. The resulting initial value of the
density operator reads p(t = 0) = D% (g)|x0){xo|D(9)-
Here, we introduced the well-known displacement oper-
ator Dt of harmonic oscillator coordinates shifting the
wavefunction localized at @) = 0 to the new position @) =
—2g (g denotes the electron vibrational coupling constant,
see e.g. [7]).

Now, the contribution /C(0)Q resulting from non-
Markovian dissipation can be incorporated into the oscilla-
tor Hamiltonian Hy,e; by defining shifted PES U®)(Q) =
hwyin(@ F Qc)?/4 —hC(0)/wyib, with the origin of the
PES displaced to Q. = 24/C(0)/wyib. The Hamiltonian

HS:)% following from the replacement of the PES U by

U define dissipation-less equations of motion for w(*)
which solution is obtained as &™) (t) = exp(—iH(i)t/h)

mol

p(0) exp(iHI(niO%t/ h). Since the initial state has been cho-
sen as a pure state, the states the density operators i)
describe at later times remain pure. These states result
from the propagation of the displaced vibrational ground—
state Dt (g)|xo) in the displaced oscillator potential U(E).
Changing to the coordinate representation the solution

follows as the moving wavepacket (see, e.g. [7])
i
¥, 1) = (Qlexp(—2 HEP't) D (9)]0)
= xo(Q®) (1)) ™.

Here, x0(Q) denotes the oscillator ground-state wavefunc-
tion which reads in the present notation (fvibwyib/ wh)/4
exp(—Q?/4) (the phase &) () can be found in [7]). The
time-dependent coordinate Q) (1) = Q F Q. +(2g9 +
Q.) cos(wyipt) results in a harmonic and shape invariant
motion of the wavepacket.

Although the density operators @%(*)(t) describe pure
states p(t) will describe a mixed state. There does not ap-
pear a (coherent) superposition of the two types of wave-
functions 1(*)(Q,t), but a superposition of the related
pure—state density operators. This can be demonstrated
by introducing the coordinate distribution function

PQ,1) = (@IADIQ) = QI (1) + 5 ()]Q)
= x3 (@ M) + x5 @Q7®)

which is obtained as the (phase insensitive) superposition
of two independent coordinate distribution functions. In
contrast to the case of Markovian dissipation where a sin-
gle wavepacket is moving the given superposition intro-
duces a specific structure into the coordinate distribution
P(Q, 1) [15].

As a second example of an analytical solution of the
non—-Markovian QME we consider as similar system as in
the foregoing example but with a different type of coupling
to the reservoir DOF. It is taken in the form ¢ = 3", fwe
(91(€) Ze + gr1(€) ZZ) where a nonlinear contribution in Z¢
has been included besides the linear standard term. These
two contributions result in a separation of the correlation
function C(t) into the part C;(t) defined by the linear
part of & and into Crr(¢) given by the quadratic part of
&. Furthermore, the computation of Cy(t) leads to two

(55)

contributions Cg) (t) and Cg), where the latter becomes
independent on time (note that Cg) is different from the
factorized part of Crr(t), see also the detailed discussion

in [55]). The concrete expressions are
1 ,
c) = 3 /dw W? e (1 +n(w/2))

(JII (w) + JII(—w)) ; (56)

but with the new spectral density Jrr(w) =3 g%;(€) 6(w—
¢

2we). The frequency argument 2w indicates that the con-
sidered type of system—reservoir coupling results in relax-
ation processes where transitions within the spectrum of
the active system are accompanied by the emission or ab-
sorption of two reservoir quanta. For the second, time—
independent part of the correlation function one obtains

o

@ - / dw o n(w/2) (1 +n(w/2)Juw) . (57)

In the following we will concentrate on the influence of
the time-independent part Cg) what would be justified

if C}r‘? dominates on CE). According to Egs. (56) and
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(57) this should be the case for higher temperatures [55].
Then, we can proceed as in the foregoing case and ob-
tain the reduced density operator as a superposition of
the w(®). Again the initial value of the density operator is
understood as the result of an impulsive excitation and we
construct it from the displaced vibrational ground—state
wavefunction. For the present purposes it is most appro-
priate to consider the time—dependence of the vibrational
level population

Pu(t) =| A5 ) P+ 1 A @) 2, (58)

where the transition amplitudes read Ag\f) t=>nN
frc(M, N) frc (N, 0) exp(—iwyibNt). The Frank—Condon

factors frg = (XM|XS\17L)) and frc = <X5\;_L)|Xgo) describe
the overlap between different oscillator states. The first
overlap concerns a wavefunction (with quantum number
M) from the excited state PES (where the actual vibra-
tional motion proceeds) and the displaced oscillator wave-

function corresponding to the Hamiltonian HI(:;% The sec-

ond type of Frank—Condon factors includes the functions

related HS;% and the electronic-ground state vibrational
function |x40), respectively. Obviously, Pys(t) should dis-
play constructive and destructive interferences among the
various contributions oscillating with multiples of wyip.

But we expect additional contributions stemming from

the two independent contribution | As\f) (t) |2 to the level
population.

In Fig. 4 we compare the analytical solution, Eq. (58)
with the results of the numerical calculation. For the lat-
ter the reservoir correlation time has been taken as t, =
50fs what is large enough to achieve a pronounced non—
Markovian behavior. Looking at the oscillatory pattern of
the analytical solution (part B of the Fig. 4) we note clear
similarities with the behavior shown by the numerical so-
lution of the non-Markovian QME (at least within the
first few periods of the oscillator motion after an impul-
sive excitation). At the end of the 300 fs time window one
observes that the oscillatory patterns of the populations
obtained within the non—-Markovian approach converge to
those resulting from a Markov approximation (dashed line
in part A of Fig. 4). This shows that the non-Markovian
effect demonstrated here for the vibrational level popula-
tion originates from the adaption of the system to a new
initial condition (which has been set up by the photo—
excitation process). Once the adaption is complete the
systems dynamics become very similar to that obtained
within the Markov approximation.

8 Conclusions

This contribution has been aimed to give an overview on
the present status of describing non—Markovian behavior
in open molecular systems. Different schemes have been
presented to account for retardation effects in the course
of numerical calculations. For the process of vibrational
relaxation following ultrafast optical excitation of a poly-

atomic molecule the non-Markovian dynamics of the vi-
brational level population has been discussed in detail.

Although it has been demonstrated in the present pa-
per and in those we referred to that non-Markovian be-
havior cannot be assumed to be of a really large influence,
it may result in a notable change of relaxation processes
after an optical state preparation. In particular this should
become observable if pulses are used which length is be-
low 10 fs. Since such pulses are really at the borderline of
that what is possible at the moment in ultrafast optical
spectroscopy concrete examples for retarded vibrational
relaxation processes are not available.

Despite this particular situation, however, it is valu-
able at all to clarify the importance of retardation effects.
Only such studies enables one to decide whether or not
one has to incorporate non—Markovian terms when solv-
ing the Quantum Master Equation. But having clarified
this it would be of great importance to gain further in-
sight how to extend the validity of the non—-Markovian
Quantum Master Equation in going beyond the second
Born-approximation.

We gratefully acknowledge financial support by the
Deutsche Forschungsgemeinschaft through Stb 450.
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Fig. 2. Laser pulse modulation of vibrational energy dissipa-
tion. (a) Field-dependent relaxation rates (inverse life times)
7. (in units of fs~ ') for the molecular parameters as in [16]
and for ¢.=100 fs, @ = ndeg A(xe2|Xg0) =1.5, and pulse dura-
tion 7,=>5 fs. The vibrational quantum numbers M = 0-5 are
assigned from bottom to top. (b) Field—dependent relaxation
rate for the excited vibrational state M = 1 in dependence on

the laser pulse length 7, (other parameters as in (a)).
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Fig. 3. Population of the first four vibrational levels of an
excited electronic state in dependence on the pulse-length .
Full line: solution of the non—Markovian QME; dashed-line:
Markov approximation. Part A: 7, = 5fs, part B: 7, = 10fs,
part C: 7, = 20fs, and part D: 7, = 30fs. Parameters of the
system are: Uéo) — Uéo) =2¢eV, Qe —Qy = V10, hwyip =
190meV, dey = 1D, t. = 30fs and J (wyip) = 1.9 x 10~ /fs. The
field strength has been chosen to achieve a small population of
the excited electronic level, here ~ 1073,
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Fig. 4. Population dynamics of the vibrational ground state
and the first two exited states of an excited electronic level
after an impulsive excitation. Part A: case of a correlation time
t. = 50fs considered for the non-Markovian description (full
line) and for the Markov approximation (dashed line), part B:
analytical results from Eq. 58 corresponding to the case of an
infinitely long correlation time t.. (Other parameters like those
in Fig. 3).



