CHAPTER I

Open System Stochastic Schrodinger Equation

1 Introduction

the open system description via a stochastic Schrodinger equation is based on the assumption
that a set of properly generated state vectors |i.(t)) are ready to defined the RDO
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the |y((t)) are the solution of a time-dependent Schrodinger equation extended by terms due to
the system-reservoir coupling;

those have some random character;

if the related time-dependent but random contributions to the Schrodinger equation are counted
by ¢, the RDO is obtained as an average with respect to these random (stochastic) processes;
the determination of the RDO by the various |¢.(t)) is called stochastic unraveling of the RDO
dynamics;

two variants of stochastic Schrodinger equations exist:
(a) approach based on so-called quantum jumps
(b) approach based quantum state diffusion



while it is of general interest if such a view on open system quantum dynamics is possible there is
also a practical (computational) aspect;

let us denote the states used to form density matrix elements as |a);

their total number to be considered is N;

accordingly N x N density matrix elements have to be computed;

if we expand the stochastic Schrodinger equation with respect to the |a) we need to compute N
expansion coefficients;

however, this has to be done several times to carry out the average with respect to the different
realizations of the stochastic process;

there are various examples where this number is much smaller than N; it may result much less
overall propagation than N?;



1.1 Unraveling of the RDO Dynamics

non-Markaovian equation of motion for the RDO (mean-field contributions shall not exist; t, = 0)
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respective RDO dynamics can be obtained by the solutions of the non-Markovian stochastic
Schrodinger equation
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wave function depends on the realization of the complex noise 7,(t): [P(t)) — |v(t;n))
RDO shall follow as the stochastic average

p(t) =< [t m){W(t;n)| >y
properties of the complex coloured noise
< Mu(t) >p=0 < Nu()nu(T) >5= 10 <N (E)nu(T) >p= Cuu(t — 7)
how this scheme works in detail has to be derived;



2 Quantum Jump Description: Monte Carlo Wave-Function Propagation

the procedure to be described is named quantum jump method in contrast to the quantum diffusion
method where the wave function changes continuously in times;
we take the dissipative part of the density operator equation in the Lindblad-form

R 1 R R
0=~ S (1), - )
A

it has to be specified separately in which manner the Lindblad-operators L7 and L4 act and what
the meaning of the labels A is;
based on this type of dissipative superoperator one determines a bundle of N different time-
dependent wave-functions (state vectors) |¢,(t)) which are generated according t0 the so-called
Monte Carlo Wave-Function (MCWF) method time-step 6t by time-step dt; the resulting RDO shall
fulfill 5 ,
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the anti-Hermitian contribution
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is added to the Hamiltonian Hs;



if one starts with |¢(¢)) at time ¢ one determines the change of the state vector linear in §t; we get
a state vector at time ¢ + 4t which is not normalized to one
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instead we get the norm as
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the reduction 0 of the proper normalization (linear in §t) reads
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choosing a random number ¢ between zero and one we introduce a so-called quantum jump if
e < 0N (since 0N is a small number the quantum jump is a relatively rare event); this jump has to
be carried out according to
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which operator L7 has to be used is decided in proportion to the probability distribution SN 4/0N;



if ¢ > 0V the obtained state vector is only normalized , and we set at time ¢ + 0t
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according to the randomness of this procedure one may generate different time-dependent state
vectors |y, (t)); then, the density matrix can be constructed as indicated above;

the given procedure has not been directly derived; accordingly we cannot decide if the time-
evolution of a single wave function has any meaning; but its reliability to produce the correct RDO
is justified by the fact that the RDO generated in this way obeys the standard quantum master
equation;

in order to demonstrate this the time-evolution from ¢ to ¢ + 6t is analyzed;
we consider a |y, (t)) of a particular propagation up to time ¢;
the average at time t + ot with respect to the random numbers ¢ is obtained as (r is not written)
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the term ~ 1 — 6N corresponds to the averaged contribution of that part of the evolution which
proceeds in the absence of quantum jumps (the overall probability is 1 — d); quantum jumps are
considered via the term ~ 0N (the overall probability of quantum jumps is dN);
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it follows
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we average over all values of |y, (¢)) and arrive at the original quantum master equation
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