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Bridge mediated two-electron transfer (TET) in a dohacceptor (B-A) complex is studied theoretically.

A type of bridge is considered where the intersite coupling in the bridge becomes so large that the TET
proceeds along delocalized bridge states but against the background of fast vibrational transitions within and
between these states. The assumption of fast vibrational relaxations allows us to follow our earlier approach
(Petrov; et alJ. Phys. Chem. BR002 106, 3092) and to derive kinetic equations governing the populations

of the states involved in the TET reaction. The conditions are explained in detail at which a reduction to
distant D-A TET can be carried out. Moreover, an analytic expression for the overal DET rate is

given for the case of a regular bridge as well as for a bridge perturbed by an intersite energetic bias. The
stepwise and the concerted route of the M TET is analyzed in dependence on the bridge length. It is
shown that the stepwise route follows from a thermal activation of a specific intermediate state. Its contribution
to the overall transfer rate is determined by two single-electron transfer steps each of them related to two
single-electron pathways through the bridge. The first pathway requires a population of the extended bridge
state by thermal activation and thus can be termed the thermally activated pathway. The second pathway
utilizes the bridging states as virtual intermediate states and thus is termed the single-electron superexchange
pathway. The concerted-PA TET mechanism uses the extended bridge states as well as the mentioned
intermediate state as virtual states. Therefore, it can be understood as a two-electron unistep superexchange
transition between the D and the A. This transition can take place even at zero temperature. The perturbation
of a regular arrangement of bridge levels by an energetic bias favors the stepwise route because it includes
thermal activation of the intermediate state. This fact also explains that the efficiency of the concerted two-
electron superexchange route is larger than that of the thermally activated stepwise route if low temperatures
and short bridges (one or two units) are considered.

I. Introduction here the homogeneous and electrochemical TET within the TI-
. . . . . . (agP*/Tl(ag)t complex? The presence of several intermediate
Itis of huge importance for chemistry, biochemistry, bio states is also typical for TET reactions in biosystems. Quantum-

physics, and even molecular medicine to obtain acomprehensivechemical calculations have already specified these intermediate
understanding of the way structural and energetic factors ysp

determine the rate and efficiency of charge-transfer reactions.sn"‘teS W|th_d¢pendency_on the spatial position of the two
electrons within the considered macromolecular structti®e.

Besides standard single electron transfer (SET) those reactions Th f Lint diate stat It
involving the participation of two electrons found increasing 1€ presence of several intermediate states may resutt in
multiexponential TET kinetics. However, it is a common

interest. Current theoretical studies on two-electron transfer b tion that TET " displ ; tial
(TET) are based on different semiphenomenological extensions2Pservation that 1t 1 reactions dispiays two-exponential or
single-exponential kinetics. Therefore, it is a basic theoretical

of the SET Marcus theory.® For the case of a TET reaction . ~ . .
V. challenge to find out the conditions at which the multiexpo-

in a polar liquid such an approach allowed us to formulate the ial kinetics i duced Kineti h ized b
conditions necessary to let the TET take place between a donofential Kinetics is reduced to kinetics characterized by two
overall transfer rates or even by a single rate. Usually, single-

(D) and an acceptor (A) redox center. It has been found that tial kinetics is t d the_mA h f elect

the TET occurs via intermediate electronic state D(e)A(e) (e expo?en 1a t_me IS IS terme € regime ot electron-
denotes the presence of a single excess electron at a giverﬁrans er reactions. .

center). This corresponds to the formation of a stepwise route DUring recent years such a-A regime related to a SET
via single-electron transitions D(ee}# D(e)A(e) = DA(ee). reaction has been the subject of intensive theor_etlcal and
The so-called concerted route of TET is determined by the €xPerimental work (cf,, e.g., refs 5, 6, and-1Al). In particular,
orchestrated two-electron transitions D(eeyADA(ee). Here the condition could be clarified at which SET kinetics can be

the state D(e)A(e) only participates as an intermediate virtual deScribed by a single overall transfer réier, even though the.
electronic staté. SET is mediated by a number of bridging states. This condition

There are numerous cases where more than a single interonsists of the only requirement that the population of the

mediate state mediates the TET. As an example, we mentionP!1dging states remains small (less than-20during the
complete course of the SE¥:24 It could be shown that for
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As demonstrated by us in refs 229, it is also possible to  where
analyze D-A TET reactions in this way. The reactions can be
described by a single overall transfer réte=r between the HE® = E,,|MIM| (M =D, 1, A) 2)
donor statéD[= |D(ee)BB,...ByACand the acceptor statall
= |DB1B....ByA(ee)dprovided that the population of the two
types of bridging state$B = |D(€)B1B>...Bn(e)...ByAland
|BnO= |DB1B,...By(€)...BvA(e)Jas well as the population of
the intermediate statgél= |D(e)B;B....ByA(e)remain small N
during the whole reaction. The rate expressiomr contains HE) = ZEm|BmD]Bm| +
contributions from two different TET mechanisms, the stepwise =

is the Hamiltonian of the Mth localized DBA state with energy
Em. Furthermore,

and the concerted mechanism. The first one includes two SET N-1
processesDU= |B1[= |B[= ... == By = |IHand || 0= |B10J ; (1= 8, /g g |B, 1B + hd (3)
= |B= ...== By[= |AEach process comprises a multistep mm=1 m

single-electron sequential pathway and a unistep single-electron
superexchange pathway. In contrast, the concerted TET resultsand
from a unistep two-electron superexchange pathiay= |AC)

where the state:(J|Bo) .., [BNL [Bal) BoL) .., IByJandI0 - 0 N ! L
act as virtual intermediate states. All these results are valid for Hg ' = ZEnIBnDIBnI + Z (1= 0n)[ /g g /1B IB| +
small intersite electronic couplings, so that the TET occurs = n=1

against the background of fast intrasite vibrational relaxation. hc] (4)

In the present study we will concentrate on a type of bridge- o ) o
mediated TET where the electronic coupling between neighbor- &ré the Hamiltonians that characterize the DBA bridging states
ing bridge sites becomes so large that the whole bridge has to(Em @ndE, are the energies of the localized bridging staBag]
be described by extended electronic states. However, the@nd|BnlJrespectively). Finally, the Hamiltonian
coupling of the D and the A to the extended bridge levels should ~
remain small enough to let the-B and A—B transitions of HE) | = Npg,|DUB,| + g [1TBy| + .7 || By] +
the nonadiabatic type. For such a situation the TET reaction Vs |ATB, | + hc (5)
occurs against the background of fast relaxation processes within “TABy N
the D and A centers. At the same time, relaxation processes
within the set of extended bridge states may be either faster ordescribes the interaction of the localized DBA stae§] |IL)
slower than the TET reaction itself. Recent results on distant and|ACwith the corresponding localized DBA bridging states.
SET23 demonstrated that the sequentiat® SET is replaced ~ The matrix elements/uv: = M |Vy|M'Uresponsible for the
by a thermally activated mechanism if the D as well as the A transitions between the localized DBA electronic stgtd4]
center couple weakly to the respective terminal bridge units. and|MCare defined by the transfer operatdy. In this paper
The thermally activated mechanism results in a completely We employ a tight binding model wheh, describes single-
different bridge-length dependence of the overall transfer rate €lectron transitions between the molecular orbitals of neighbor-
as would be the case for a bridge with weak intersite coupling. ing DBA sites (D and B, By and By, and By and A). One
Turning to the case of DA TET it has to be clarified which ~ obtains./ps, = Vb1, /ey = Vna, /g, = Vp1, e = Vyas
process replaces the stepwise mechanism if the bridge-internal /8.8, = Omm1Vmme1, and /g g, = Onnt1Vinyq. All single-
intersite couplings become large. And, it is also necessary to €lectron couplingsVap, and V,, are shown in Figure la
understand the mechanism forming the concerted unistep two-together with the DBA energies of the localized states. Note
electron transition mediated by the bridge. that in the general case the couplings, and V,, do not

The paper is organized as follows. In the next section the coincide with the respective couplingéps and Van. This
model is introduced for the description of bridge-mediated TET, difference results from the fact that any charge distribution in
and the basic kinetic equations together with all rate constantsthe D and A centers strongly depends on the actual electronic
are derived. Section Ill includes the reduction of multiexpo- States|DLI[IL) and|AUof the whole DBA system. In contrast,
nential TET kinetics to single-exponentiaHa TET kinetics  the bridge-internal coupling¥mm:1 and V., characterizing
as well as the derivation of an overall transfer rKﬁ%T- The the Single'electron transitions within the b”dge do not differ
main results related to the formation of stepwise and concertedS0 much an = m. [For the small coupling¥pa, Vpy, Vna, and
routes of TET in a DBA system are presented in section IV. Vya Under consideration the D and A centers are not es-
The paper ends with some concluding remarks in section V. Sentially effected by the overlap of bridge unit molecular

orbitals.] In the case of a regular bridge we set for all sites in
Il. Model and Theory the bridgeVimme1 = Vin.y = Va.
o ) If all the single-electron couplings including thg,m:1 and

A. Hamiltonian of the DBA System.Let us consideraDBA v/ are small the TET process reduces to a distant nonadia-
system with a linear bridge of N units. The bridge couples to patic transfer of two electrons through the localized bridging
the D via terminal siten = 1 and to the A via terminal sit® states|BJand |B,Jas well as through the intermediate state
= N. Those electronic states nece.ssary'foracqmplete descrlptmq”:pzzg Such a TET occurs against the background of fast
of the TET have already been fixed in the introductory part jntrasite vibrational relaxation. The goal of the present studies
and are denoted 1= |DLJ[BnlJ [BaL)[ILJand|AL(see also s to consider TET reactions for the case of strong single-electron
refs 27 and 29). Accordingly, the electronic Hamiltonian of the couplings between neighboring bridge units (here, strong means

whole TET system takes the following form strong compared with the electron-vibrational interaction). In
contrast to the mentioned nonadiabatic TET, here, the transfer
H<,§'B>A = ;Hfﬁ” + H,(Be') + FI(BE') + Hfgg_b Q) process proceeds with the participation of the localized electronic
states|MO= |DL] |IJ |AOas well as the extended bridging
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Figure 1. Position of the localized bridging DBA levels with energlé,s andE, relative to the position of the donor, the intermediate, and the
acceptor electronic levels with energigs, E;, andEa, respectively s gives the position of the local DBA levels in a regular chain) (part a). When
the localized bridge stateByJand|B,Care transformed to extended bridge stdfa&land |30 respectively, the energi&s, andE, change tce,,
andé,, respectively. At the same time the transformation takes place of the local coughn@é,) andVna (Vya) into Vo, (Vp,) andVa (V, A)
respectively. Besides, the bridge states mediate the formation of single-electron superexchange deuplnids. as well as of the two-electron
superexchange couplinfpa (part b, wavy lines indicate the relaxation between the extended DBA levels).

electronic stategfs,0and |B,4D The latter are obtained after
diagonalizing the Hamiltonian, egs 3 and 4

N N
HE) = S e |5, 0B, | ASY =Y e, 3,08, (6)
( ;M 0B, 3 ;ﬂ LB,

The transformations relating localized and delocalized bridge
states one to another read

N
|BﬂD= ﬁ#(n)|BnD

n=

N
18,0= Zuu(m)|BmD @)

Obviously, the coefficientss,(m) and G,(n) as well as the
energiese, and€, of the extended DBA electronic statgs,[]
and|B,0depend on th&y, andE, (characterizing the energetic
position of the localized levels of the DBA system) as well as
on the intersite coupling®ym:1 and V.. In the case of
regular brldge withE; = E, = ... = Ey = Eg and El = Ez =

.. = En = Eg the tight binding model results in the following
well-known formulas

JT
9= =E;— 2V, cos{N—fl]

&9 =2 (N)=E; — 2V cos{

N+ 1
u,(m) = &, (m) = ,/N+1S|N—+W_1. ©)

Using the delocalized bridge state the coupling Hamiltonian eq

5 can be written as

(el)

loc—b

N
He) = Z[VDIM|DD]ZB#| + V, [10B,| + Vi, /105, | +
£

o ATB,| + D] (9)
where the quantities

Vou = VpaU,(1)

Vo = Vil (1)

Via = ViU, (N)
Via = Vil (N) (10)
are responsible for the single-electron coupling of the localized

states|DL] |IL] |AOto the extended bridge statg,[) |,3u[](cf.
also Figure 1b).

The Hamiltonian eq 1, which covers the contributions, eqgs
2, 6, and 9, only accounts for the electronic part of the DBA
system. Apparently, to describe the TET kinetics, we have to
include the coupling to the vibrational degrees of freedom. The
related vibrational HamiltoniaRl,i, is taken as that for a set of
harmonic oscillators with frequencies; and normal-mode
coordinateQ;. Let Qj(M) be the replacement of the vibrational
mode in the Mth electronic state (in our cafd, 0= |DC |I[]

IAD) .0 |[3L,[ﬂ. The expansion of the electronic energies with
respect to the deviatior@ — Q™ results in diagonal and off-
diagonal interaction terms of the electronic DBA states with
the vibrational reservoir (see also refs 23 and 30). The diagonal
part of the coupling to the reservoir (R) of vibrations reads
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Hosa_r = Hy—gr + Ha_r + Hg_g (11) tioned conditions are fulfilled and, thus, the Hamiltonians
M=D,1,A H(S"QA, Hoea-r, andHg_g are taken according to the egs 1, 2,
6, and 1+13.
The first contribution is defined by A comprehensive description of the TET can be achieved by
1 using the generalized master equation (GME) (cf., e.g., refs 18,
Hy = — —zth-(M)QlM M| (12) 31, and 32), which governs the density opera(orof the DBA
24 17T system (coupled to a vibrational reservoir). How to proceed in
the case of nonadiabatic TET has been explained in detail in
which specifies the coupling of the localized DBA st to our foregoing paper&:2°There, we demonstrated the derivation
the vibrational reservoir (note thg; and QJ-(M) are dimension-  of kinetic equations for the total populatioRg (t) = [M|tryipe-
less quantities). The second contribution includes the operators(t)|MCof each electronic stat1Cparticipating in the TET. In
Hg_r and Hg_gr. The first, particular, it has been shown that for cases where the charac-

teristic timez? of the vibrational relaxation within the site
N (of electron localization) is small compared to the transfer time,
Hgr = Zzhwigj(‘u’ﬂ)Qj|ﬂﬂmBﬂ| (13) a simplified coarse-grained description of the TET process
#=t becomes possible. Then, the populatiéhgt) fulfill a set of
couples the bridging DBA staté8,[to the vibrations with the co_upleo_l bala_nce-lik_e equations. A similar situation occurs if Fh(_a
coupling matrix ‘ bridge is defined via extended states. Now, the characteristic
times 7% and 7% of the vibrational relaxation within the
1N extended electronic stateand the localized states M D, |,
gj@t,u) = - £Z|uﬂ(m)|2Qj(m) (14) A, respectively, are supposed to be much smaller than the overall
=

transfer timerrer = K;2p. Noting the inequality

[Analogous form has an operatdtz_g.] The off-diagonal

M) ()
interaction between the extended bridge states and the vibrational Trer > Trel s Trel an
reservoir,

we may state that the kinetics of the-B. ET proceeds against
N the background of fast vibrational relaxations and thus can be
Hy_r = z a- éﬂ‘u,)Zhwj[gj(ﬂ,ﬂ')Qj|[3ﬂD]Bﬂ,| + described in the framework of the mentioned coarse-grained
=1 ] approach. A similar situation valid for SET reactions has been
gj(ﬂ,y')Q”B#EDZT?#W] (15) already discussed in ref 23. The basic difference from the TET
kinetics studied here is only related to the presence of two types

is responsible for transitions between the extended bridg- of extended stategf,[and |5,L] as well as the intermediate

ing DBA states. The first coupling readgu,u') = —Y.3 - state |ILJ Fortunately, according to inequality, eq 17 the

u*(M)u,(mQ™ whereas the form of the second oIy, 1), procedure of deriving kinetic equations and corresponding rate

follows from'gj(ﬂ,ﬂ') if one substitutes tha,(m) for the Gi,(m). constants remains identical with that explained in refs 23 and
B. Kinetic Equations for Description of the TET Reaction. 29. Therefore, we skip any detail of the derivation and only

According to the discussion of the preceding section we denote Present the resulting kinetic equations for the populations of
the total Hamiltonian of the DBA system interacting with a res- interest. Those covétp(t), Pi(t), andPa(t) of the localized DBA

ervoir of intramolecular as well as intermolecular vibrations as StatesiDL] [IL] and|AL] respectively, as well as the populations
P.(t) andP,(t) of the respective extended bridging DBA states

H=H&, + Hpga r + Hs r + Hyp (16) |.Oand |3, Accordingly, the set of equations reads
On the basis of this Hamiltonian one may derive kinetic Po(®) = (ko + koa T ko, )Po(t) + kipPi(D) +
equations that describe the TET process mediated by the "
extended bridge states. But, before doing this, we note that the KapPa(t) + ZkﬂDPﬂ(t)
introduction of extended bridge states instead of the localized K
ones becomes only possible if the following supposition is p )= —(k . +k , + K P (1) + ke P-(1) +
fulfilled. The broadening of the energies andé,, which is W0 (o K MZﬂ ) Pull) + o, Po(t)
caused by the interactioHg_g with the reservoir has to be ' _
small compared to the differencgs — €,| and|é, — €. Just kPO + Z KelPu®  @=1,2,..N)

WZn

in this case, the TET proceeds through the adiabatic (extended) .
bridging DBA states$f,[and|f,[ This is in contrast to complete  Pi(t) = —(kp + kja + z(kw +1,))Pi(t) + ko Pp(t) +
nonadiabatic TET where the localized bridging DBA staBag ] H“ ~
and |B,0Omediate the charge motidA2° The condition to be Ka Py (1) + ZKMRu(t) + Zr#,PM(t)
fulfilled when extended bridge states are used can be formulated Iz Iz

for a regular bridge (and for a bridge with a small energetic & y — _ 5

irregularity) by the demand that the matrix elemevitg..; and Pl =~ + tiat ﬂZMr"‘”)P"(t) PO+ T PAO +
V.1 (that couple the localized molecular orbitals of a given B (t

bridge unit to those of the neighboring units) strongly exceed z it .“'()
the coupling energy of the localized orbitals to the nuclear
vibrations. [It is supposed that the localized molecular orbitals PA(t) = —(ry + Kap + er‘,,)PA(t) + AP+

belonging to each of the bridge units are well separated so that z

the energies, andé, correspond to the extended bridge LUMO- KoaPp(t) + Zr#Alf’#(t) (18)
levels.] For the present studies we assume that the aforemen- i

u=12..N)

=
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Ky, (a) Here, (FC)m and (F Q. denote respective FraneiCondon
4 factors. The couplings derived in the tight binding model are
> 4 > given byTp, = Vo, Tiu = Va,, andT, = Vouw Taw = V- The
backward rates follow from the above given one lasdnd T
denote the Boltzmann constant and the absolute temperature,
respectively)

K = exp[=(€, — Ex)/kgTIk,y (21)

kD, rIA

/ \@/ \

'\\ // \ // e = €XPE(E, ~ Bl T 22)

The rate constants defining the unistep single-electron and two-
electron hopping transitions are given by @N)

<
<

>
>
>

kID rAI Y
< _ _2m 2 _
K KN = ?|TMN| (FCwun (M,N=D,1,A) (23)
Multi-exponential kinetics with Tyny being the superexchange coupling between the

localized states (cf. scheme b in Figure 1).
The derivation leading to the kinetic eqs 18 also results in
the following expression for the squares of the single-electron
kpa superexchange couplings,

©

‘—@:+ = ‘ and

Single-exponential
kinetics .
Two-exponentlal kinetics The square of two-electron superexchange couplings read (note
Figure 2. Kinetic scheme of the TET process with the participation AEp = E — Ep, AEa = E — Ea),
of the extended bridge stateg,Oand |5,0(part a). For a small
population of the bridge states the kinetics reduces to the transitions |TDA| =
between the three localized DBA statd®U[] |I[] and |AQ(part b). If , 2
the population of the intermediate DBA stdtélbecomes also small, IVp1Van Vo1 Vanl . = =
the two-exponential kinetics is reduces to a single-exponentiah D AEAE,, Re{ G1n(Ep) Gni(Ea) Gin(Ep) Gua(Ea)}
TET kinetics between two localized DBA stat&and|ALJonly (part c). (26)
The rate constant&p,(k.p) and ki.(k.) characterize single- ~ . ,
electron hopping between the localized DBA sta@sand|I0] !N €S 24, 25, and 2&;n(E) andGnu(E) are the bridge Green's

and the extended bridging DBA states of the first typ/J] functions (cf. also refs 33 and 34). In the case of small energetic
Analogously, the rate constants(r,;) and ra,(r,) describe irregularity they can be represented in form (cf. Appendix A)

single-electron hopping transitions between the localized DBA

IToy |2 = |VD1VAN|2Re{ Gin(Ep)Gra(ED} (24)

|TIA|2 = |V;31V,'L\N|2Re{ GlN(EI)éNl(EA)} (25)

A G (E) — (feg)(E)e SE)
states|ICor |AlJand the extended bridging DBA states of the 1N
second type|f,Ll The transitions among different extended = _ Areg) i —XE)
states|f,0and |5,0are described by the ratég, andr,,, Cin(E) = Gy (B)e (27)

respectively. Scheme a of Figure 2 displays those transitions
leading to the TET process in the DBA system. It follows from
this scheme as well as from the set of kinetic equations, eqs sinhA(E)
18, that along with the above-mentioned single-electron hopping G(lr,‘f,g)(E)
transitions between the localized states and the extended states |VB| sinh[(N + 1)A(E)]
the TET process also covers distant single-electron transitions
(with rateskp(kip) andra(ria)) as well as distant unistep two-
electron transitions (with ratdga andkap). 2
All ET rate constants valid for the transitions between A(E) = In[(Ez — E)/2|Vg| + \/((EB — B)2IVg))" — 1] (29)
localized states and extended bridge states take the form

(concerninge,.. see the discussion in ref 23) To derive theGni(E), one has only to chang&(E) by A(E).
a The latter quantity is given by the same expression as in eq 29

with the Green’s function of regular bridge

(28)

Note the introduction of a superexchange decay parafieter

1 2 . but with Eg replaced byEs. Moreover, the correction factors
k/lM - f'TM/A (FC)ﬂM (M=D,1) (19) S(E) and S(E) are defined by eqs A1l and Al2.
The rate constants, eqs-123, contain the FranekCondon
and factors

2‘7[ T C 1 i LN VNI
v = ?ITM/AZ(F C),uM M=1,A) (20) (FCyy = %fdt @ MABuNT/ g~ Qun(7) (30)
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Each depends on the concrete form of the vibrational spectral N
density Jun(w) vials27:38 Wy(e,) = Zg e T (Zy= Ze’f'“"‘BT) (34)
=
Qun() = 2 [ dw Iy (@)lw?)coth FlkgT)(L — and
coswt) — i sinwr]. (31) N

We(&,) = Zg e "7 (Zg= Ze*fﬂ/kﬂ) (35)
C. Overall TET Rate. The various rate constants, eqs—19 =
23, all contribute to the overall transfer ratger of bridge- )
mediated TET. To derive a respective expression, we follow One derives
the coarse-graining approach which has been used earlier for _ BN . \E
the description of nonadiabatic TET in refs 27 and 29. There, P.(t) = Wa(€,)Ps(t) P.(0) = Wg(€,)Ps(t)  (36)
it has been shown that single-exponential TET kinetics are
related to a B-A regime of this reaction where the population
of the bridging DBA states as well as the population of the
intermediate state remains small in the course of the ET reaction.
In the present case, a small bridge population appears if the
rate constants responsible for an escape of an electron from th
extended bridging statg[to the localized statgvi[] (M = D,
I, A) strongly exceed the backward rate, i.e., if the following
inequality is valid

These expressions demonstrate that the populaipfty and
E’,l(t) only change in time via the integral populatidhs(t) and
Pe(t). Now, by introducing theP,(t) and P,(t) into egs 18 it
remains a set of kinetic equations for the populatiBp&), Ps-

(), Pi(t), Pa(t), andPa(t). The following approximation is based
%n the small population of the bridging states and thus on the
utilization of a steady state approximation. The latter reads as
Ps(t) = 0 andPg(t) = 0 and allows us to derive the following
set of coupled kinetic equations

Ko /Ko = €XPL=(€, — Epg))keT] < 1 Po(t) = —(Kp; + Kpa)Pp(t) + KipPi(t) + KapPa(t)
i, T ja) = ©XPI (&, — Byny))/keT] < 1 (32) Pi(t) = —(Kip + K)P,(t) + Kp Pp(t) + Ky Py(t)

A relation that guarantees a small population of the intermediate Pa() = —(Kai + Kap)Pa(t) + KinPi(t) + koaPp(t) (37)
state|l Owill be given below. If the condition eq 32 is fulfilled,

it becomes possible to derive a solution of eqs 18 by employing
the steady state approximation for the populatiBy($) andP,-

(). The definite form of the solution also depends on the relation

These equations describe the TET kinetics between the localized
DBA states (cf. scheme b of Figure 2). The respective (effective)
transfer rates read

between the rate constarkgy (r,v) and the intrabridge rate K = Koo + kg"d)
constantsk,, (r,). The latter are responsible for transitions DI(iD) 1(1D) (D)
between different electronic bridging state$land |u'[] Note
electr . e Kiacan = Ko + K& (38)
that the characteristic timss of these (electronic) transitions IA(Al) A(Al) A(AI -

is basically different from the above introduced characteristic
times7 andz%) (related to the vibrational relaxation within
electronic terms). Because the timé¥ andz%) are assumed

to be the fastest times of the DBA system, along with inequality

The ratesip(piy andkiaaiy define single-electron superexchange
transitions IDO< |[I0and |I0<> |AL respectively, through
extended bridge states whereas the rates

(17) the relationrg > 7%, 7 also becomes valid. Therefore, Kom sK

i , (act) _ ().B"*B.I(D)
the transitions between the extended staté&mnd |x'Ocan be kD.(|D) ~ K tK.
described by the rate constakts andr,, and, thus, a coarse- BD © Bl
graining procedure becomes valid for an arbitrary relation RKA) BRB Al)

ki(act)

AR — Ront Ky, (39)

between the characteristic timesandztet. Provided that the
rate constantk,, andr,, do not result in an overall BA

transition but only redistribute the electron population between . - - . .
are responsible for transitions comprising hopping transitions

Fhe ex.tended brldglng states, these rate constants determlm|anto the bridge states as well as out of the bridge states.
intrabridge relaxation processes.

. . . . . The rate expressions appearing in eqs 39 read in more detail
To derive analytic results, we will consider the solution of

egs 18 for the case where the timg of the intrabridge N N
relaxation transitions is small compared to the tirngr as well Kow.e = ZlkD('W’ Kepg) = ZWB(Gﬂ)kﬂ,D(D
as for the case wherg; is large. = =
1. Fast Intrabridge Relaxationzg < zrer. In this case quasi- N N
equilibrium distributionsP,(t) (P,(t)) across the bridge states Kimps = Zrl(AM, Koy = Y Wa@G )l (40)
are present on the time-scale of the TET reaction: = =

P (0) B (1) The solution of egs 37 take the following fornfeu(t) = Pu-
- = gl@ankeT 0 = g @E@keT (33) (0) + ADe kit + APe Kt (M = D, I, A). Concrete expres-
Pu’(t) /,(t) sions for the steady state populatid?g(e) as well as for the

overall transfer ratek; andK, can be found, for instance, in
These relations, eq 33, allow us to express the populations ofref 27. The solution describes two-exponential TET kinetics
the bridging states by the integral populatidhgt) = > ,P.(t) which, however, reduces to single-exponential kinetics in the
andPg(t) = Y,P.(t). Introducing the statistical weights of the  time regiont > K;~* only if K; > K,. A detailed inspection of
extended bridging states, the related expressions shows that condition Khe> K; is
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fulfilled when stateglChas been assumed, we finally get the same expressions

for the overall transfer rate as given in eqs415.
Kpi/Kip = exp[—(Ep — E)/kgT] <1

[ll. Discussion of the Results
Ka/Kia = exp[=(E5 — E)/kgT] <1 (41)
The derivation and the solution of th&l2- 3 coupled kinetic
Moreover, the validity of inequality eq 41 guarantees a small equations, egs 18, describing the bridge-mediated TET in a DBA
population of the intermediate staf) and thus it becomes  system, and the construction of an analytic expression for the

possible to use the stationary conditidh(t) = 0. With this overall D-A TET rateKrer, eqs 43-45, 38-40, and 46, have

condition, the solution of the eqs 37 reads to be considered as the main result of the present paper. It could
be demonstrated that for fast as well as slow relaxation among
Po(®) = ky/Krer + (kiKpgre the extended DBA levels the rakéer contains two contribu-
tions related to the stepwise and the concerted TET routes. To
Pa(t) = (k/KrepD (1 — e (e clearly demonstrate the importance of these two different
mechanisms for the overall-BA TET process, we considered
P(t)=0 (42) the TET through a regular bridge with a weak energetic

. ) ) _ . . irregularities. The main attention has been put on the bridge-
Indeed, this solution describes single-exponential TET kinetics, length dependence of the overall transfer rate.

which is characterized by the overall transfer rate We first emphasis that in line with eqs 80 and 82 the driving
Krer =k + Ky (43) force of the D-A TET reaction,
AEg, = Ey — Ex = AE+ (N — 1)A 47)

only between the stat¢BJand|ACand, thus, directly between
the D and the A centers. It is important to note tagr agrees , ) , - _ 0
with K, derived from the exact solution only i; > K. This Increases with the increase of the energetic BidAE = E;
means that the inequality (41) represents a necessary and~ EY > 0 denotes the driving force in the absence of an
sufficient condition for formation of B-A TET kinetics. [Note ~ energetic bias). Therefore, and following frégw exp(-AEpa/

that in the case of bridge-mediated TET under consideration ks T)ks, the backward ET processes becomes less important when
the additional conditions, eq 32, also have to be fulfilled.] The the number of bridge unitll increases. _

overall rateKrer is defined by its forwardk) and backward Using the relation between the ratesandk;, we rewrite eq

(ko) components, each determined through stepwise and con#43 as

certed contributions so that
Krer = k{1 + exp[-(AE + (N — 1)A)/ksT]}  (48)

— 1 (step) + (conc) 44
ki) = Kie) i) (“44) and conclude that an analysis of the forward comporkent
where suffices.
Let us first consider the stepwise contribution. Because in
KoiKia the case of a BA TET regime the, energl, exceed<p, the
|<§Step): K TK. kf(conc)z Kpa driving force
1D 1A
— _F — _AFO —
kt()StEP)= KAl KlD k’gconc)z Kk (45) AED| - ED E| - AElD + (N 1)A (49)
Kip + Kia AP

of the SET proces$D0— |I0remains negative at any finite

2. Slow Intrabridge Relaxationrs > rrer. This case appears ~ humber of bridging units (note&_El(g) = EEO) - E > 0).
for small transfer ratek,, andr,,,. Therefore, the TET process ~ Therefore, by denoting the stepwise contribution, eq 45, in the
has been finalized before any noticeable redistribution of form
population within the bridging stateg[took place. As a result,
we may ignore intrabridge relaxational transitions on the time kf(step)z o AEB-(N-DA/KeT
scale of the TET process and, consequently, omit the kates
andr,, in egs 18. Bearing in mind the small population of the
bridging states, we again arrive at eqs 37 where, however, theone realizes that the stepwise route of TET can be understood
thermally activated components of effective transfer rates, eq as a thermally activated transfer process through the intermediate

KIDKIA

(50)
KID + KIA

38, take the form state|I[]
Next, we note that each effective transfer ré€g, andKa,
N ki(D),ﬂkﬂ,D(u) contains contributions related to the superexchange and ther-
kl(g((:gl) =) mally activated transfer with the superexchange contribution
u= k.uD + km to Kip given by the rat&kp. On the basis of egs 23, 24, and

A19 it becomes obvious that at the conditions of deep tunneling

and the noted rate reads

N Ty f
kufX.) _ I(A), e 1, A1) (46) kID — kl(g)efal(Nfl)e.ﬁlN(Nfl) (51)
=ty
e The dependence of this rate on the number of bridge units is
Just these expressions specify the stepwise route of the D mainly given by the exponent including the decay parameter
TET kinetics. They have to be distinguished frome those of the
egs 39 and 40. Because a small population of the intermediate o, = A(Ep) + A(E) (52)
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This parameter characterizes the superexchange transition takingharacterizes the two-electron superexchange transition between
place in a regular bridge. The second exponential function in the D and the A mediated by a regular bridge whereas the
eq 51 corresponds to the perturbation caused by an energetichange of the rate caused by an energetic Aisscharacterized

bias A and contains the parameter (nat&y = Eg — EU)

&, = (AIAE + AIAE)/2. (53)
Finally, the rate expressions of eq 51
2 |VD1VAN|2
Ko =% A Ae(FCo (54)

R AEAE,

coincides with that for a bridge with a “single” unit. Note that

for A = O the ratek'J contains a weakl dependence via the
driving force AEp, of the Franck-Condon factor. Moreover,
in analogy to eq 51 we obtain

kp = kl(g)efaz(Nfl)eCZN(Nfl) (55)
with
o, = A(Ey) + A(E) (56)
&, = (AIAE, + AIAE)/2 (57)
(note AEy = Ez — EY), and
d 2
Ki' = %ﬂ |XE\;AEJ\‘(FC)|A (58)

by the parameter
& = (AIAE, + AIAE,)/2 + 3(AIAE, + AIAE,)2 (63)

The rate expression of eq 61

© _ 21 |VD1Vi-\NVI’21V;-\N|2 (FC),
AT R AELAE,AEL,AELAERAE," PA

(64)

represents the two-electron superexchange rate for a bridge with
a “single” unit. ForA = 0 it shows a weak dependence on the
bridge length via the dependence of the FranClondon factor

on the driving forceAEpa, eq 47.

The analytic results presented so far enable us to analyze
different regimes of the BA TET process. To do this, we
utilize the simplest version of the Sonfylarcus mode®P-4for
the Franck-Condon factors. Such an approach is based on the
coupling of the electronic states to a single active vibrational
coordinate with frequency,. It results the well-known Jortner
expressiolY 41 for the Franck-Condon factor:

(FCwn = hi%eXp(_SMN cothfin/2kgT)
1+ n(wy)

vun/2
) ) Sy M@ A+ (@) (65)

Here, we introducedyn = AEun/hwo (note the correspondence

TheN dependence of the thermally activated component of the \g \ — E,, — E for M, N = D, I, A as well asAE, o) = €,

rateKp is defined by the shiftée, of the energies,. According
to the eqs A6, A18, and 39, we may derive

N

k k
(act) _ —(N—1)A/2kgT — e, —E{kgT ul D
kp =e E e _
=

59
Kul + kuD ( )

— Epgy andAE,a = €, — Ea). Moreover, we seSun = Aun/

hwo (Amn denotes the reorganization energy for the-mMN

ET). Finally, n(wg) = [exptiwo/ksT) — 1] is the Bose

distribution, and ,(2) stands for the modified Bessel function.
The actual value of the overall-PA TET rate is determined

by all those parameters entering the elementary rate constants.

This expression is valid for slow relaxation processes betweenIn present paper we focus on the bridge-length dependence of
the extended bridge states. In the contrary case of fast relaxationthe stepwise and concerted contributions toKher. Therefore,

egs A6, A18, and 46 result in

N
ZWB (Eﬂ) k/,4 D
n=
N

ZWB(EM)(KM + k/,tD)
(60)
[Because the shiftAe, are independent qf (cf. eq A18), we

may setWa(e,) = Wa(e,).] The transfer ratd® is obtained
from egs 59 and 60 by replacing the ratgs andk, by r,a

N

(act) __ —(N—1)A/2kgT —¢,—E{O/kgT,

kp '=e Zeeﬂ f Ky
u=

andr,, respectively. Besides, one has to replace the factorexp[

3(N — 1)A/2kgT] by the factor expf-(N — 1)A/2ksT] and the
energye, by the energy,.

all parameters are chosen in such way that allows us not only
to numerically analyze the difference between the mentioned
transfer rates, eq 59 and eq 60, describing the thermally activated
stepwise route but also to derive a rather simple analytic form
for two types of rate. In particular, we are able to show that
even at room temperature both types of rates reduce to a single
analytic form (cf. below, eqs 66 and 67) provided that the
intrabridge transfer couplingvg| becomes sufficiently large.

To underline that the stepwise-BA TET route follows an
activation law, let us take a look at Figure 3. It can be directly
seen that at the given set of parameters a decrease of temperature
leads to a remarkable decrease of the stepwise contrid¢6p
= [1 + exp(—AEpa/keT)]K**Pto the overall transfer ratérer
= K(step)4- K(conc) |n contrast, the concerted contributikiffonc)

= [1 + exp(—AEpa/keT)]K " stays practically constant. This

The N dependence of the stepwise transfer rate, eq 50, is factis completely explained by the two-electron superexchange
completely defined by egs 51, 55, and 59 (or eq 60). To find nature of the ratd*™® = kpa. Thus, the concerted route of

the N dependence of the concerted transfer k%ﬁ%”’, eq 45,
we use egs 23, 26, and A19. It follows

kf(conc)z ngAefa(Nfl)eiN(Nfl) (61)
where the decay parameter
a=A(Ep) + A(Ey) + A(Ep) + A(Ey) (62)

TET can even exist at zero temperature. Analyzing the stepwise
contributionK®eP and remembering the peculiarities related to
k) eq 50, we have to note thEfs®eP) contains a mixture of
contributions related to the thermally activated and the super-
exchange single-electron pathways that cannot be separated in
the general case.

However, we may compare the efficiency of the described
pathways by introducing a thermal activated componéi?
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Figure 3. Bridge-length dependence of the overat-B TET rate

Krer = K©tep) 4 K(©on) g5 well as its stepwisds©P) and concerted,
K(eone) contributions at two different temperatures. Telependence

of the transfer rate exclusively accounting for the activated stepwise
process k@, and for superexchange stepwise proc&§y), is also
shown (dashed lines). The curves are obtained in using the param-
eters: AEp = 0.75 eV,AE, = 0.65 eV,AE, = 0.75 eV,AE = 0, Ap1

= /‘LN| = ﬂ.;u = ;LNA = 0.6 eV,lm = ;LIA =0.7 eV,lDA =04 eV,a)o

= 600 CrTTl, A= 0, Vo1 = Vna = V;)l = V;\IA = 0.04 eV,VB =0.20

eVv.

as well as a superexchange componkfit?. Concrete expres-
sions for both follow from eq 50 if one maintains in eqs 38
either the rate§<,(\jﬁ) or the rateskyn. The single-electron
superexchange componekit'P) is clearly represented in the
stepwise contribution if one compares Figure 3a with Figure
3b. At room temperature it exceeds the activated contribution
up to a numbelN = 3 of bridge units whereas da& = 150 K

this is the case up tbl = 8. An interesting peculiarity of the
activated component represents the fact that the kit

Petrov et al.
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Figure 4. Bridge-length dependence of the overal-B TET rate
Krer at T = 100 K. The part stemming from the concerted mechanism
dominates aN = 1, it is comparable with the stepwise contribution at
N = 2 and becomes less important fér> 2. The use parameters are
those of Figure 3.

under consideration is given by level= 1. In this case both
expressions, eqgs 59 eq 60, reduce to the common expression

T kllle
k1I + le

(AE, =E; — E) (66)

kl(act) = o [AE—2\Velcos@iN+1)]kg
D

and

o [AB—2Vslcos@N+DlksT ETLET
ry+ria

(AE, =E, — EOY) (67)

) —
=

In the present cas¢ys| = 0.20 eV and thus eqs 66 and 67 are
satisfied for smalN. Therefore, in line with eq 50 one derives
k@~ exp[2Vg| cosa/(N + 1)/kgT]. Just such ai dependence
can be seen in Figure 3a,b. It is necessary to note here that a
similar behavior of the transfer rate characterizing the thermally
activated ET through extended bridge states (in particular, the
flat length dependence of the rate for long bridges) has been
earlier found for the case of SET reactidd$A more detailed
discussion on this problem can be found in refs 23, 43, and
44.) We would only like to mention here that the difference to
the TET consists of the fact that TET reactions cover two
separate steps of a single electron thermally activated pathway,
namely|DO< |I0and 0= |AQ

Next let us pay attention to the fact that the single-electron
superexchange decay parameters, egs 53 and 57 are smaller than
the two-electron superexchange parameter, eq 63. Therefore,

increases with increasing bridge length but stays nearly constantat low temperatures one may observe a more pronounced

atN~ 7 (if T= 298 K, Figure 3a) or aN ~ 12 (if T = 150

K, Figure 3b). Such a behavior can be explained in the following
way. If the energy biaa is zero (case of a regular bridge), the

N dependence of the activated componéist is only originated

by the gape, — E9, — E?) as well as by the ratel,y
(r.m), and here via the energies(¢,) and the transfer couplings
Tumu (Tiy)- Let the intrasite bridge couplings (which leads to

the extended levels) to be of such a magnitude that the relation
exp[—(e2 — €1)/ksT] < 1 (exp[-(é2 — €1)/ksT] < 1) is fulfilled.
Then, the main contribution to the thermally activated process

decrease of the concerted contribution with increasing bridge
length as compared with the stepwise contribution (cf. Figure
3b). Nevertheless, due to the activated character of the stepwise
D—A TET a decreasing temperature may result in a situation
where the concerted contribution ket exceeds the stepwise
one. Figure 4 displays this behavior for= 100 K. One can

see that the stepwise contributionKeer dominates folN > 2
whereas the BA TET through a bridge with a single unit is
determined by the concerted mechanismNAt 2 the stepwise

and the concerted mechanism show the same efficiency.
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wy—m——— results in a small population of the extended bridge states, eqs
3 7, whereas eqs 41 guarantee a small population of the
intermediate statd (= |D(e)B;B....ByA(e)l] Our estimations
indicate that the limit of a direct BA TET process is achieved
if the population of the mentioned states does not exceed 10
Then, the overall B-A TET transfer rateKtgt only contains a
contribution related to the stepwise and to the concerted
mechanism. The stepwise contributiiffeP is originated by
two single-electron rates and the participation of a weakly
populated intermediate staiél The effective transfer raté,
andKp (Kia andKaj) characterize the first (second) step; cf.
scheme b of Figure 2. In line with eq 38 each effective transfer
rate has a single-electron superexchange component as well as
a component related to the thermal activated process.

Note that the superexchange contribution exists even at zero
temperature. But due to the activation character of the stepwise
route (cf. eq 50) the common contribution to the TET process
drops with decreasing temperature. For a short bridge, it can
become even less effective than the concerted contribution that
results from a direct two-electron superexchange process (cf.
Figure 4). According to the single-electron superexchange

The efficiency of the thermally activated stepwise roRél component, however, one observes a certain increase of the
= |I0= |ALis very sensitive to a change of the energy gap stepwise contribution with increasing bridge length. For instance,
AEpp. Figure 5 shows this effect for the case where the in Figure 3a this increase may be seen arotiher 4. The
degeneracy of the local bridge levels is disturbed by the Presence of such a region has to be considered as the important
energetic biasA. Now, the mentioned gap shows a linear Ccriterion for the participation of extended bridge states in the
dependence on the number of bridge units, cf. eq 49. Note thatD—A TET process. Note that such a behavior of the rate is
the concerted contribution which Bit= 2 exceeds the stepwise  iImpossible when nonadiabatictA TET is considered, where
one (compare with Figure 4), stays practically constant at a giventhe thermally activated component of the stepwise route

n —a—A=0
—O—A=0.005 eV
—A—7=0.01eV

T=100 K

OVERALL TRANSFER RATE K., ()

BRIDGE UNITS

Figure 5. Enhancement of the BA TET efficiency caused by an
energetic bias within the bridge. A comparison with Figure 4 shows
that the bias mainly influences the thermal activated stepwise contribu-
tion of theKrer. The use parameters are those of Figure 3.

value of A.

IV. Conclusion

In the present paper we considered bridge-mediated two-
electron transfer (TET) for the case where the electronic

couplings between neighboring bridge units strongly exceed their

coupling to vibrational coordinates (of the DBA system as well

as the surrounding medium). Furthermore, it has been assume
that the relaxation processes that lead to an equilibrium
distribution within the vibrational states are much faster than

originates from the single-electron site to site hopping across

the bridge?®

Our considerations concentrated on a particular part of the
TET through extended DBA bridge states, the bridge-length
dependence of the reaction for a regular bridge as well as for

the case of rather simple energetic irregularities. It has been

shown that an intersite energetic bias within the bridge may

iacilitate the D-A TET (cf. Figure 5). The perturbation caused

y the bias mainly results in corrections of the superexchange
couplings as well as in an alteration of the gaps between the

specific intermediate statéland the donor (acceptor) staf(]

the overall TET process (cf. inequality, eq 17). Because the o .
b ( q . €q 17) (JAD. The change of the driving force of the corresponding

characteristic timer,e for vibrational relaxation in molecular . .
systems is 0.£10 ps’546the results presented here are valid €action was of less importance.
for TET reactions taking place in a 100 ps up to 1 ns time region. ~ Further work to be done in the investigation of bridge-
The fact that the TET takes place against the background of mediated TET reactions should be related to the consideration
fast vibrational relaxation processes allowed us to utilize a ©f more complex perturbations, in particular, to the consideration
Coarse_grained description and to derive a set of Coup|ed of the Coulomb interaction connected with a localization of the
balance-like egs 18. At the same time respective rate constantdransferred electrons within the DBA system. In the present
have been derived, Characterizing the hoppmg transitions description, we did not include this interaction but SUppOSEd
between the localized DBA statefD(] |I[) and AL} and the that the D and the A centers are well screened by polar groups
extended DBA states|f,Jand |3,[) as well as the distant ~ While the bridge is surrounded by a nonpolar medium (for a
Superexchange Sing|e_e|ectr0n and two-electron unistep transjdmnore detailed discussion cf. ref 29) HOWeVer, this interaction
tions between the D and the A centers (cf. scheme a in Figuremay influence the transfer processes in a considerable manner.
2). [As an example, we mention here ref 53 where the influence of
The main focus has been put on the reduction of multiex- the Coulomb interaction on the rate of a single-electron bridge-
ponential TET kinetics to single-exponential kinetics between Mediated oxidatiofrreduction reaction has been analyzed.]

the donor stat¢D[= |D(ee)BB....ByAlland the acceptor state
|A0= |DB1B,...ByA(ee)] only. Such a description has been
taken because the possible characterization by a singl&gte

Of course, the presented computations on TET processes have

to be applied on concrete molecular systems. Two-electron

reactions, for example, have been observed in a number of

is a common observation for numerous ET processes coveringsubstrate-enzyme complexes such as xanthine oxifasey-

biological systems, too (cf., e.g., refs-2, 6, 8, 9, and 16
20). In particular, it could be shown by us that such a/Ad

cothione reductas®, monoohygenas¥,cytochrome oxidas¥,

nickel—iron hydrogenas# trimethylamine dehydrogenaég,

regime of the TET becomes possible if a specific relation exists hemocyanir?® human cytochrome P450 reductaejicothione
between the elementary rate constants, eq 32, as well as betweereductas and others. When considering such reactions, the
the effective transfer rates, eq 41. The validity of inequality 32 main challenge is to uncover the mechanisms that orchestrate



13218 J. Phys. Chem. B, Vol. 108, No. 35, 2004 Petrov et al.

the multielectron release along the ironsulfur-, molibdenium-, the energiess, of the extended bridge statgs,land the
vanadium-, manganese-, or copper-containing protein domains.transformation coefficients,(m) are given by eq 8. Lef,, =
Moreover, it is less understood in which way a stabilization of  mu,(m)u,(M)AE, be the off-diagonal contribution caused by
reactive intermediates takes place and what is the underlyingan energetic irregularity. If the inequality

mechanism for the cleavage and formation of chemical bonds.

So far, the main interest has been related to the questions It
whether the electron transfer and the structural changes are s
separated or concerted and, if the dominant structural change

is coupled to the first or to the second step of the transfer. The is fulfilled for eachu’ = u, then in the first-order approximation
progress in understanding the mechanisms of these complexwith respect to the energetic perturbations one derives the
reactions could be probably achieved by not only analyzing the following form for the energies of bridge states (note that in eq
bridge-length dependence of the transfer rates but by the study8 and thus in the following relation the,(m) are real)

of the dependence of the overall transfer rate on structural and
external factors (including the temperature and the media
acidity), too. Recently? we used the theory of nonadiabatic
bridge-mediated BA TET to explain the dependence of the
overall transfer rate on the pH value of the solvent in which
two-electron reduction of micothione reductase by NADPH Using the identity

'| < |€/,4 - 6/,4" (A5)

c@~e,tAe, (A, = HUuXMAE,)  (A6)
m

takes place.
N N
Appendix A: Bridge Green’s Function for the Case of e, —B) =1, - E)eS(E) (A7)
Energetic Irregularities | J:l "
The Green'’s function characterizing the ET through the DBA
bridge states is defined as (cf. refs 33 and 34) where
Gy\(E) = B,|[E — HE" 4B, O (A1) N
SE) = ) In[1+ Ae¢,/(e, — E)] (A8)

where|B;[and|ByCare the localized DBA states which indicate
that one of the transferred electrons is located at the D center
whereas the second electron is located at the first or dltine
bridge unit. The same expression is valid for Green’s function

Gin(E), which follows Gyn(E) whenHE is substituted byA®)

=

we arrive at eq 27, where

as well as the statéB;Cand|BnCby |Bi0and|ByL respectively (—)NTIVE?
(these states indicate that one of the transferred electrons is G(lr,ﬁg)(E) = (A9)
located at the A center whereas the second transferred electron N
is located at the first or thiith bridge unit). In the tight binding (e, — B)
approximation under considerati@n(E) takes the following =
form
. With cosh A(E) = (Egs — E)/2|Vg|) this expression can be
u,(1)u,(N) reduced to the expression given in eq®28.
Gi\(E) = z— (A2) If the levels of the bridge states are energetically positioned
T E—e, far away the energy levels = Ep, E,, Ea (cf. Figure 1) so that
the inequali
For a linear bridge this expression can be also rewrittéh as quailty
N-1 Ae, < (e, — E) (A10)
D Vo C
m=
G\(EB) = — (A3) is valid for all bridge states, then the correcting factor is reduced

to the more simple form
NCRE

which is more suitable when approximations are carried out. If SE) = ) [A¢,/(e, — B (A11)
a regular bridge is consideredif = Vo3 = ..Vyn = VB) Gin- u=
(E) changes to the form given in eq 28.
Below we derive an analytical expression for Green’s function Analogously, one derives
of a bridge including a small energetic perturbation. We assume
for the energies of the bridge units that appear in the Hamil- N

tonian, eq 3 §E) = Z[Azﬂ/(zﬂ - B)] (A12)
E, = Es + AE, (A4) .

N

The deviation®\E,, from the mean valu&g are assumed to be  Expressions A1l and A12 are suitable for an evaluation of the
small compared with the transfer couplind$me1 = Vs. corrections to superexchange couplings. Let, for instance, an
Therefore, in the zero-order approximation (i.e.Eat~ Eg), energetic irregularity be defined by the intrabridge bias so that
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Em — Emt1 = Em — Emt1 = A. In this case, the energies of the
localized DBA states depend on the energy aas

E,=E? (A13)
E=E9—-(N-1)A (A14)
E,=E®P—2(N— 1A (A15)
E.=Eg—(M—1A (m=1,2,..N) (Al6)

E.=Eg—(N—-DA-(n—1A (n=1,2,..N)
(A17)

whereE®, E?, EQ, Eg = EQ, andEz = E? are the DBA

energies in absence of the bias. On the basis of eqs A6, Al6,

A17, and 8 one derives

Ae,=—(N—1)A/2 AZ, = —3(N—1)A/2 (A18)

These quantities are independent of the extended $tate

Therefore, to evaluate the correction factors, one has to estimat

the quantityy ,[¢, — E] 1. As an example, we consider the case
of deep tunneling wher&g — E > 2|V| and thus} ,[e, —
E]~! ~ N/(Es — E). Introducing the correction factor into eq
27, we get

1 _AEN-1) NN-1)A/[2(Es—E
Gu(E) & e MO DN DI E)
8

G (E) ~ ﬁze—f\(E)(N—l)eBN(N—l)A]/[Z(EB—E)] (A19)
B
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To derive these expressions, we have also used the fact that (33) Muijica, V.; Kemp, M.; Ratner, MJ. Chem. Phys1994 101, 6849.

owing to the inequality exp\(E) > exp (—A(E)) which is valid
for deep tunneling, the Green’s function, eq 28, of a regular
bridge reduces to the form

exp[~A(E)(N — 1)]
E,— E

GIRE) = (A20)
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