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Exciton exciton annihilation dynamics in chromophore complexes.
|. Multiexciton density matrix formulation
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The multiexciton(MX) description of excitation energy transfer in chromophore complexes and
biological light harvesting antenna systems is extended to the incorporation of exciton exciton
annihilation(EEA) processes. To achieve a complete microscopic description the approach is based
on intrachromophore internal conversion processes leading to nonradiative transitions from higher
to lower lying exciton manifolds. Besides an inclusion of EEA the MX density matrix theory which
has been utilized for a description of excitation energy transfer also accounts for a coupling to
low-frequency vibrational modes and the radiation field. Concentrating on transitions from the two
to the single-exciton manifold exact and approximate expressions for the EEA rate are derived. In
part 1l of this paper the approach is applied to the LH2 antenna putting emphasis on the EEA
induced change of transient absorption spectra2@3 American Institute of Physics.
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I. INTRODUCTION tions (concrete estimations concentrated on single and two-

_ exciton contributions The studies on EEA kinetics in Refs.
Femtosecond spectroscopy has been applied as the m&jf_13 have been based on microscopic computations of the
experimental tool to reveal details of excitation enefg¥-  gnnihilation rate constany. Using “Golden Rule” argu-

citon) relaxation and transfer in _varic_)us types Pf Chro'mentSy follows as the square of the transition matrix ele-
mophore complexe€CC) and biological light harvesting an- ment between a state of two delocalized excitons and a state

tennas(for a recent OVErview, see Ref).1n particular, fpr of a localized higher intramolecular excitation multiplied by
the latter systems one tried to reduce the laser pulse mtenstlﬁe (constank density of final states

ties as much as possible to remain at physiological condi- If interested in phenomena on a subpicosecond time

tions. However, it is also a common practice to vary the . .
intensity of the laser pulse used to excite the chromo horgcale coherences between different exciton levels become
Y P P Important which are best described in the framework of the

complex, and in this manner, to study higher excited statea . . . .
. ; . . density matrix theory. Consequently, an inclusion of EEA
and new relaxation channels such as exciton exciton annihi-

lation (EEA). Although such experiments have originally Into an exciton density matrix theory is essential. Different
been focused on dye aggregatese, for example, Refs. 2 approaches have been presented in the fsast Refs. 14—

and 3 there is also some recent work where EEA has beer]r8)' Concentrating on a chlorophyll dimer EEA could be

investigated in different photosynthetic antenna systems, fop€Scribed by means of a direct derivation of nonadiabatic
example in the FMO-complekin the LH156 and in the transitions. They are characterized by simple microscopic IC
LH2.78 ’ ’ rates if the limit of instantaneous nonadiabatic transitions is

EEAin CC or dye aggregates is usually characterized at2ken. The possible incorporation of EEA into the anhar-
a two step process. First, two excitations being inSpstate  Monic oscillator description of Frenkel excitons has been
of the chromophores have to move close together so th&temonstrated in Ref. 17, and a derivation of rate equations
their excitation energy can be used to create a higher excitéficluding EEA rates can be found in Ref. 18.
S,-state i>1) at one chromophore. This step leaves behind  In the present paper we explain in detail how to gener-
the other chromophore in tH&, ground-state and is usually alize the multiexciton(MX) density matrix theory for an
named exciton fusion. In a second step an ultrafast interndnclusion of EEA processes and, in this way, we combine the
conversion(IC) process brings back the chromophore whichconcept on EEA we followed earlier in Refs. 14—16 with the
is just in the higher excite@,-state to theS;-state. MX approach worked out in Ref. 18. First let us indicate

So far, EEA has been often described by the rate equssome key points of the model. Since we will incorporate
tion an(r,t)/at=—yn(r,t)2, with the exciton density(r,t) EEA into the MX approach it is essential to work, at least,
at the spatial position and the annihilation rate constapt ~Wwith an electronic three level model for every single chro-
(for a recent overview, see Ref).Besides such a macro- mophore positioned at site. This three-level modelcf.
scopic description valid for larger aggregatesd organic ~ Fig. 1) comprises the ground-staig, with energyep,q, the
semiconductols where exciton diffusion may take place, first excited statep,, with energye,,. and a higher excited
various microscopic theories have been presetffdd.A  statee,,; with energye.,;. In most cases the staig,,, may
density matrix hierarchy has been derived in Ref. 10 whichcorrespond to the first excited singlet st&gwhereas the
refers to the multiple presence of intrachromophore excitastate ¢,,; represent one of the higher-excited singlet
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tially delocalized states. As it has been discussed many
E(ow) times(see .Rgf. 18, andi referenqes the}ezimse states can b.e

ordered within the various exciton manifolds. The ordering
“ scheme starts with the CC electronic ground state denoted by

ES.)
exciton manifold and so ofsee Fig. 1B)]. All these states
will be named MX states and will be written &8y), where

ay IS the quantum number of the exciton state in the
N-exciton manifold. The numbeX corresponds to the num-
I — ber of basic excitations roughly given by tlg—S,-transi-

A tion energy of a single chromophore. For example, the single
@ (B) exciton state|a,) follows from the presence of a single
FIG. 1. Electronic energy levels scheme for a single chromopfheft® and Sl_eXCItatlon Wherea§ th_e two-exciton §tdte2> may _be

the whole chromophore compleftight). A three-level model with the formed by two S;-excitations or alternatively by a single
Sp-ground statep,, the first excitedS;-state ¢, and the higher excited ~S,-excitation(Fig. 2).

S,-state >1) ¢; has been used for the various chromophores of the whole  The reason to formulate the MX theory for an arbitrary
complex.(The shaded box refers to further excited electronic leydlse e . . .
electronic energy levels valid for the whole complex are ordered with re-number of QXCIt_&ltIOhS presentin the CCis the fOIIOWIﬂg_ On_e'
spect to different exciton manifolds. The scheme starts at the buttom wityVhen considering EEA processes already at low excitation
the chromophore complex electronic ground state. The first excited chrointensities a real population of the two-exciton manifold
mophore states are given by the single-exciton manifold with energy speccomes into play. Furthermore, the transition amplitutizs

trum E(@,) and exciton statefy,). It follows the two-exciton statelsy,) herencel between the two- and the three-exciton manifold
with energyE(a,). The three-exciton statdses) with energyE(es) are

positioned at the top of the scheme. The shaded ellipses represent possibldy become important, too. And if the pump-intensity is
populations in the various exciton manifol@shich might follow from an  further increased even higher exciton manifolds have to be
excitonic wave packg@and the vertical arrows indicate radiationless transi- taken into consideration. Such a MX theory has been already
tions from the three-exciton to the two-exciton manifold and from two- _. . . :
exciton to the single-exciton manifoldNote that the widths of the mani- given In Ref. 18. Here, we generallze j[hIS approach to thg
folds have been artificially enlarged, and the number of the discrete levels i§aS€ Where any chromophore is described by an electronic
the manifolds has been taken arbitrayily. three-level model.

If the view on EEA mentioned above is embedded into

- the MX theory, the description automatically accounts for the
statesS, (n>1). However, the latter is fixed by the demand first step of EEA—the exciton fusion. For example, the two-

to have an energetic distance to the first excited state Sim"aéxciton stateda,) already incorporate the mixture of two
to tr_\at.betwele n the first excited state and the ground Stat%l—excitations and a singl8,-excitation. Accordingly, EEA
Excnaupns W'th.'n these Igve]s are coupled .by the COUIomt]s obtained as a radiationless transition from the two-exciton
mteractlon Ieadmg to excitation energy motion and the for'to the single-exciton manifoltf For the description of the
matl_lt_)rr: of'delocallzed.”MX stat.es.h following is that of MX nonadiabatic transition process we expect the incorporation

© fplr(]:turehvvle VC\:"C stt;es_s |r(1jtbe 0 r?wmg ;St atho | IIof transition rates which are in a certain sense the MX rep-
stat_esdo ;[ € who'e h 0 te;:ne yac ar(ljgelz rolr_nt € locallfesentation of standard internal conversion rates. The latter
excited electronic chromophore states to delocalizegar- describe a transition from the electrorfadiabati¢ state¢,

to stateey, (see, e.g., Ref. 19

l WY | Ea) |0). It is followed by the single exciton manifold, the two

'\_.j

E(S,) E(at,)

E(So)

2
By — 1 = = = - = —
o K9, =210 ol Dl 0a). &
ES) | — — — — — O — - —— - -
E(S) | > — _ — Here, the dependence of the nonadiabatic cougling on

the vibrational coordinates has been neglected what enables

)| - — — — — — — — «oO—— — — to introduce the so-called Franck—Condon weighted and
ES)f— —€@EPp— — — — — — — — — — thermal averaged combined density of stai2©9),
D — - > - al > 1
Da0)= 57 | dte e RUIOULDY. @)

Bl | s e = = — = == «OD— O — ™
B - —— — — — — — i In the given expressionsw,,=U®—U® denotes the dif-
Es) [ @D—ECD— @l B> —@ W»— @ W crence of the minima of both potential energy surfaces

X, Xio X Xy (PES at the respective equilibrium configuration of the

nuclear coordinates. Accordingly, the time-evolution opera-
FIG. 2. Possible electronic excitations in a linear chromophore complex ofOr's U;(t) andU(t) are defined by the vibrational Hamil-
13 three-level moleculegwvith Sy, S;, and S;-statg. The shaded ellipses  tonianH, andH,, belonging to state, and ¢y, , respectively

indicate which level is excited. The upper scheme corresponds to the singl . - 2
excited stat§m=6.¢) (for notation also compare the t¢xThe threefold {bOth starting at the energy minimum of the BE&dR, is

excited statdm=3, e;n=9,f) is displayed in the middle and the buttom t_he vibrational equilibrium operator for stagg, . The vibra-
shows the sixfold excited stafn=2, e, m=4, e;n=8, f,n=11f). tional degrees of freedofDOF) addressed here are of the
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intramolecular type and act as accepting modes for the norindicates theM chromophores at site®,, . .. ,m,, which
radiative transition. It is a particular challenge to incorporateare in the first excited state afdf} - stands for thelifferent
nonadiabatic transition into the MX density matrix theory. set of A’ chromophores at sites,, . . . ,n, which are in the
But before explaining this in detail, the next section higher excited state. Although excited states with lakge
spends some time on the correct derivation of the coupling= M+ 2N will be never produced in the experiment it is
between MX states and the intramolecular vibrations in-useful to derive expressions which are valid for an arbitrary
volved in the EEA process. The density matrix theory ofN (of course, less than the whole numibésc of considered
EEA is explained in the third section incorporating all chromophores
mechanisms of exciton relaxations studied elsewhere. Addi- To make this ordering somewhat more obvious it be-
tionally EEA will be represented by respective rate exprescomes helpful to introduce the following unity operator of
sions. These EEA rates are discussed more extensively the electronic CC state space,
Sec. IV. All technical details can be found in the various Nec N N/2(N-1)2
appendices. _
Since the given paper represents the part | of a series 011‘CC NZO MZ'O N§=:0 On.a 2N
two papers it exclusively concentrates on the foundation of

EEA theory. In part IE° we concentrate on the coupling to a X S [me . infiodme . infid. 3
laser field and apply our approach to a detailed analysis of fmet g {nfly

EEA features in the frequency dispersed transient absorptioy,o upper limit with respect to th&“summation takes into

spectra of the B850 ring of the LH2 complex &b.  ,006int that the total numbar of excitations might be even
sphaeroidegsee, e.g., Ref. 1A preliminary application of  hat results in the maximum numbiir2 of doubly excited

the MX theory of EEA can be found in Refs. 22 and 23, o\ romophoresor odd[what leads to— 1)/2]. To have the
where the intensity dependent transient absorption spectra %rrect ordering with respect to the numbéof elementary
Ref. 8 could be well reproduced. excitations Kronecker'g-function guarantees that the actual
number of total excitations appears in the mixing of different
Il. THE MULTIEXCITON PICTURE states with different excited states. To ensligglcc=1cc
Some first remarks on the MX picture have been alreadyll states in Eq.(3) have to be properly normalized. The
given in the introductory part. In particular we fixed the no- notation use so far is somewhat lengthly. Whenever possible
tation for the intramolecular states,,, of chromophorem  we will use the abbreviated versi¢fme,nf}y) for the state
with respective energies,,, (a=g,e,f denotes the three Vvector indicating the presence bf excitation but mixed in
electronic levels of interestAll these excitation energies as the way described aboveany summation with respect to
well as the Coulombic coupling functions are modulated bythese states has to be of the type of B3)].
the variety of vibrational DOF. These vibrational DOF  Before presenting the CC-Hamiltonian we note that the
(mainly the intermolecular vibratiohsare responsible for quantities mentioned so far depend on the set of all vibra-
electronic excitation energy dissipation within a given exci-tional coordinatesR incorporating intrachromophore coordi-

ton manifold. But intramoleculafintrachromophoremodes ~ nates Riyy, and interchromophore coordinaté,.,. The
participate in the IC-process which is the prerequisite ofconsideration of vibrational DOF leads to an introduction of

EEA. PES into the Hamiltonian instead of pure electronic energies
All these types of couplings will be put into a represen-and we may write

tation with respect to the MX statéay) (« is the MX quan-

tum number andN indicates to which manifold the state ~ Hge= >, Ef (Thuet U({menfly;R))

belongs. It results the MX vibrational coupling. So far this N Umenfiy

type of coupling cannot be specified by quantum chemical "

calculations and different types of assumptions become nec- x[{menfh)({menfhy/+ Vi,

essary.

A. The chromophore complex Hamiltonian +§m: (O med @m{ @mil +h.c) — E(t) fce. (4)

The details related to the derivation of the MX Hamil-
tonian including the coupling to intramolecular vibrational Besides the nuclear kinetic energy operakgy. this expres-
DOF and the radiation field can be found in Ref.(8 also  sion contains the PES({menf}y;R) of the N-fold excited
Ref. 19. Here we concentrate on the contributions of in-state(see below and the interchromophore electronic inter-
tramolecular vibrations and nonadiabatic transitions bottaction V(Y. The second part describes the nonadiabatic
necessary to account for internal conversion processes. coupling between the state,; and ¢, of every chro-

To present the CC-Hamiltonian we start with an orderingmophore where the coupling matrix element is given by
scheme with respect to the numb¢nf basic excitations. It © .. The action of the radiation field with electric field-
can be best demonstrated by introducing electronic producitrengthE(t) is accounted for in the last parfitc is the CC
statesll,oma Of the whole CC which are built up by the dipole operator comprising contributions from every chro-
single chromophore states. Contact to the ordering scheme isophorg. Since the electronic interactiod{),; has been
established if the product states are abbreviated in the foldiscussed at length elsewhere we did not given any details on
lowing as|{me} ,;{nf}\>. Here the multi-indeXme},, it and refer, for example, to Ref. 18.
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The following discussion focuses on the electron—

vibrational coupling. The PES introduced khcc may be
written in detail as

U({menf}y;R)=Ux(R)+(1— by

>

ke{me} \,

+ >

ke{nf},r

X e(egR)

)

N=M+2N

Gk(fg;R))

where the quantitieg,(ag;R), a=e, f, are given as the
single chromophore excitation energieg,(R) — €,4(R).

Multiexciton density formulation 749
Details on the MX matrix elements of the nonadiabatic cou-
pling can be found in Appendix A. The concrete form of the
coupling to the radiation field is discussed in part Il of this
paper’

The vibrational Hamiltonian depending twofold on the
MX guantum numbers is obtained as the MX matrix element
of the sum ofT,,,. as well asAU({menf}y;R), Eq. (6). If
both quantum numbers are related to the CC electronic
ground state we writeH,;,(0,0)=H;,=T,,t[Uo(R)
—Up(Rp)]- This expression may separate into the intrachro-
mophore contributionH{!"™® and into the contribution

H D depending on the mtermolecular coordinates. The vi-

V|b
brational Hamiltonian which belong to excited CC states

They appear since the complete ground-state PES has begrad (N>0)

introduced asJ((R) == mnémg(R) + Vnyc—nuo Where the re-

pulsive Coulomb interaction between all atoms involved has H , (ay,By) = Say,. BNHVIb+ E c* ({menf}y)

been denoted by, ,._nue The introduction of the excitation
energiese,(ag;R) is not obligatory but in the present ap-

proach necessary to introduce MX states. To compute these

states we next provide thaty(R) possesses a global mini-
mum at the seR=R, of vibrational coordinates. Instead of
Eq. (5) we write

U({menfly;R)=E({menf}y)+AU({menf}y;R),
(6)
where theE({menf}y)=U({menf}y;Ro) are the Franck—
Condon transition energies to the particuldifold excita-
tions and the AU({menfly;R)=U({menf}y;R)
—U({menf}y;Ry) define the PES related to this excited
state.

B. Multiexciton states

To introduce MX states we rewrite the CC Hamiltonian,
Eq. (4) according to Eq(6) and diagonalize the part defined
by the excitation energieE({menf}y) and the coupling

vM_ both related to théth excited state of the C{a pos-
sible dependence af{)"), on the vibrational coordinates will
be shortly comment belolwlt follow the energie€(ay) of
theNth exciton manifold, and the respectiMeexciton states
can be written as

)=, 2 Ca({menfholimenty). @

According to the normalization of the statéimenf}y)
one easily verifies the normalization condition
E{m&nf}N|CaN({menf}N)|2=1. Resulting from Eq(7) the
MX representation of the CC Hamiltonian is introduced,

HCCZEN: ; E(an)|an){anl|
+a2ﬁ Huin(an, Bn) | an)(Bnl

+> > E (O (an-1,80)]an-1){Bn+h.c)

N>1 an-1

—E(t) ficc. (8)

xAU({me,nf}N;R)CBN({me,nf}N). 9

For simplicity we provide that there is no mode-coupling
between the interchromophore vibrations and the intrachro-
mophore vibrations and separat®) ({menf}y;R) into an
intramolecular parAU;,,({menf}y;Rina) and into a part
AUiped{menf}y;Rie) depending on the vibrations of the
whole complex. This separation results in the contribution
H{M") and in the contributiord (" respectively.

As it has been already discussed elsewtlisee, for ex-
ample, Ref. 18the low-frequency intermolecular vibrations
can be accounted for in a manner where all deviations from
the electronic ground-state vibrations are considered as per-
turbations. Additionally, modulations of the interchro-
mophore electronic Couplin‘gjfe'ﬂ_)eI [cf. Eg.(4)] may be taken
into account. The respective standard form of the linear MX
vibrational coupling readsH 3y (o, Bn) = 84y 5 HD "

"+ (1= 8n0 S w9l (ay, By)Q; . Where the dimension-
less vibrational coordinate is given by oscillator operators
(with mode index¢) according toQ.=c; +c% The related
vibrational frequency is denoted by andg ) ay,By) IS

the dimensionless coupling matrix.

C. Coupling to intramolecular vibrations

This section concentrates on the coupling between the
MX states and the intramolecular vibrations which is essen-
tial for a correct description of EEA. To end up with formu-
las which contain expressions similar to the IC-rates (&j.

a part of the complete coupling has to be treated beyond a
simple second-order perturbation theory. Within the present
MX scheme such a nonperturbative description becomes
possible for the diagonal part of the intramolecular contribu-
tion H{""(q,,By) to the complete vibrational Hamil-
tonian, Eq. (9). The off-diagonal contributions will be
handled as a perturbation and can be included into the ex-
pression valid for inter-molecular vibrations.

First, we note that any chromophore has its ownRgt
of intramolecular coordinates, i.e., we ha®e,={Rn}-

This will be accounted for in a modified notation of the
diagonal part of the intramolecular contributions Kk, ,
Eq. (9). The respective part is generated by the
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AU nra(Imenfly;Ringa) Which, according to Eq5) have to In the pregent case, however, the mentiongd approach
be defined via a certain difference of the chromophore excineeds a certain extension to account for EEA in a proper
tation energies. We introduc\ e (ag;R)=¢€(ag;R,)  Way. As already stated in the Introduction we expect in our
—ek(ag;R(kg)) (a=e,f), where the latter energy refers to theory an IC-rate of the_ type giv_en in EQ.). A; it is well-

the transition energy at the electronic ground-state equilibknown this rate expression contains the coupling between the
rium configurationR(kg) of the intramolecular coordinates. €lectronic DOF and the intramolecular vibrations beyond the
Before giving the complete expression of the vibrationalStandard second-order perturbation theory. How to construct
Hamiltonian we note the separation of the ground-state pa@ density matrix theory which may take notice of all orders
H\(,Iirt])tra) into a sum of Sing]e_chromophore vibrational Hamil- of the exciton vibrational coupling is demonstrated in Ap-
tonianH . If we incorporatdq\(/iig”@EEmng into the sum-  pendix C(cf. also Ref. 26 As a result one can derive equa-
mation with respect to the various excited states we mayions of motion for the density matri#(ay ,By;t) but now

write [cf. Eq. (9), N>0], including the correct expressions of the IC-rates. This has
been achieved by incorporating the diagonal part,(EQ). of
HOW 0 0= S |C. ((menfiy)|? H{"") into the time-evolution operator.
{menfly N The approach is most flexible formulated in the state

representation. Since our model comprises two types of
x{ Hig exciton—vibration couplings, the one related {ttow-
N CTYRULIIY frequency intermolecular vibrations, and the other referring
to (high-frequency intramolecular vibrations the complete

D Het D ka} ] MX vibrational states readA)=|aw)|x,.)|Xa,)- Beside
ke{me} vy keinfiy N=M-+2N the MX states/ay) the expression contains the vibrational
(10) states x,) of the intermolecular vibrations. These states are
(inter)

. L I . eigenstatesf the HamiltoniarH;, - introduced in the fore-
The newly introduced vibrational Hamiltonian referring to going section. They factorize with respect to the different
the  excited Chror_n_ophore states r_ea(Hka=Hkg modes, and the respectiveigenenergiesare denoted as
+A€(ag;Ry). Aspecification of Eq(10) to single and two- 7Q, . The vibrational states of the intrachromophore modes

excit_o_n states can be found Appendix B together with som%?a -) depend on the exciton quantum number and have to
modified notations. M

The MX representation, Eq(10) of the intrachro- be wunderstood aseigenstates of the Hamiltonian

(intra) ; :
mophore vibrational Hamiltonian introduces a mixing of all Hup (e au), Ed. (10 Th_e respecnvemgenvgluesare
local vibrations as it would be also the case if one change§enoted a# (), .. If all PES involved are approximated by
from a diabatic representation of a molecular Hamiltonian togisplaced parabola th@,  can be written af), =0
the adiabatic representation. Here such an electronically iny 5 o

At o HiElE oY : (ap) (cf. Appendix B 2. Such an independency of all
duced vibrational mode mixing is originated by the intermo-. —

lecular Coulomb forcegleading to the MX statds|t results intramolecular vibrational frequenciég; on the actual MX

in a new arrangement of local modes as demonstrated iﬁtate is essential for the incorporation of IC-rates. The part

A . AQ(ay) which represents a MX state dependent energetic
ppendix B 2. : ; S intra)

shift collects all respective contributions k&, “(ay , ay)
(reorganization energies, see Appendix B1 and Appendix

B2).
XINBE_:\IILSA:::TO'\NAATRIX THEORY OF EXCITON EXCITON Since the whole density matrix theofyee Appendix €
is based on a representation using the general MX vibrational
So far the photoinduced kinetics of the MX system hasstates|A) the (reduced MX density matrix has to be de-

been described mainly within a version of the density matrixquced from the total time-dependent statistical operﬁt@)
theory usually called multilevel Redfield theory. The MX as follows:
density matrixp(ay ,By;t) represents the central quantity
to be determined. The diagonal elemep(syy, ,ap ;t) give 4) = v N, =
the MX level populationsP(ay,;t), whereas off-diagonal plam . Bit) Ej<a’\"|<Xﬂ|<Xamﬂw(t)|XﬁNu>|Xu>|,3N>-
elements define the various coherences. Those can be or- (11
dered with respect to intramanifold coherences indicating th@he respective representation of the CC-Hamiltonian,(&q.
presence of excitonic wave packets in the particular maniin the state$A) is given in Appendix D. Once this represen-
fold, and intermanifold coherences reflecting optical excitatation has been introduced we can set up equations of motion
tions and thus the presence of transition polarizations in theased on Eq(C9) or Eq.(C12).
systen?? The main assumption of the standard approach is a ] ) o
second-order perturbation theory with respect to the MX vi-- Equations of motion for the reduced multiexciton
brational coupling. Although one might think that this low- density matrix
order exciton—vibrational coupling theory may fail in most The equations of motion for the MX density matrix as
of the cases, it could be successfully applied to the simuladerived in the Appendix C readf. Eq. (C12), the explicit
tion of subpicosecond dynamics in different antennaconsideration of the coupling to the radiation field is post-
systems® poned to part [}
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d : — — —
srPlam B =—1Q(am Ay plan . Bn i) — 18, i KE (v(am, 7Py, Bnit) —v(vik. Bu)p(am, vk ;1)
YK
~ Oy D (Klam—y)p(am am;t) = k(vk—am)p(yc, 7c:h)
'YK

—<1—5QM,ﬁN>%KEV (k(am— ) +K(Bn— vk plan . Bit). (12)

This type of density matrix equation follows from the so- such cross-correlation functions if given W§™-e) on the
called Bloch approximatiorisee, e.g., Ref. 19 The pure  one-hand, and on the other hand ¥y™~"", v and
MX transition frequencies are defined according to v(field) - Since we will not distinguish between intermolecular
vibrations and intramolecular vibrations as long as excitation
Q(ay,fn) =E(an)/h+A0(ay) energy dissipation is concerned, there is no need to deal with
—E(By)Ih—AQ(By). (13)  the combination of/(™~"") and y(M=iNa) - Fyrthermore, a
cross-correlation withv(™'9 vanishes since the radiation
The 2v(ay ,yk) are thermal averages with respect to thefield contributions are restricted to the respective mean-field
vibrational DOF[see Eq.(C10)] of the full coupling matrix  term. It remains the contribution including"®. It becomes
elementsV, g=(A|V|B). Here,V denotes any type of cou- easily obvious that the respective terms in the density matrix
pling Hamiltonian appearing in E@8), and|A) as well|B)  equations only represent small corrections to the used Bloch-
represent the complete MX vibrational states. All transitionapproximation. This results from the fact that a coupling po-
rates which are of the second order with respect to the couential acting within a given exciton-manifold is combined
pling matrix V5 g follow from the relaxation matrix, Eq. Wwith a coupling which relates different manifolds.
(C14 according to k(ay—pBn)=2I(auBn,Bnawm; According to the foregoing discussion the complete re-
Q(ay,Bn)), Egs.(C13 and(C14). The contributions pro- laxation matrix, Eq(C14) and thus the general transition rate
portional tov(ay ,y«) form the so-called mean-field terms splits off into a part reffering to intermolecular vibrations and
[Eg. (C10]. They enter the reversible part of the densityinto a part following from nonadiabatic couplings,
matrix equation. Further on, they describe dissipation via th _ )
factorized part of the second-order correlation funcfisee K(an—Bu)=2T (awby . Buaw A aw )

Egs.(C1) and(C14)]. = 5M,N2F(mx_imer)( anfn,Brnan; Q(an,Bn))
Next, let us specify how to tackle the different contribu- (s +s

tions to the relaxation matriX' resulting from the various (Om+1nF Om-1n)

parts of coupling potentials which entéf, 5. The part X 2T M) @y, B, Bnam : Qay,By)). (14

v(mx=inten following from the coupling to intermolecular vi- _ o _ _ _
brations will be consider in the complete second-order fomPet"’_"IS on both contributions are given in the following
and has been discussed at length elsewlexete that there ~ S€CtoON.

does not appear any mean-field contribution if we concen-

trate on linear MX vibrational coupling. The next part of B. Relaxation matrix caused by a coupling

Vg stems from the off-diagonal part of the intramolecularto intermolecular vibrations

vibrations represented by the couplifg™""'®, Eq. (D2).
Since a specification of both contributions beyond the intro
duction of a spectral densitgee belowis not necessary we tramolecular vibrations give an additional time-dependent

include the (off-diagona) intramolecular MX vibrational factor to the integral, this has been neglected here
couplings into the excitation energy dissipation described by '

The intermolecular part of the relaxation matrix follows
in somewhat more detail d&f. Eqg. (D1), although the in-

delocalized(intermoleculay vibrations. rmeinten o By, Buan; Q(ay, By))

As a further contribution the nonadiabatic coupling -
V(") Eq. (D3) is considered up to the second-order. How- :Ref dte A en AOYY f( 1) el
ever, the latter expression together with the mean-field con- 0 wy

tributions will not be discussed here but in one of the follow-
ing sections. Finally we have to decide on the handling of the X 2 ngg(dNﬂN)(X,JC; +c§|xy>
coupling to the radiation fiely("®'%_ Since the consideration ¢
of any field-fluctuation described by second-order correlation N
functions is outside the scope of the present studies we con- X2 wEQRBNdN)(XJCgJF CelX ) (15
centrate on the mean-field contribution. £

Finally we focus on the second-order correlation func-For simplicity we removed here and in the following the
tions which are formed by different parts of the couplingindex “mx—inter” at the frequencies and coupling constants.
matrix, i.e., which lead to cross-correlations. A first set ofin a further step one transfers the terms oscillating with tran-
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sition frequency( ,, into two time-evolution operators em- Therefore, we split off Eq(17) into 2#/# times the square
bedding the oscillator operators. The completeness relatioof the coupling matrix element and the combined DOS,
for the x, enables us to remove the respective states and the 20

related summation. The-summation together with the ther- kEE9(ay— Bn_1)= =0 (anBn-1)|?

mal distribution functiorf () is replaced by a trace-formula

including the respective equilibrium statistical operator. This XD(an,Bn-1:Qay,Bn-1)). (19
finally Ieads_ to an expression mqludlng the §pectra| dengity The DOS reads

of the MX intermolecular vibrational coupling. We replace _

r(minte) py the respective rate and get (denotes the Plan:Bn-1;®)

Bose—Einstein distribution 1
- i wt
e g s B =202 ay, By) (L+N(Q(ay, By)) 2h f e
X (JanBn,Brnan; Qay,Bn)) X thinal R(an) U " (an, U (By_1,D)}. (20)
— JanBn,Bren:—Q(ay, Br)). The time-integration from—oo to o is simply derived be-

cause the real part is taken in E@.7). It is obvious that
(16) | eEn) Eq. (19) resembles the internal conversion rafs’

A further treatment of this expression together with an ex4ntroduced in Eq(1). The difference here is that the initial

planation of the spectral densities and the introduction oftate ¢,,; and the final statep,, defining k%'f)e have been

some useful approximations can be found in Ref. 18. replaced by the MX statesyy) and|By_1), respectively.

Besidek(F®% the complete nonadiabatic relaxation ma-

trix includes the factorized part into which the quantities,
C. Relaxation matrix of exciton exciton annihilation AU e Bn) = (S + 18+ Sv—18) O (amBr) S(amBr)

The contribution from the nonadiabatic coupling is
handled in the same manner as demonstrated in the prece\g
ing section by starting from an expression similar to 8¢) =S ¢ — — 29
which is rewritten by introducing a trace, now, defined with Slawpy) % ()Xt il Xy ) 22

respect to all intrachromophore vibrational DQF#f. Eq'. enter. Note that the quantit§(ay,3y) also appears in the
(D3)]. The rate of EEA is obtained from the nonfactorized gefinition of the MX density matrixcf. Appendix Q.

part of th(_a complete relaxatio_n matri>_(. Again we remove  As a pure coupling term in the reversible part of the
here and in the following section the index “mx—intra” at gensity matrix equations it relates two different exciton
frequencies, coupling constants, etc., and obtain manifolds which are extremely off-resonant. Therefore, we
KEEA @y By_1) can ngglect this term. It remaips to dis_cuss how to handle the
factorized part of the relaxation matrix. A general way of
treating such contributions has been given in Ref. 24. It is
based on the introduction of an auxiliary density matrix
which partly replaces the factorized partlofand obeys an

ith

2 o
= PRe . dte'Q(anﬁN—l)t

xtrintra{ﬁ(aN)U*(aN 1O (anBr-1) equation of motion free of any dissipative contribution but
U 1 with the mean-field term. Since it gives off-resonance con-
XU(Bn-1,0) X O(By-1an)}- 17 tribution we will neglect all those terms including the expres-

Since transitions from a lower to a higher exciton manifoldsion in Eq.(21).
are of no interest we never refer to the respective rates. |/ THE TWO-EXCITON ANNIHILATION RATE
The trace in Eq(17) represents the correlation function

formulated with the MX representation of the nonadiabatic This final section is devoted to a detailed analysis of the

. . IIEEA rate, Eq.(17) if specified to the transition from the two
coupling operator and has to be taken with respect to alto the single-exciton manifold. Since the concrete expression
intramolecular vibrational DOF of the C[Gor the transition 9 ' P

. . is of basic importance for the numerical calculations given in
frequencies()(ay,By-1) , see Eq(13)]. It incorporates the part Il (Ref. 20 we demonstrate in detail the existence of a

equilibrium statistical operatdR(ay) of the intramolecular rate formula similar to Eq(19) but with a DOS valid for the

\{ibratiqns in the ,MX statday). And., there appear vibra- single chromophores. Such an expression can be obtained if
tional time-evolution operators referring to the initial and thethe combined DOS is calculated for the limiting case of van-

final MX state. These operators refaf. Eq. (10), and note ishing electronic interchomophore couplifieglect oV,
N>0] in Eq. (4)]. (A rate expression which is improved by
P incorporating MX effects into combined DOS is derived in
U+(CYN,t):eXP[gH\(/'iEUa)(aN,aN)t : (18 Appendix E)
The approximation including the single chromophore
If an approximation is taken where the dependence of th®OS is best achived if the trace expression in E) is
O (anBn-1) On the vibrational DOF is neglected, it becomessomewhat rewrittennote the specification to a transition
useful to introduce an notation similar to that in E4). from a two to a single-exciton state
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tro TR(a)U™ (an )@ (a U 1O (B« This expression further simplifies since oily diagonal elec-
el Rla2) U7 (2.0 O(a2B)U(B1.0)O (Bracz))} tronic matrix elements contributen=n andn=m). We ob-
= thinual (22| RoU5 (D Hnd B1)(B1|U1(DHdaz)}. (23 tain (mfIRUg (t)[mf)=e'"m Ry U 1 (1) e mRigU ()
_ . and (me|Uo(t)|me)=e™"“me'Ur (t) [T, mUkg(t). The re-
Here we replaced the various MX matrix elements by respecspective single-chromophore energiés,,, equilibrium
tive operator expressions and introduced the Hamiltonian of;tistical operatorR and time evolution operatots
the nonadiabatic coupling, EGAL). Furthermore, it sufficies 1 5ve peen introducenaain E®) and in Appendix B 1. me
to setUs(t) ==, U(y1,t)]y1){r1| becausdJ;(t) acts from Both foregoing formulas give for the whole trateote
the right-hand side on a single exciton state. The same re#he replacement ah by n),
soning leads to the identification U;(t)=2,/2

= +
U(2,t)] v2){vo|. Furthermore, the equilibrium statistical inal (M flRoUo () mf)(nefUo(t)[ne);}

operatorR, can be restricted to the two-exciton manifold, = Smn€emie tr IR U (DU d(1)}

too. Once the MX statelg3,) and|«,) are expanded accord- '

ing to Eq.(7) the required approximation follows in taking +(1— 8y ) €' midt trm{ﬁmfufgf(t)umg(t)}

the remaining trace in the zeroth order with respect to inter- _ .

chromophore electronic coupling{,;. Since the time- X e~ “ned tr {RngUng(H)Une(t)}- (26)

evolution operators anR, are only defined by the diagonal
(intramoleculay part, Eqg.(10) of the complete MX vibra-

tional coupling, Eq(9) we do not get automatically the cor- oy jaad to the type of correlation functions which are typi-
rect time evolution operators in the absence of the Interchrog,) o nonadiabatic transitions and which determine, for ex-
mophore electronic coupling. S ample, the IC-rate, Eq1). And indeed the term of Eq26)
However, a detailed inspection of this I|m|t~sh0\(\see proportional to 8, , just corresponds to an IC process at
Appendix B J that the product of exif)(a,)t with Uz (t) @ chromophoren from stateg; to statee, . In the second term
well as the product of expi€)(ay)t with U,(t) can be iden-  of Eq. (26) a transition frome to ¢4 (at chromophoren) is
tified by respective time evolution operatots, for the  combined with a transition fronp, to ¢, (at chromophore
whole CC but with electronically decoupled chromophoresn). If expression Eq(26) is inserted into the rate expression
[first contribution toH ¢, Eq. (4)]. Therefore, we write Eq.  Eq. (25) the term proportional ta5,, , can be expressed by
(23) as[note the inclusion of exi)(a,,B,)t and the expan- the DOS of the type of Eq2) Dy @wmie) (NOW additionally
sion of the MX states as well as the nonadiabatic couplingabeled by the site indem). In contrast, the second term can
Hamiltonian| be written as a frequency integral with respectlg4 and
Dhge- Accordingly the whole EEA rate reads

The newly introduced trace expressiong tf-} only refer to
those vibrational DOF which belong to chromophare

tinwal R(22)U ™ (@2,1) O (a2B1)

k(EEA) _
XU(Blrt)®(ﬁ1a2)}><eiQ(O‘ZuBl)t (az Bl)

21
~——> C* (mf)Cz (me)C% (ne)C, (nf)
=3 > C(mf)Cp (ne)C} (R)C,, (M ) B Tee A

m,m n,n

~ Xf@ f(ény(w f, e)+(1_51)
X; O ke et tringaf (MFIRUg ()| 0k){ kel mieTne T e TmLm e

X [ne)(nelUg(t)| pie)(eys] X [MF)}. (24) x f 0 ©Dintg @mig= @) Pngd @ = @neg) |- (27)

To get this expression we already took into account that thét would be an acceptable approximation to assume that the
part of the two-exciton state expansion which contains thentramolecular vibrational structure of all chromophores is
presence of two singly excited chromophores does not coridentical. Therefore, the intrachromophore nonadiabatic cou-
tribute. Instead, it remain@nf| at the left part of the trace, pling matrices as well as all single chromophore combined
Eqg. (24) as well as|mf) at the right part. We further note DOS become independent on the site indices. To achieve an
loke)(pkeln€)  =oknlkf), as well as |ge){¢;/mf)  quantitative estimate for the rate we additionally restrict our-
=5, mlle) and write the whole EEA rate, E(L7) as selves to the high-temperature case and replace all DOS

Dimarl @man) by

2
KEEA(a,— By)~-5Re>, >, C* (mf) T (hwap=Nap)?
- . ] ab ab
m,m n,n D(wap;Nap) = ﬁszTA bex VTN pkeT '
a a

X Cp,(ne)Cy (N€)C,,(MF )OO imer (28)
% - These quantities are only characteriZbdside temperature
X Jl) dttripgaf (M f|RoUg (1)) by the transition frequencw,;, and the reorganization en-
ergy\ ,p, (cf. Ref. 19 The expression, E@28) simply allows
x(ne|Uy(t)|me)}. (25 us to carry out the frequency integral in the second part of
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Eqg. (27) which leads taD(w¢q;A¢g+Nge). This DOS hasto V. CONCLUDING REMARKS
be distinguished from the DOB(w¢4;\¢e) €ntering the first

: The MX description of chromophore complexes and bio-
term in the rate Eq(27).

, , ) , . logical antenna systems has been supplemented by the inclu-
_The first term will become maximal Bwre=MAre (Cli-  gjon of exciton exciton annihilation processes. This became
vationless case If at the same timekig+X\ge IS much  oqqinle by allowing for nonadiabatic transitions from a
smaller or much larger thake, the second part of the rate pioner intrachromophore level to the first excited electronic
expr_eSS|on(27) remains small and the_ whole expression isjgye| |f ranslated into the MX picture exciton exciton anni-
dominated by the first term. It results in hilation proceeds as the following two-step process. First
there appears the exciton fusion where the single excitations
KEEA (ay— B1)~ >, |C, (mf)Cy (me)|%k{) (29 of two different chromophores are translated into a higher
m 2 ! excitation of one chromophore. This is a process which in-
troduces an internal rearrangement of the condxegciton
with the (single chromophopeinternal conversion ratk{'”,  wave function but takes place without changing the actual
introduced in Eq(1). The complete EEA rate has been ob- exciton manifold. Afterwards the internal conversion process
tained by the uniform single chromophore internal convermove the higher excited chromophore back to its first excited
sion rate times the overlavith respect to all sitgshetween  state. This corresponds to a radiationless transition from the
the probability|C,, (mf)|? to have a double excitation at N-exciton to theN— 1-exciton manifold.
sitem and the probabilitycﬁl(me)|2 to have a single exci- To incorporate exciton exciton annihilation into the MX
tation at sitem. density matrix theory an approach has been chosen which

The obtained formula is ready for an application in thewas used earlier for the description of electron transfer
MX density matrix theory since it correctly describes the reactions?® If the internal conversion is considered as a pro-
transition from a two-exciton to a single-exciton state. TheCe€ss Which proceeds instantaneously on the time scale on
use of Sing]e Chromophore IC-rates, of course, may be |mWh|Ch all other MX processes take place, the radiationless
proved if one includes MX effectdSome details how to transitions can be described by respective rate expressions.
include MX effects into the combined DOS are given in These expressions resemble the standard form of internal
Appendix E) The EEA rate of Eq(29) can be reduced to the conversion rates but carry certain informations on the pres-
rate for a transition from the doubly excited statee ne) to ~ €nce of MX states. A prerequisite has been the correct deri-
the singly excited statgme) if |Ca2(mf) Cﬁl(me)|2 is ex- Vvation of a coupling between the MX states and the intrach-

panded up to the second order in the interchromophore elefoMophore vibrations which act as accepting modes within

tronic coupling. Than it describes the fusion process of twdh€ intérmal conversion process.

local single excitation to the doubly excited sta®,-tate A detailed analysis has been given for the exciton exci-
at a single chromophoref. Ref. 19. ton annihilation rate entering the MX density matrix equa-

Another limiting case for the EEA rate E(27) is found tions. The actual form of the annihilation rate depends on the
if Ne=X1g+Nge. Now the first and the second type of the chromophore PES. Providing a uniform internal conversion

DOS in the EEA rate become equal and the whole rate read@te for all chromophores in the complex two limiting cases
for the annihilation rate based on transitions from the two to

2 the single-exciton manifold have been presented.
KEEA (ay— By)~| D, Ck (mf)Cp(me)| K(©,. (30 Using such types of expressions the whole theory is

m ready for an application to concrete systems. In part Il of this
series of papers we apply the whole theory to simulate inten-

{n godn.z:rsért]? %‘(Zgézfsgége:tuﬁér%ﬂé?gniog?éﬁgogoﬁgssity dependent transient absorption spectra taken at the B850
wo di b ' P ring of the LH2 complex oRb. sphaeroide$ In particular,

Smce .SUCh tranS|t.|c.)n processes enter wh|9h couple dlﬁere%e will search for exciton exciton annihilation features in the
sites via the transition from statg to ¢4 at sitem with the

. . . frequency dispersed absorption signal. Preliminary results
transition fromeg to ¢, at siten the EEA rate incorporates d Y dISp P 9 y

: g S can already be found in Refs. 22 and 23.
the square of an expansion coefficient overlap. It is given by

the overlap between the probability amplitudgz(mf) to
have a double excitation at site and the probability ampli- ACKNOWLEDGMENTS

tudeCy (me) to have a single excitation at the same site We gratefully acknowledge financial support by the
The relation among the different reorganization energie®eutsche Forschungsgemeinschaft through Sonderfors-
necessary to gek(F¥¥(a,— B;) from Eq. (30) might be  chungsbereich 450.
fulfilled if either A¢q=0 or Ay.=0. Discussing this in terms
of PES, eitherU; and Uy, or Uy and U, should be not
shifted horizontal one to another. Since this case seems le
probable than the case leading to E2P) (where it is only
required thatJ , is shifted horizontal away fror; andUy) For the proper description of the EEA process and the
we already used Ed29) to study EEA in the B850 ring of step involving the IC process the general type of the nona-
LH2 (cf. Ref. 22. In part 112° we will demonstrate the use- diabatic coupling operatdsee, e.g., Ref. 1%as to be speci-
fulness of Eq.(29) again. fied to the three-level chromophore model,

APPENDIX A: INTRAMOLECULAR NONADIABATIC
ANSITIONS
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According to the presence of a superposition state of singly
Hna= > Omed @me){@mil+h.C. (A1) excited chromophore&he single exciton staten superposi-
" tion of ground and excited-state contributions appears. A
The expression combines all nonadiabatic couplings at theimilar result follows for the two-exciton vibrational Hamil-
various chromophores resulting in transitions from the highetonian,
excited statd to the first excited state (and the reverge (intra)
To get the correct matrix elements in the MX represen- "Vib
tation one first introduces the unity operafigiz, Eq. (3) of
the state space of multiple excitations in the CC. Then, a = > |Cy, (M€, mye)|?
change to the MX representation can be carried out to yield M2

(az,ay)

x[ > HigtHpgtAen (egRy)

k#mq,my

Hoa= 2 2 2 O(ayn-18y)]an-1){(Bn+h.c. (A2)

N>1 an-1 BN

The MX matrix elements of the nonadiabatic coupling fol- +HmgtA€m,(egRy)
low as

N N/2,(N-1)/2

+ 2, |Cu(nf)|? Higt Hngt Aen(fg;Ry) |,
®(01N71/3N):M§=:0 j\[2=0 ON,M+2N ;| az( N[gﬂ kgt HngTAen(fgiRy)

(B4)
X D> > D Oer which can be rearranged to give
{mebpy {nfhy ke{nthy ke{mey,
xCh ({mehu ke {nfii7 HU ™ az,a2)= 2, h(az), (B5)
X Cp ({mefp {nfhy). (A3)  with
This notation is more detailed with respect to the MX expan- ) _
sion coefficients. The coefficier@;  notices that as the hm(“Z):ng+2; |Cay(mene)|*Acn(egR)
result of the nonadiabatic transition from stateto statee, ) _
the number of chromophores in stage is reduced by one +|Ca2(mf)| Aem(TgiRm). (B6)

(all n have to b(_a_d|fferent.fro_nk). At the same time there Again a superposition of excited-state contributions appears.
appears an additional excitation of statg at sitek#m. If

specified to a transfer from the two-exciton to the singlel. Limit of vanishing interchromophore electronic

exciton manifold Eq(A3) reads coupling
To derive the approximate version of the EEA rate in
O(ay,B2)=2, OmetCr, (MECp (MF). (A4)  Sec. IV we neethy(a;) andhy(a,), Egs.(B3) and(B6),
m

respectively, in the limit of vanishing electronic interchro-

mophore coupling ‘((e'f‘_)e,—>0). Taking this limit for the
APPENDIX B: THE HAMILTONIAN single-exciton coefficients we obtail@, (Me)— &y m- A
OF INTRAMOLECULAR VIBRATIONS single excited chromophore at sit|®, remains and the

To have more concrete expressions at hand we presefit'dle-exciton quantum number, degenerates to this par-

the single and the two-exciton version of the general coulicular chromophore inder,. This behavior results in

pling expression of MX Ie'vels to iqtramolecula}r vibrations, Nl @) —Humgt S mA €m (€G; R ). (B7)
Eqg. (10). In the case of single-exciton states it reqdste
Hya=HygT Ae(ag; Ry, In the case of the two-exciton state we have to distinguish
between the limit leading to two single excitations or a single
HIUD) o @)= |C,.(me)|? fjou_ble-excitgt.ion. In the first case we debte the normal-
vib m o 1 ization condition for the two-exciton stgteC, (mene)

—>(5m0,m5n0,n+ 5mo'n5no~m)/‘a' The latter case results in

X k; HigtHmgt Aem(egRy) . (BL)  C, (mf)— 8y, Accordingly we obtain
m

This expression can be rearranged to give him( @2) = Hmg+ (Smg,mF Oy m) A €m(€G: Rm)., (B8)

or
(intra) —
HUb™ s, a0) = 2 () B2 hi(an) gt i mden1GiRy). (89)

with A somewhat more intuitive notation is achieved if we com-

_ 5 _ bine Hy,g with Aen(ag;Ry) (a=e,f). This combination
hm( 1) =Hmg+ |Ca1(me)| Aem(€gRm). (B3) can be rewritten adl,,— N5, Where we introduced the ex-
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cited state vibrational Hamiltoniam,,=Hy— (€(9;Ry) mode analysis the ground-state PES should be described by a
— (9 R9)) + e(a;Ry) — ex(a;RP) and the related reor- set of uncoupled harmonic vibrational coordinates with mode
ganization energy .= €(a;R?) — e(a;R?). Here, the index ¢ (note the difference to the intermolecular normal
Rf(a) denote the equilibrium configuration which belongs tomodeg. Second, a linear expansion of the quantities
the electronic statg, of chromophorek. The PES corre- Ae€y(ag;Ry) with respect to the deviationdR,;=Rpy;
sponding to the vibrational Hamiltoniat, , are defined in a —Rg?j) is carried out | labels all Cartesian coordinates of
way to have their minimum at zero energs it has already chromophorem). Remember that thRS]?j) refer to the CC
been done for the quantitids, ). Therefore the minimum electronic ground state. If we introduce the normal modes
energye(0; R(kg)) of the ground-state PES has been removectoordinateQ, the desired linear coupling to intramolecular
and replaced by the minimum energy(a;R\®) of the ex-  vibrations has been derived. We may wiitete the replace-

cited state. ment of Ae,, by €, on the right-hand side

All this allows to write the vibrational Hamiltonian Eqs. P
(B2) and(B5) in thg limit of vanishing electronic interchro- Aem(ag;Rm)%z me(agﬁRm))
mophore coupling in the form. T | JARpy; R —RO)

m m
(intra) _

MU @)= 20 HigtHme~Ane,  (B10 <3 a,Q;. (B14)

and

Here, thea;, mediate the linear transformation between the

Cartesian intramolecular coordinates and the normalmode

coordinates(written in a dimensionless form based on the

use of harmonic oscillator operatprSince the coupling ex-

~Ange: (B11)  pression is linear in the vibrational coordinates the single
chromophore coupling constant follows as

H\(/ii?)tra)(abaz)—’ E ng+Hm0e+Hn0e_)\mOe

m#mg,ng

as well as

amjg.

. 1 1%
. (intra) — .
H\(,'i?)tra)(az,az)ﬁ E ng+ Hkof_)\kof . (BlZ) g( (ma) ﬁw(glntra)g (aARmJ 6m(ang)) -
-0

m#mg,Nng

If both Hamiltonians are combined with the associated elec- (B19
tronic excitation energf(mge), as well aE(mge,nge) and  Once these local coupling constants have been introduced we
E(kof) [in the limit of vanishing electronic interchro- may write
mophore coupling, cf. Eq4)] we obtain the correct Hamil-
tonian of electron intramolecular vibrational interaction valid Aer(ag;Ry) = E ﬁwgg(g'””a)(ma)Q(. (B16)
for decoupled chromophores. ¢

The respective time-evolution operat@estricted up to

the presence of double excitatiorean be written as This enables us to introduce the coupling of MX states to

intramolecular vibrations via simple shifted harmonic oscil-
_H lator PES. For the coupling to the single-exciton state we
Uo(t)= z Umg(t)|o><0| obtain from Eqgs(B7) and (B3),

) _7( intra)2
+3 e tomedUndt) I Ung(t)me)(me () =T+ 2, o = g m, )
m n#m

+ 3(c,—c/ +2g{"(m,ay))?}. (B17)
The new coupling constant reads
ggntra)(m, ay)= |Cal(me)|2g({intra)(me)_ (B19)

2, e (emedened U (1) Une()

X [T Uggt)imene)(mene]
k#m,n . . . .
In a similar manner we may derive the expression valid for
. the two-exciton manifold,
+2 e ntdUn(t) [T Ung(t)mf)(mfl.  (B13)
m n#m _ ~(intra) _ ~(intra)2

_ _ _ hi( @) =T+ X fiof —g{"™i(m, ay)

The single-chromophore time-evolution operators are de- {
fined via the vibrational HamiltoniaH,,,;, and the transition N 4 (intra) 5
frequencies have been already introduced in @y. +3(C—Cp +29,77(m, az))%}, (B19)

2. Linear coupling to intramolecular vibrations but now with the coupling constant

. The formulas given in the preceedi'ng section will bg putggntra)(m,az)zz 2 Ic, (meke)|zggntra)(me)
into a form of PES belonging to the intramolecular vibra- K#m 2

tions. Therefore, we proceed as in the case of the coupling to 2 (intra)
intermolecular vibration&® First, as a result of a normal- +|Ca2(mf)| g; (mf). (B20)
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The energetic shiftd AQ(ay) of the particular MX level  This RDM is of primary interest and it will be clarified in the

introduced, for example in Eq13) can simply be deduced following how pas(t), EQ.(C2) can be related tp,z, Eq.

from Egs.(B17) and(B19) as the so-called polaron shift.  (C4). Since the vibrational states depend on the excitonic
(system quantum numberg there is no unique way to cal-

APPENDIX C: DENSITY MATRIX THEORY culate the trace. Let us take the statg, which belongs to
ACCOUNTING FOR NONADIABATIC TRANSITIONS the exciton statéa). We obtain

To explain the main idea of the used density matrix
theory we apply it m_the following to a system of exciton— Pa/;(t)ZE (X W) [X )| BY (C5)
vibrational stategA)=|a)|x,,) which are somewhat re- 7
duced as compared to those introduced in Sec. Ill. Here,
reminds on the MX quantum number but to have a sufficien
simple notation any hind on the given manifold is sup-
pressed. Thew denote vibrational quantum numbers of the
vibrational statey,, , Which in addition depend on thex-
citonic) quantum numbet.

The stategA) are characterized by energi€s=%w, Faﬁ(t)zz (a|(Yw|\7V(t)D;ﬁ|Yﬁ#>|,8>. (Co)
+#fw, (including excitonic and vibrational contributions ®
and coupled one to another via the matrix eleméntgg.
The density matrix in the state representation reads

yvhat is essentially different from,4(t), Eq. (C2). If we
apply the displacement operaf,,=D, D (see, e.g., Ref.
19) which moves thegharmonic oscillatorstateys,, t0 x

it follows

To have a simple interrelation betwegp; andp,,; we take
in the spirit of a mean-field approximation the expectation

A value of D5 and write
Was(t) =(A|W(1)[B). (C1

— _ + — ~ —_—
It is defined by the time-dependent nonequilibrium statistical Paﬁ(t)_%: (Do) (@l (Xau WD X pu) | B)
operatorW(t). Let us introduce a reduced density matrix .
(RDM) by taking the trace with respect to the vibrational =(D,p)Pap(t). (C7)

uantum numbers . . . . .
a This expression offers the required interrelation between

both types of RDM. In the following we demonstrate how to
Pap(D) =2 Wap (0= (al(Xuu W(D|X5,)]8). (C2)  calculatep,4(t). Once this has been dong,s(t) can be
m m computed in using the above given formula. A more detailed

] ) ] analysis of this computation scheme will be given elsewhere.
As it has been already demonstrated in Ref. 26 this RDM can ¢ ramains to fix the definition of the expectation value

be calculated in a standard way by applying the projection...y A reasonable way to define the expectation value of the
superoperatoP which acts on an arbitrary matrix as follows: displacement operator would be the thermal average with
respect to those vibrational statgg to whichD, andDg
PA = 5Wf(ﬂ)2 A pr- (c3  refer. Therefore, we nota|XM)=_|Xw) and obta|n<D:;_ﬁ>
K =3, f(u)(Xaulxpu)- This quantity has bee already intro-
duced in Sec. llI C. If the given RDM-theory is applied to the
The expression includes the thermal distributfd) with  MX vibrational system discussed in the main part of this
respect to the vibrational levels. Its independency on the eXpaper it has to be defined for the intramolecufiatrachro-
citonic quantum number is essential for the whole ap- mophore vibrations. However, it becomes equal to one for
proach and may follow directly from the assumption of athe intermolecular vibrations since for those vibrations any
linear exciton—vibrational couplinfef. Eq. (B14)]. shift of the equilibrium position has been neglected.
Unfortunately the RDM, Eq(C2) cannot be directly re- Next, the density matrix theory will be formulated in
lated to observables like, for example, the expectation valuguch a manner that an equation of motion for the RDM, Eq.
of the CC dipole operator. To get such a quantity a RDM hagc?) is obtained in the second order with respect to the cou-
to be defined in taking the trace;tf- -} with respect to the pling matrix v. To get this equation we start with the

vibrational (reservoiy states. It follows Liouville—von Neuman equation for the total statistical op-
A A erator. It results in the following equation of motion for the
pap(t) =tr{W(t)| B)(a|}=(e|trin{ W(1)}| B). (C4  density matrix Eq(CL):
|
J ) .
EWAB(t): _|wABWAB(t)_|; (vAcWea(t) —vcgWacl(t)) (C9

with the transition frequenciesag=(Eao—Eg)/h andvg=Vag/fi.
As in the standard projection operator technique and by concentrating on a second-order perturbation theory with respect
to v we get the following equation of motion for the RDWbr details see Ref. 26y 5= w,— wp)
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a * )
1Pap(D)= 10,00 =12 ((Vay)pyp(t) = (V) Par(t) = 2 f d7(e'7 (v 5( ~ 1)V 55)Par()
b y,6 JO

+ eiw757—<va§( ’T)U 5y>pyﬁ(t){ei wﬁ57<v 5['3’( - T)U ay> + eiw7a7<v 5,8( T)va7>}p75(t)) . (Cg)

Here, already the Markov approximation has been carried (mx inter)_
out. The averaging with respect to the vibratiotraservoiy ~ Va =omn(1— 6N o)<XaN,ﬂXpNV>X2 hwgeanBn)
DOF has been abbreviated by

X(XM|[C2—+C§]|XV>' (Dl)

<vaﬁ’>:% F)0 ap,pu (€10 The off-diagonal matrix elements 1", , By), con-
tained in Eq.(9) are used to introduce a coupling which is
and combined with the part following from intermolecular vibra-
tions. It reads

<va (t)l} 5>:E f(lu“)eiw"wtva s U v, _<Uuz ><U 5>' —i
B b2 - wBvY yv, 6 B b2 V(Amé intra)__ 5M,N(1_5N,O)(1_5

)60y
(C12) -

X (Xl HD ™ Br) X3, - (D2)
M

For the applications within this paper we change to therjnaly, the matrix element of the nonadiabatic transition fol-
so-called Bloch model in decoupling the dynamics of thejoy as (N>1)

diagonal elements of the RDM from that of the off-diagonal (na)
ones, (OMN-1TOMN+1)Ou, v
(apaﬂ x(XaMﬁi®(aN/3N)|X,BN7>- (D3)
at

an By
wherew,,=ow,—w,.

) = aﬁz (ka‘y a k'yapy)
diss.

APPENDIX E: EEA RATE WITH AN EXACT ACCOUNT

1 FOR MX EFFECTS
~(1=80p)3 2 (Kuytkg)pag.  (C12

In this Appendix we demonstrate how to fully cover ex-
The transition rates are given as citonic effects into the DOS of the EEA rateé®"(a,
—B1). Most appropriate would be the use of the coupling

Kap=2T(af, Bt 0ap) (€13 Hamiltonian based on a linear expansion with respect to the
with intramolecular vibrational coordinates introduced in Appen-
" dix B 2. Now the Hamiltonian describing intramolecular dy-

F(a'g'yé;w):Refo dTein<va,8( TV ). (C19 namics in the two-exciton manifold as well as in the single

exciton manifold are characterized by the same harmonic

oscillators only displaced one to another. For such a case itis
well-known (see, e.g., Refs. 19, 2that the trace in Eq17)

can be expressed by the so-called line-shape function appear-
ing in the exponent. As a result the combined DOS reads

Equation (C12 describes the redistribution of electronic
state populationP, as well as electronic coherencpgg
among the various excitonic levelso,, .

1
Q) = iQ
APPENDIX D: MULTIEXCITON VIBRATIONAL Dlaz,friaz,B1)) 27t f dtexp(iQ(az, Byt

STATE REPRESENTATION OF THE DENSITY

MATRIX THEORY —G(az,B1;0)+G(ay,B1:1)).
The state representation explained here is based on the ED

MX vibrational states introduced in Sec. Ill. The respective The G-function is defined as

representation of the complete CC Hamiltonian, E4).

readsHcc==4gHa g/A)(B|, with the Hamiltonian matrix G(az,,Bl;t)zf dwe Y (1+n(w))I(ay Bl v)

Hap=0aEa*+Vag. The energiess, correspond to the

complete statgA) and split off into excitonic and vibrational —J(ayB1;—w)), (E2)

contributions [cf. Eq. (13)], Ea/A=E(ay)/hi+AQ(ay)

+Q, +Q , and the coupling matrix elements incorporate

different 'contributions Va g= VTR~ Nen.p /(meinta) . y/(ne)

+V{89(t). The elements resultlng from the couplmg to the

intermolecular vibrations follow agote the presence of the

intramolecular Franck-Condon factor which will be dis- )

cussed elsewhere —g{"™¥(m, £1))28(w— ). (E3)

wheren(w) denotes the Bose—Einstein distribution and the
spectral density reads

J(ay,B1i0)= % Eg (g(gintra)(m,a,z)
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